Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relationship between meteoric 10Be and NO3− concentrations in soils along Shackleton Glacier, Antarctica
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Byrd Polar and Climate Research Center, The Ohio State University,
Columbus, OH 43210, USA
now at: Departments of Geology and Geophysics, and Applied Ocean
Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Lee B. Corbett
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
Paul R. Bierman
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
Byron J. Adams
Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
Diana H. Wall
Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO 80523, USA
Ian D. Hogg
Canadian High Arctic Research Station, Polar Knowledge Canada,
Cambridge Bay, NU, X0B0C0, Canada
School of Science, University of Waikato, Hamilton, 3216, New Zealand
Noah Fierer
Department of Ecology and Evolutionary Biology and Cooperative
Institute for Research in Environmental Science, University of Colorado
Boulder, Boulder, CO 80309, USA
W. Berry Lyons
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Byrd Polar and Climate Research Center, The Ohio State University,
Columbus, OH 43210, USA
Related authors
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025, https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study, we compiled sand from 766 river basins and measured its subtle radioactivity to unravel timelines of sediment routing around the world. With these data, we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233, https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Short summary
To investigate the Laurentide Ice Sheet’s erosivity before and during the Last Glacial Maximum, we sampled sand deposited by ice in eastern Canada before final deglaciation. We also sampled modern river sand. The 26Al and 10Be measured in glacial deposited sediments suggests that ice remained during some Pleistocene warm periods and was an inefficient eroder. Similar concentrations of 26Al and 10Be in modern sand suggests that most modern river sediment is sourced from glacial deposits.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Cited articles
Ackert, R. P. and Kurz, M. D.: Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology, Global Planet. Change, 42, 207–225,
https://doi.org/10.1016/j.gloplacha.2004.02.001, 2004.
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A.
B.: The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review, Quaternary Sci. Rev., 21, 49–70,
https://doi.org/10.1016/S0277-3791(01)00083-X, 2002.
Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M.,
Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B.,
Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J.,
Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C.,
Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H.,
Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel,
D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J.,
Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B.,
Stocker, T. F., Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den
Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., and
Zucchelli, M.: Eight glacial cycles from an Antarctic ice core, Nature,
429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H., and Jackson, M. S.: A
14.5-million-year record of East Antarctic Ice Sheet fluctuations from the
central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al, The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, 2020.
Barrett, P. J.: Resolving views on Antarctic Neogene glacial history – The
Sirius debate, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 104, 31–53,
https://doi.org/10.1017/S175569101300008X, 2013.
Barrett, P. J., Adams, C. J., McIntosh, W. C., Swisher, C. C., and Wilson, G. S.: Geochronological evidence supporting Antarctic deglaciation three million years ago, Nature, 359, 816–818, 1992.
Bierman, P. R., Corbett, L. B., Graly, J. A., Neumann, T. A., Lini, A.,
Crosby, B. T., and Rood, D. H.: Preservation of a Preglacial Landscape Under
the Center of the Greenland Ice Sheet, Science, 344, 402–405,
https://doi.org/10.4159/harvard.9780674430501.c21, 2014.
Bockheim, J. G.: Landform and Soil Development in the McMurdo Dry Valleys,
Antarctica: A Regional Synthesis, Arctic, Antarct. Alp. Res., 34, 308–317, https://doi.org/10.1080/15230430.2002.12003499, 2002.
Bromley, G. R. M., Hall, B. L., Stone, J. O., Conway, H., and Todd, C. E.:
Late Cenozoic deposits at Reedy Glacier, Transantarctic Mountains: implications for former thickness of the West Antarctic Ice Sheet, Quaternary
Sci. Rev., 29, 384–398, https://doi.org/10.1016/j.quascirev.2009.07.001, 2010.
Brown, E. T., Edmond, J. M., Raisbeck, G. M., Bourlès, D. L., Yiou, F.,
and Measures, C. I.: Beryllium isotope geochemistry in tropical river basins, Geochim. Cosmochim. Ac., 56, 1607–1624, https://doi.org/10.1016/0016-7037(92)90228-B, 1992.
Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A.: On the rocks:
The microbiology of Antarctic Dry Valley soils, Nat. Rev. Microbiol., 8,
129–138, https://doi.org/10.1038/nrmicro2281, 2010.
