Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relationship between meteoric 10Be and NO3− concentrations in soils along Shackleton Glacier, Antarctica
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Byrd Polar and Climate Research Center, The Ohio State University,
Columbus, OH 43210, USA
now at: Departments of Geology and Geophysics, and Applied Ocean
Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Lee B. Corbett
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
Paul R. Bierman
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
Byron J. Adams
Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
Diana H. Wall
Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO 80523, USA
Ian D. Hogg
Canadian High Arctic Research Station, Polar Knowledge Canada,
Cambridge Bay, NU, X0B0C0, Canada
School of Science, University of Waikato, Hamilton, 3216, New Zealand
Noah Fierer
Department of Ecology and Evolutionary Biology and Cooperative
Institute for Research in Environmental Science, University of Colorado
Boulder, Boulder, CO 80309, USA
W. Berry Lyons
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Byrd Polar and Climate Research Center, The Ohio State University,
Columbus, OH 43210, USA
Related authors
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Christopher Halsted, Paul Bierman, Alexandru Codilean, Lee Corbett, and Marc Caffee
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-22, https://doi.org/10.5194/gchron-2024-22, 2024
Preprint under review for GChron
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study compiled sand from over 600 river basins and measured its (very subtle) radioactivity to unravel timelines of sediment routing around the world. With this data we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233, https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Short summary
To investigate the Laurentide Ice Sheet’s erosivity before and during the Last Glacial Maximum, we sampled sand deposited by ice in eastern Canada before final deglaciation. We also sampled modern river sand. The 26Al and 10Be measured in glacial deposited sediments suggests that ice remained during some Pleistocene warm periods and was an inefficient eroder. Similar concentrations of 26Al and 10Be in modern sand suggests that most modern river sediment is sourced from glacial deposits.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
EGUsphere, https://doi.org/10.5194/egusphere-2024-2194, https://doi.org/10.5194/egusphere-2024-2194, 2024
Short summary
Short summary
The Camp Century sub-glacial core stores information about past climates, glacial and interglacial processes in northwest Greenland. In this study, we investigated the core archive making large scale observations using CT scans and micron scale observation observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Hannah S. Weiss, Paul R. Bierman, Yves Dubief, and Scott D. Hamshaw
The Cryosphere, 13, 3367–3382, https://doi.org/10.5194/tc-13-3367-2019, https://doi.org/10.5194/tc-13-3367-2019, 2019
Short summary
Short summary
Climate change is devastating winter tourism. High-elevation, high-latitude ski centers have turned to saving snow over the summer. We present results of two field seasons to test and optimize over-summer snow storage at a midlatitude, low-elevation nordic ski center in the northeastern USA. In 2018, we tested coverings and found success overlaying 20 cm of wet woodchips with a reflective sheet. In 2019, we employed this strategy to a large pile and stored sufficient snow to open the ski season.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Amanda H. Schmidt, Thomas B. Neilson, Paul R. Bierman, Dylan H. Rood, William B. Ouimet, and Veronica Sosa Gonzalez
Earth Surf. Dynam., 4, 819–830, https://doi.org/10.5194/esurf-4-819-2016, https://doi.org/10.5194/esurf-4-819-2016, 2016
Short summary
Short summary
In order to test the assumption that erosion rates derived from Be-10 are not affected by increases in erosion due to contemporary agricultural land use, we measured erosion rates in three tributaries of the Mekong River. We find that in the most heavily agricultural landscapes, the apparent long-term erosion rate correlates best with measures of modern land use, suggesting that agriculture has eroded below the mixed layer and is affecting apparent erosion rates derived from Be-10.
Juliane Filser, Jack H. Faber, Alexei V. Tiunov, Lijbert Brussaard, Jan Frouz, Gerlinde De Deyn, Alexei V. Uvarov, Matty P. Berg, Patrick Lavelle, Michel Loreau, Diana H. Wall, Pascal Querner, Herman Eijsackers, and Juan José Jiménez
SOIL, 2, 565–582, https://doi.org/10.5194/soil-2-565-2016, https://doi.org/10.5194/soil-2-565-2016, 2016
Short summary
Short summary
Soils store more than 3 times as much carbon than the atmosphere, but global carbon models still suffer from large uncertainty. We argue that this may be due to the fact that soil animals are not taken into account in such models. They dig, eat and distribute dead organic matter and microorganisms, and the quantity of their activity is often huge. Soil animals affect microbial activity, soil water content, soil structure, erosion and plant growth – and all of this affects carbon cycling.
E. Ashley Shaw, Karolien Denef, Cecilia Milano de Tomasel, M. Francesca Cotrufo, and Diana H. Wall
SOIL, 2, 199–210, https://doi.org/10.5194/soil-2-199-2016, https://doi.org/10.5194/soil-2-199-2016, 2016
Short summary
Short summary
We investigated fire's effects on root decomposition and carbon (C) flow to the soil food web. We used 13C-labeled dead roots buried in microcosms constructed from two burn treatment soils (annual and infrequent burn). Our results showed greater root decomposition and C flow to the soil food web for the annual burn compared to infrequent burn treatment. Thus, roots are a more important C source for decomposers in annually burned areas where surface plant litter is frequently removed by fire.
Michael N. Gooseff, David Van Horn, Zachary Sudman, Diane M. McKnight, Kathleene A. Welch, and William B. Lyons
Biogeosciences, 13, 1723–1732, https://doi.org/10.5194/bg-13-1723-2016, https://doi.org/10.5194/bg-13-1723-2016, 2016
Short summary
Short summary
The landscape of the McMurdo Dry Valleys, Antarctica has been considered quite stable. In 2012, we discovered extensive permafrost degradation along several km of Crescent Stream. Here we document the responses to water quality, specifically changes to dissolved major ion and suspended sediment characteristics. Stream nitrate concentrations were greater than observed in the stream over the previous ~ 20 years, suggesting potentially significant impacts for stream and downstream lake ecosystems.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Equilibrium distance from long-range dune interactions
Examination of analytical shear stress predictions for coastal dune evolution
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Width evolution of channel belts as a random walk
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Geometric constraints on tributary fluvial network junction angles
A new dunetracking tool to support input parameter selection and uncertainty analyses using a Monte Carlo approach
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Downstream rounding rate of pebbles in the Himalaya
Automatic detection of instream large wood in videos using deep learning
Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulphate wedges
A physics-based model for fluvial valley width
Sub-surface processes and heat fluxes at coarse-blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
A numerical model for duricrust formation by water table fluctuations
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
Earth Surf. Dynam., 13, 23–39, https://doi.org/10.5194/esurf-13-23-2025, https://doi.org/10.5194/esurf-13-23-2025, 2025
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency, and dune size. This process is controlled by the modification of wind flow over dunes of various shapes, influencing the sediment transport downstream.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2024-2011, https://doi.org/10.5194/egusphere-2024-2011, 2024
Short summary
Short summary
We propose a new mechanism of widespread surficial co-seismic sediment entrainment by seismic motions in subduction earthquakes. Our physical experiments show that shear from sediment-water relative velocities from long-period earthquake motions can mobilize synthetic fine marine sediment. High frequency vertical shaking can enhance this mobilization. According to our results, the largest tsunamigenic earthquakes that rupture to the trench may be distinguishable in the sedimentary record.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Jens Martin Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
EGUsphere, https://doi.org/10.5194/egusphere-2024-2342, https://doi.org/10.5194/egusphere-2024-2342, 2024
Short summary
Short summary