Claridge, G. G. C. and Campbell, I. B.: Origin of nitrate deposits, Nature, 217, 428–430, https://doi.org/10.1038/217428a0, 1968a.
Claridge, G. G. C. and Campbell, I. B.: Soils of the Shackleton glacier region, Queen Maud Range, Antarctica, New Zeal. J. Sci., 11, 171–218, 1968b.
Claridge, G. G. C. and Campbell, I. B.: Salts in Antarctic soils, their
distribution and relationship to soil processes, Soil Sci., 123, 377–384, 1977.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Collins, G. E., Hogg, I. D., Convey, P., Sancho, L. G., Cowan, D. A., Lyons,
W. B., Adams, B. J., Wall, D. H., and Green, T. G. A.: Genetic diversity of
soil invertebrates corroborates timing estimates for past collapses of the
West Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 117, 22293–22302, https://doi.org/10.1073/pnas.2007925117, 2020.
Convey, P., Gibson, J. A. E., Hillenbrand, C. D., Hodgson, D. A., Pugh, P.
J. A., Smellie, J. L., and Stevens, M. I.: Antarctic terrestrial life –
Challenging the history of the frozen continent?, Biol. Rev., 83, 103–117, https://doi.org/10.1111/j.1469-185X.2008.00034.x, 2008.
Diaz, M. A., Li, J., Michalski, G., Darrah, T. H., Adams, B. J., Wall, D.
H., Hogg, I. D., Fierer, N., Welch, S. A., Gardner, C. B., and Lyons, W. B.:
Stable isotopes of nitrate, sulfate, and carbonate in soils from the Transantarctic Mountains, Antarctica: A record of atmospheric deposition and
chemical weathering, Front. Earth Sci., 8, 341, https://doi.org/10.3389/feart.2020.00341, 2020.
Diaz, M. A., Corbett, L. B., Bierman, P. R., Adams, B. J., Wall, D. H., Hogg, I. D., Fierer, N., and Lyons, W. B.: Meteoric 10Be data of soils from the Shackleton Glacier region, US Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601421, 2021.
Dickinson, W. W., Schiller, M., Ditchburn, B. G., Graham, I. J., and Zondervan, A.: Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6 Ma, Earth Planet. Sc. Lett.,
355–356, 13–19, https://doi.org/10.1016/j.epsl.2012.09.003, 2012.
Ebert, K., Willenbring, J., Norton, K. P., Hall, A., and Hättestrand, C.:
Meteoric 10Be concentrations from saprolite and till in northern Sweden:
Implications for glacial erosion and age, Quatern. Geochronol., 12, 11–22,
https://doi.org/10.1016/j.quageo.2012.05.005, 2012.
Elliot, D. H. and Fanning, C. M.: Detrital zircons from upper Permian and
lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin,
Gondwana Res., 13, 259–274, https://doi.org/10.1016/j.gr.2007.05.003, 2008.
Elliot, D. H., Collinson, J. W., and Green, W. J.: Lakes in dry valleys at
85∘ S near Mount Heekin, Shackleton Glacier, Antarct. J. United
States, 31, 25–27, 1996.
Everett, K. R.: Soils Of The Meserve Glacier Area, Wright Valley, South Victoria Land, Antarctica, Soil Sci., 112, 425–438, 1971.
Fraser, C. I., Nikula, R., Ruzzante, D. E., and Waters, J. M.: Poleward bound: Biological impacts of Southern Hemisphere glaciation, Trends Ecol. Evol., 27, 462–471, https://doi.org/10.1016/j.tree.2012.04.011, 2012.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.:
Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic
ice sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.: Dynamics of the last glacial maximum Antarctic ice-sheet and its response to
ocean forcing, P. Natl. Acad. Sci. USA, 109, 16052–16056,
https://doi.org/10.1073/pnas.1205385109, 2012.
Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A.,
Graham, A. G. C., Smith, J. A., Hillenbrand, C. D., Licht, K. J., Denton, G.
H., Ackert, R. P., Maas, S. M., and Hall, B. L.: Glaciology and geological
signature of the Last Glacial Maximum Antarctic ice sheet, Quaternary Sci. Rev., 78, 225–247, https://doi.org/10.1016/j.quascirev.2013.08.011, 2013.