Channel belts comprise the area that is affected by a river due to lateral migration and floods. As a landform, they affect local water resources, flood hazard, and often host unique ecological communities. Here, we develop a model describing the evolution of channel belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems is favourable.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Abhishek Kashyap, Kristen Cook, and Mukunda Dev Behera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1618, https://doi.org/10.5194/egusphere-2024-1618, 2024
Short summary
Short summary
High-mountain floods exhibit a significant geomorphic hazard, often triggered by rapid snowmelt, extreme precipitation, glacial lake outbursts, and natural failures of dams. Such high-magnitude floods can have catastrophic impacts on downstream communities, ecosystems, and infrastructure. These floods demonstrate the significance of understanding the complex interaction of climatic, hydrological, and geological forces in high mountain regions.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Julius Reich and Axel Winterscheid
EGUsphere, https://doi.org/10.5194/egusphere-2024-579, https://doi.org/10.5194/egusphere-2024-579, 2024
Short summary
Short summary
Analysing the geometry and the dynamics of riverine bedforms (so-called dunetracking) is important for various fields of application and contributes to a sound and efficient river and sediment management. We developed a new tool, which enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a test dataset, we show that the selection of input parameters of dunetracking tools can have a significant impact on the results.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1138, https://doi.org/10.5194/egusphere-2024-1138, 2024
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
EGUsphere, https://doi.org/10.5194/egusphere-2024-792, https://doi.org/10.5194/egusphere-2024-792, 2024
Short summary
Short summary
This study presents a novel CNN approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods that can be used on a variety of data sources. Leveraging a database of 15,228 fully labeled images, our model achieved a 67 % weighted mean average precision. Fine-tuning parameters and sampling techniques offer potential for further performance enhancement of more than 10 % in certain cases, promising valuable insights for ecosystem management.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
EGUsphere, https://doi.org/10.5194/egusphere-2024-592, https://doi.org/10.5194/egusphere-2024-592, 2024
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
EGUsphere, https://doi.org/10.5194/egusphere-2024-160, https://doi.org/10.5194/egusphere-2024-160, 2024
Short summary
Short summary
We have developed a new numerical model to represent the formation of ferricretes which are iron-rich, hard layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Cited articles
Ackert, R. P. and Kurz, M. D.: Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology, Global Planet. Change, 42, 207–225,
https://doi.org/10.1016/j.gloplacha.2004.02.001, 2004.
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A.
B.: The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review, Quaternary Sci. Rev., 21, 49–70,
https://doi.org/10.1016/S0277-3791(01)00083-X, 2002.
Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M.,
Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B.,
Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J.,
Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C.,
Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H.,
Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel,
D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J.,
Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B.,
Stocker, T. F., Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den
Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., and
Zucchelli, M.: Eight glacial cycles from an Antarctic ice core, Nature,
429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H., and Jackson, M. S.: A
14.5-million-year record of East Antarctic Ice Sheet fluctuations from the
central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al, The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, 2020.
Barrett, P. J.: Resolving views on Antarctic Neogene glacial history – The
Sirius debate, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 104, 31–53,
https://doi.org/10.1017/S175569101300008X, 2013.
Barrett, P. J., Adams, C. J., McIntosh, W. C., Swisher, C. C., and Wilson, G. S.: Geochronological evidence supporting Antarctic deglaciation three million years ago, Nature, 359, 816–818, 1992.
Bierman, P. R., Corbett, L. B., Graly, J. A., Neumann, T. A., Lini, A.,
Crosby, B. T., and Rood, D. H.: Preservation of a Preglacial Landscape Under
the Center of the Greenland Ice Sheet, Science, 344, 402–405,
https://doi.org/10.4159/harvard.9780674430501.c21, 2014.
Bockheim, J. G.: Landform and Soil Development in the McMurdo Dry Valleys,
Antarctica: A Regional Synthesis, Arctic, Antarct. Alp. Res., 34, 308–317, https://doi.org/10.1080/15230430.2002.12003499, 2002.
Bromley, G. R. M., Hall, B. L., Stone, J. O., Conway, H., and Todd, C. E.:
Late Cenozoic deposits at Reedy Glacier, Transantarctic Mountains: implications for former thickness of the West Antarctic Ice Sheet, Quaternary
Sci. Rev., 29, 384–398, https://doi.org/10.1016/j.quascirev.2009.07.001, 2010.
Brown, E. T., Edmond, J. M., Raisbeck, G. M., Bourlès, D. L., Yiou, F.,
and Measures, C. I.: Beryllium isotope geochemistry in tropical river basins, Geochim. Cosmochim. Ac., 56, 1607–1624, https://doi.org/10.1016/0016-7037(92)90228-B, 1992.
Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A.: On the rocks:
The microbiology of Antarctic Dry Valley soils, Nat. Rev. Microbiol., 8,
129–138, https://doi.org/10.1038/nrmicro2281, 2010.
Claridge, G. G. C. and Campbell, I. B.: Origin of nitrate deposits, Nature, 217, 428–430, https://doi.org/10.1038/217428a0, 1968a.
Claridge, G. G. C. and Campbell, I. B.: Soils of the Shackleton glacier region, Queen Maud Range, Antarctica, New Zeal. J. Sci., 11, 171–218, 1968b.
Claridge, G. G. C. and Campbell, I. B.: Salts in Antarctic soils, their
distribution and relationship to soil processes, Soil Sci., 123, 377–384, 1977.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Collins, G. E., Hogg, I. D., Convey, P., Sancho, L. G., Cowan, D. A., Lyons,
W. B., Adams, B. J., Wall, D. H., and Green, T. G. A.: Genetic diversity of
soil invertebrates corroborates timing estimates for past collapses of the
West Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 117, 22293–22302, https://doi.org/10.1073/pnas.2007925117, 2020.
Convey, P., Gibson, J. A. E., Hillenbrand, C. D., Hodgson, D. A., Pugh, P.
J. A., Smellie, J. L., and Stevens, M. I.: Antarctic terrestrial life –
Challenging the history of the frozen continent?, Biol. Rev., 83, 103–117, https://doi.org/10.1111/j.1469-185X.2008.00034.x, 2008.
Diaz, M. A., Li, J., Michalski, G., Darrah, T. H., Adams, B. J., Wall, D.
H., Hogg, I. D., Fierer, N., Welch, S. A., Gardner, C. B., and Lyons, W. B.:
Stable isotopes of nitrate, sulfate, and carbonate in soils from the Transantarctic Mountains, Antarctica: A record of atmospheric deposition and
chemical weathering, Front. Earth Sci., 8, 341, https://doi.org/10.3389/feart.2020.00341, 2020.
Diaz, M. A., Corbett, L. B., Bierman, P. R., Adams, B. J., Wall, D. H., Hogg, I. D., Fierer, N., and Lyons, W. B.: Meteoric 10Be data of soils from the Shackleton Glacier region, US Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601421, 2021.
Dickinson, W. W., Schiller, M., Ditchburn, B. G., Graham, I. J., and Zondervan, A.: Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6 Ma, Earth Planet. Sc. Lett.,
355–356, 13–19, https://doi.org/10.1016/j.epsl.2012.09.003, 2012.
Ebert, K., Willenbring, J., Norton, K. P., Hall, A., and Hättestrand, C.:
Meteoric 10Be concentrations from saprolite and till in northern Sweden:
Implications for glacial erosion and age, Quatern. Geochronol., 12, 11–22,
https://doi.org/10.1016/j.quageo.2012.05.005, 2012.
Elliot, D. H. and Fanning, C. M.: Detrital zircons from upper Permian and
lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin,
Gondwana Res., 13, 259–274, https://doi.org/10.1016/j.gr.2007.05.003, 2008.
Elliot, D. H., Collinson, J. W., and Green, W. J.: Lakes in dry valleys at
85∘ S near Mount Heekin, Shackleton Glacier, Antarct. J. United
States, 31, 25–27, 1996.