Graham, I., Ditchburn, R. G., Claridge, G. G. G., Whitehead, N. E., Zondervan, A., and Sheppard, D. S.: Dating Antarctic soils using atmospheric
derived 10Be and nitrate, R. Soc. New Zeal. Bull., 35, 429–436, 2002.
Graham, I. J., Ditchbum, R. G., Sparks, R. J., and Whitehead, N. E.: 10Be investigations of sediments, soils and loess at GNS, Nucl. Instrum. Meth. Phys. Res. B, 123, 307–318, 1997.
Graly, J. A., Bierman, P. R., Reusser, L. J., and Pavich, M. J.: Meteoric
10Be in soil profiles – A global meta-analysis, Geochim. Cosmochim. Ac., 74, 6814–6829, https://doi.org/10.1016/j.gca.2010.08.036, 2010.
Graly, J. A., Licht, K. J., Druschel, G. K., and Kaplan, M. R.: Polar desert
chronologies through quantitative measurements of salt accumulation, Geology, 46, 351–354, https://doi.org/10.1130/G39650.1, 2018.
Gulick, S. P. S., Shevenell, A. E., Montelli, A., Fernandez, R., Smith, C.,
Warny, S., Bohaty, S. M., Sjunneskog, C., Leventer, A., Frederick, B., and
Blankenship, D. D.: Initiation and long-term instability of the East Antarctic Ice Sheet, Nature, 552, 225–229, https://doi.org/10.1038/nature25026, 2017.
Hambrey, M. J., Webb, P. N., Harwood, D. M., and Krissek, L. A.: Neogene
glacial record from the Sirius Group of the Shackleton Glacier region, central Transantarctic Mountains, Antarctica, GSA Bull., 115, 994–1015,
https://doi.org/10.1130/B25183.1, 2003.
Ivy-Ochs, S., Schluchter, C., Kubik, P. W., Dittrich-Hannen, B., and Beer,
J.: Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica, Geology, 23, 1007–1010, 1995.
Jackson, A., Davila, A. F., Böhlke, J. K., Sturchio, N. C., Sevanthi,
R., Estrada, N., Brundrett, M., Lacelle, D., McKay, C. P., Poghosyan, A.,
Pollard, W., and Zacny, K.: Deposition, accumulation, and alteration of Cl−, , and salts in a hyper-arid polar environment: Mass balance and isotopic constraints, Geochim. Cosmochim. Ac., 182, 197–215,
https://doi.org/10.1016/j.gca.2016.03.012, 2016.
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill, C.
J., Kubik, P. W., Christl, M., and Greenwood, S. L.: Rapid Holocene thinning
of an East Antarctic outlet glacier driven by marine ice sheet instability,
Nat. Commun., 6, 9910, https://doi.org/10.1038/ncomms9910, 2015.
Kaplan, M. R., Licht, K. J., Winckler, G., Schaefer, J. M., Bader, N.,
Mathieson, C., Roberts, M., Kassab, C. M., Schwartz, R., and Graly, J. A.:
Middle to Late Pleistocene stability of the central East Antarctic Ice Sheet
at the head of Law Glacier, Geology, 45, 963–966, https://doi.org/10.1130/G39189.1, 2017.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K.,
Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C. L.,
Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the
half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid
scintillation counting, Nucl. Instrum. Meth. Phys. Res. B, 268, 187–191,
https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S.
R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J.
I., Willenbring, J. K., Williams, M., and Wolfe, A. P.: Mid-Miocene cooling
and the extinction of tundra in continental Antarctica, P. Natl. Acad. Sci. USA, 105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Lyons, W. B., Mayewski, P. A., Spencer, M. J., and Twickler, M. S.: Nitrate
concentrations in snow from remote areas: implication for the global NOx flux, Biogeochemistry, 9, 211–222, https://doi.org/10.1007/BF00000599, 1990.
Lyons, W. B., Deuerling, K., Welch, K. A., Welch, S. A., Michalski, G., Walters, W. W., Nielsen, U., Wall, D. H., Hogg, I., and Adams, B. J.: The Soil Geochemistry in the Beardmore Glacier Region, Antarctica: Implications for Terrestrial Ecosystem History, Sci. Rep., 6, 26189, https://doi.org/10.1038/srep26189, 2016.