Everett, K. R.: Soils Of The Meserve Glacier Area, Wright Valley, South Victoria Land, Antarctica, Soil Sci., 112, 425–438, 1971.
Fraser, C. I., Nikula, R., Ruzzante, D. E., and Waters, J. M.: Poleward bound: Biological impacts of Southern Hemisphere glaciation, Trends Ecol. Evol., 27, 462–471, https://doi.org/10.1016/j.tree.2012.04.011, 2012.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.:
Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic
ice sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.: Dynamics of the last glacial maximum Antarctic ice-sheet and its response to
ocean forcing, P. Natl. Acad. Sci. USA, 109, 16052–16056,
https://doi.org/10.1073/pnas.1205385109, 2012.
Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A.,
Graham, A. G. C., Smith, J. A., Hillenbrand, C. D., Licht, K. J., Denton, G.
H., Ackert, R. P., Maas, S. M., and Hall, B. L.: Glaciology and geological
signature of the Last Glacial Maximum Antarctic ice sheet, Quaternary Sci. Rev., 78, 225–247, https://doi.org/10.1016/j.quascirev.2013.08.011, 2013.
Graham, I., Ditchburn, R. G., Claridge, G. G. G., Whitehead, N. E., Zondervan, A., and Sheppard, D. S.: Dating Antarctic soils using atmospheric
derived 10Be and nitrate, R. Soc. New Zeal. Bull., 35, 429–436, 2002.
Graham, I. J., Ditchbum, R. G., Sparks, R. J., and Whitehead, N. E.: 10Be investigations of sediments, soils and loess at GNS, Nucl. Instrum. Meth. Phys. Res. B, 123, 307–318, 1997.
Graly, J. A., Bierman, P. R., Reusser, L. J., and Pavich, M. J.: Meteoric
10Be in soil profiles – A global meta-analysis, Geochim. Cosmochim. Ac., 74, 6814–6829, https://doi.org/10.1016/j.gca.2010.08.036, 2010.
Graly, J. A., Licht, K. J., Druschel, G. K., and Kaplan, M. R.: Polar desert
chronologies through quantitative measurements of salt accumulation, Geology, 46, 351–354, https://doi.org/10.1130/G39650.1, 2018.
Gulick, S. P. S., Shevenell, A. E., Montelli, A., Fernandez, R., Smith, C.,
Warny, S., Bohaty, S. M., Sjunneskog, C., Leventer, A., Frederick, B., and
Blankenship, D. D.: Initiation and long-term instability of the East Antarctic Ice Sheet, Nature, 552, 225–229, https://doi.org/10.1038/nature25026, 2017.
Hambrey, M. J., Webb, P. N., Harwood, D. M., and Krissek, L. A.: Neogene
glacial record from the Sirius Group of the Shackleton Glacier region, central Transantarctic Mountains, Antarctica, GSA Bull., 115, 994–1015,
https://doi.org/10.1130/B25183.1, 2003.
Ivy-Ochs, S., Schluchter, C., Kubik, P. W., Dittrich-Hannen, B., and Beer,
J.: Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica, Geology, 23, 1007–1010, 1995.
Jackson, A., Davila, A. F., Böhlke, J. K., Sturchio, N. C., Sevanthi,
R., Estrada, N., Brundrett, M., Lacelle, D., McKay, C. P., Poghosyan, A.,
Pollard, W., and Zacny, K.: Deposition, accumulation, and alteration of Cl−, , and salts in a hyper-arid polar environment: Mass balance and isotopic constraints, Geochim. Cosmochim. Ac., 182, 197–215,
https://doi.org/10.1016/j.gca.2016.03.012, 2016.
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill, C.
J., Kubik, P. W., Christl, M., and Greenwood, S. L.: Rapid Holocene thinning
of an East Antarctic outlet glacier driven by marine ice sheet instability,
Nat. Commun., 6, 9910, https://doi.org/10.1038/ncomms9910, 2015.
Kaplan, M. R., Licht, K. J., Winckler, G., Schaefer, J. M., Bader, N.,
Mathieson, C., Roberts, M., Kassab, C. M., Schwartz, R., and Graly, J. A.:
Middle to Late Pleistocene stability of the central East Antarctic Ice Sheet
at the head of Law Glacier, Geology, 45, 963–966, https://doi.org/10.1130/G39189.1, 2017.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K.,
Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C. L.,
Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the
half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid
scintillation counting, Nucl. Instrum. Meth. Phys. Res. B, 268, 187–191,
https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S.
R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J.
I., Willenbring, J. K., Williams, M., and Wolfe, A. P.: Mid-Miocene cooling
and the extinction of tundra in continental Antarctica, P. Natl. Acad. Sci. USA, 105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Lyons, W. B., Mayewski, P. A., Spencer, M. J., and Twickler, M. S.: Nitrate
concentrations in snow from remote areas: implication for the global NOx flux, Biogeochemistry, 9, 211–222, https://doi.org/10.1007/BF00000599, 1990.
Lyons, W. B., Deuerling, K., Welch, K. A., Welch, S. A., Michalski, G., Walters, W. W., Nielsen, U., Wall, D. H., Hogg, I., and Adams, B. J.: The Soil Geochemistry in the Beardmore Glacier Region, Antarctica: Implications for Terrestrial Ecosystem History, Sci. Rep., 6, 26189, https://doi.org/10.1038/srep26189, 2016.
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White,
D., Pollard, D., Deconto, R., Fink, D., Zwartz, D., Gore, D., and Lavoie, C.:
Retreat of the East Antarctic ice sheet during the last glacial termination,
Nat. Geosci., 4, 195–202, https://doi.org/10.1038/ngeo1061, 2011.
Mackintosh, A. N., Verleyen, E., O'Brien, P. E., White, D. A., Jones, R. S.,
McKay, R., Dunbar, R., Gore, D. B., Fink, D., Post, A. L., Miura, H., Leventer, A., Goodwin, I., Hodgson, D. A., Lilly, K., Crosta, X., Golledge,
N. R., Wagner, B., Berg, S., van Ommen, T., Zwartz, D., Roberts, S. J.,
Vyverman, W., and Masse, G.: Retreat history of the East Antarctic Ice Sheet
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 10–30,
https://doi.org/10.1016/j.quascirev.2013.07.024, 2014.
Marchant, D. R., Denton, G. H., Swisher, C. C., and Potter, N.: Late Cenozoic
Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys
region of southern Victoria Land, Geol. Soc. Am. Bull., 108, 181–194,
https://doi.org/10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2, 1996.
McHargue, L. R. and Damon, P. E.: The global beryllium 10 cycle, Rev. Geophys., 29, 141–158, https://doi.org/10.1029/91RG00072, 1991.
Menzies, J., van der Meer, J. J. M., and Rose, J.: Till-as a glacial
“tectomict”, its internal architecture, and the development of a “typing” method for till differentiation, Geomorphology, 75, 172–200,
https://doi.org/10.1016/j.geomorph.2004.02.017, 2006.
Michalski, G., Bockheim, J. G., Kendall, C., and Thiemens, M.: Isotopic
composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL022121, 2005.
Morgan, D., Putkonen, J., Balco, G., and Stone, J.: Quantifying regolith
erosion rates with cosmogenic nuclides 10Be and 26Al in the McMurdo Dry Valleys, Antarctica, J. Geophys. Res., 115, F03037,
https://doi.org/10.1029/2009JF001443, 2010.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl.
Instrum. Meth. Phys. Res. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Paulsen, T. S., Encarnación, J., and Grunow, A. M.: Structure and timing
of transpressional deformation in the Shackleton Glacier area, Ross orogen,
Antarctica, J. Geol. Soc. Lond., 161, 1027–1038, https://doi.org/10.1144/0016-764903-040, 2004.