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White,
D., Pollard, D., Deconto, R., Fink, D., Zwartz, D., Gore, D., and Lavoie, C.:
Retreat of the East Antarctic ice sheet during the last glacial termination,
Nat. Geosci., 4, 195–202, https://doi.org/10.1038/ngeo1061, 2011.
Mackintosh, A. N., Verleyen, E., O'Brien, P. E., White, D. A., Jones, R. S.,
McKay, R., Dunbar, R., Gore, D. B., Fink, D., Post, A. L., Miura, H., Leventer, A., Goodwin, I., Hodgson, D. A., Lilly, K., Crosta, X., Golledge,
N. R., Wagner, B., Berg, S., van Ommen, T., Zwartz, D., Roberts, S. J.,
Vyverman, W., and Masse, G.: Retreat history of the East Antarctic Ice Sheet
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 10–30,
https://doi.org/10.1016/j.quascirev.2013.07.024, 2014.
Marchant, D. R., Denton, G. H., Swisher, C. C., and Potter, N.: Late Cenozoic
Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys
region of southern Victoria Land, Geol. Soc. Am. Bull., 108, 181–194,
https://doi.org/10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2, 1996.
McHargue, L. R. and Damon, P. E.: The global beryllium 10 cycle, Rev. Geophys., 29, 141–158, https://doi.org/10.1029/91RG00072, 1991.
Menzies, J., van der Meer, J. J. M., and Rose, J.: Till-as a glacial
“tectomict”, its internal architecture, and the development of a “typing” method for till differentiation, Geomorphology, 75, 172–200,
https://doi.org/10.1016/j.geomorph.2004.02.017, 2006.
Michalski, G., Bockheim, J. G., Kendall, C., and Thiemens, M.: Isotopic
composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL022121, 2005.
Morgan, D., Putkonen, J., Balco, G., and Stone, J.: Quantifying regolith
erosion rates with cosmogenic nuclides 10Be and 26Al in the McMurdo Dry Valleys, Antarctica, J. Geophys. Res., 115, F03037,
https://doi.org/10.1029/2009JF001443, 2010.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl.
Instrum. Meth. Phys. Res. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Paulsen, T. S., Encarnación, J., and Grunow, A. M.: Structure and timing
of transpressional deformation in the Shackleton Glacier area, Ross orogen,
Antarctica, J. Geol. Soc. Lond., 161, 1027–1038, https://doi.org/10.1144/0016-764903-040, 2004.
Pavich, M. J., Brown, L., Klein, J., and Middleton, R.: 10Be accumulation in a soil chronosequence, Earth Planet. Sc. Lett., 68, 198–204,
https://doi.org/10.1016/0012-821X(84)90151-1, 1984.
Pavich, M. J., Brown, L., Harden, J., Klein, J., and Middleton, R.: 10Be distribution in soils from Merced River terraces, California, Geochim. Cosmochim. Ac., 50, 1727–1735, https://doi.org/10.1016/0016-7037(86)90134-1, 1986.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–332, https://doi.org/10.1038/nature07809, 2009.
Reich, M. and Bao, H.: Nitrate deposits of the Atacama Desert: A marker of
long-term hyperaridity, Elements, 14, 251–256, https://doi.org/10.2138/gselements.14.4.251, 2018.
Scarrow, J. W., Balks, M. R., and Almond, P. C.: Three soil chronosequences
in recessional glacial deposits near the polar plateau, in the Central
Transantarctic Mountains, Antarctica, Antarct. Sci., 26, 573–583,
https://doi.org/10.1017/S0954102014000078, 2014.
Scherer, R. P., DeConto, R. M., Pollard, D., and Alley, R. B.: Windblown
Pliocene diatoms and East Antarctic Ice Sheet retreat, Nat. Commun., 7, 1–9, https://doi.org/10.1038/ncomms12957, 2016.
Schiller, M., Dickinson, W., Ditchburn, R. G., Graham, I. J., and Zondervan,
A.: Atmospheric 10Be in an Antarctic soil: Implications for climate change, J. Geophys. Res., 114, 1–8, https://doi.org/10.1029/2008jf001052, 2009.
Spector, P. and Balco, G.: Exposure-age data from across Antarctica reveal
mid-Miocene establishment of polar desert climate, Geology, 49, 91–95, https://doi.org/10.1130/G47783.1, 2020.
Spector, P., Stone, J., Cowdery, S. G., Hall, B., Conway, H., and Bromley, G.: Rapid early-Holocene deglaciation in the Ross Sea, Antarctica, Geophys. Res. Lett., 44, 7817–7825, https://doi.org/10.1002/2017GL074216, 2017.
Steig, E., Stuiver, M., and Polissar, P.: Cosmogenic isotope concentrations at Taylor Dome, Antarctica, Antarct. J. United States, 30, 95–97, 1995.
Stevens, M. I. and Hogg, I. D.: Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail
Gomphiocephalus hodgsoni from Victoria Land, Antarctica, Mol. Ecol., 12, 2357–2369, https://doi.org/10.1046/j.1365-294X.2003.01907.x, 2003.
Stone, J.: A rapid fusion method for separation of beryllium-10 from soils
and silicates, Geochim. Cosmochim. Ac., 62, 555–561, https://doi.org/10.1016/S0016-7037(97)00340-2, 1998.
Stroeven, A. P., Prentice, M. L., and Kleman, J.: On marine microfossil
transport and pathways in Antarctica during the late Neogene: Evidence from
the Sirius Group at Mount Fleming, Geology, 24, 727–730,
https://doi.org/10.1130/0091-7613(1996)024<0727:ommtap>2.3.co;2, 1996.
Sugden, D. E., Marchant, D. R., and Denton, G. H.: The case for a stable East
Antarctic ice sheet, Geogr. Ann. A, 75, 151–351, 1993.
Talarico, F. M., McKay, R. M., Powell, R. D., Sandroni, S., and Naish, T.:
Late Cenozoic oscillations of Antarctic ice sheets revealed by provenance of
basement clasts and grain detrital modes in ANDRILL core AND-1B, Global Planet. Change, 96–97, 23–40, https://doi.org/10.1016/j.gloplacha.2009.12.002, 2012.
Valletta, R. D., Willenbring, J. K., Lewis, A. R., Ashworth, A. C., and Caffee, M.: Extreme decay of meteoric beryllium-10 as a proxy for persistent
aridity, Sci. Rep., 5, 17813, https://doi.org/10.1038/srep17813, 2015.
Webb, P. N. and Harwood, D. M.: Late Cenozoic glacial history of the Ross
embayment, Antarctica, Quaternary Sci. Rev., 10, 215–223,
https://doi.org/10.1016/0277-3791(91)90020-U, 1991.
Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H., and Stott, L.
D.: Cenozoic marine sedimentation and ice-volume variation on the East
Antarctic craton, Geology, 12, 287–291,
https://doi.org/10.1130/0091-7613(1984)12<287:cmsaiv>2.0.co;2, 1984.
Webb, P. N., Harwood, D. M., Mabin, M. G. C., and McKelvey, B. C.: A marine and terrestrial Sirius Group succession, middle Beardmore Glacier-Queen
Alexandra Range, Transantarctic Mountains, Antarctica, Mar. Micropaleontol.,
27, 273–297, https://doi.org/10.1016/0377-8398(95)00066-6, 1996.
Welch, K. A., Lyons, W. B., Whisner, C., Gardner, C. B., Gooseff, M. N., Mcknight, D. M., and Priscu, J. C.: Spatial variations in the geochemistry of
glacial meltwater streams in the Taylor Valley, Antarctica, Antarct. Sci., 22, 662–672, https://doi.org/10.1017/S0954102010000702, 2010.
Willenbring, J. K. and von Blanckenburg, F.: Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics, Earth-Sci. Rev., 98, 105–122, https://doi.org/10.1016/j.earscirev.2009.10.008, 2010.
Wilson, G. S.: The neogene east antarctic ice sheet: A dynamic or stable
feature?, Quaternary Sci. Rev., 14, 101–123, https://doi.org/10.1016/0277-3791(95)00002-7, 1995.
You, C. F., Lee, T., and Li, Y. H.: The partition of Be between soil and
water, Chem. Geol., 77, 105–118, https://doi.org/10.1016/0009-2541(89)90136-8, 1989.
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free...