Pavich, M. J., Brown, L., Klein, J., and Middleton, R.: 10Be accumulation in a soil chronosequence, Earth Planet. Sc. Lett., 68, 198–204,
https://doi.org/10.1016/0012-821X(84)90151-1, 1984.
Pavich, M. J., Brown, L., Harden, J., Klein, J., and Middleton, R.: 10Be distribution in soils from Merced River terraces, California, Geochim. Cosmochim. Ac., 50, 1727–1735, https://doi.org/10.1016/0016-7037(86)90134-1, 1986.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–332, https://doi.org/10.1038/nature07809, 2009.
Reich, M. and Bao, H.: Nitrate deposits of the Atacama Desert: A marker of
long-term hyperaridity, Elements, 14, 251–256, https://doi.org/10.2138/gselements.14.4.251, 2018.
Scarrow, J. W., Balks, M. R., and Almond, P. C.: Three soil chronosequences
in recessional glacial deposits near the polar plateau, in the Central
Transantarctic Mountains, Antarctica, Antarct. Sci., 26, 573–583,
https://doi.org/10.1017/S0954102014000078, 2014.
Scherer, R. P., DeConto, R. M., Pollard, D., and Alley, R. B.: Windblown
Pliocene diatoms and East Antarctic Ice Sheet retreat, Nat. Commun., 7, 1–9, https://doi.org/10.1038/ncomms12957, 2016.
Schiller, M., Dickinson, W., Ditchburn, R. G., Graham, I. J., and Zondervan,
A.: Atmospheric 10Be in an Antarctic soil: Implications for climate change, J. Geophys. Res., 114, 1–8, https://doi.org/10.1029/2008jf001052, 2009.
Spector, P. and Balco, G.: Exposure-age data from across Antarctica reveal
mid-Miocene establishment of polar desert climate, Geology, 49, 91–95, https://doi.org/10.1130/G47783.1, 2020.
Spector, P., Stone, J., Cowdery, S. G., Hall, B., Conway, H., and Bromley, G.: Rapid early-Holocene deglaciation in the Ross Sea, Antarctica, Geophys. Res. Lett., 44, 7817–7825, https://doi.org/10.1002/2017GL074216, 2017.
Steig, E., Stuiver, M., and Polissar, P.: Cosmogenic isotope concentrations at Taylor Dome, Antarctica, Antarct. J. United States, 30, 95–97, 1995.
Stevens, M. I. and Hogg, I. D.: Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail
Gomphiocephalus hodgsoni from Victoria Land, Antarctica, Mol. Ecol., 12, 2357–2369, https://doi.org/10.1046/j.1365-294X.2003.01907.x, 2003.
Stone, J.: A rapid fusion method for separation of beryllium-10 from soils
and silicates, Geochim. Cosmochim. Ac., 62, 555–561, https://doi.org/10.1016/S0016-7037(97)00340-2, 1998.
Stroeven, A. P., Prentice, M. L., and Kleman, J.: On marine microfossil
transport and pathways in Antarctica during the late Neogene: Evidence from
the Sirius Group at Mount Fleming, Geology, 24, 727–730,
https://doi.org/10.1130/0091-7613(1996)024<0727:ommtap>2.3.co;2, 1996.
Sugden, D. E., Marchant, D. R., and Denton, G. H.: The case for a stable East
Antarctic ice sheet, Geogr. Ann. A, 75, 151–351, 1993.
Talarico, F. M., McKay, R. M., Powell, R. D., Sandroni, S., and Naish, T.:
Late Cenozoic oscillations of Antarctic ice sheets revealed by provenance of
basement clasts and grain detrital modes in ANDRILL core AND-1B, Global Planet. Change, 96–97, 23–40, https://doi.org/10.1016/j.gloplacha.2009.12.002, 2012.
Valletta, R. D., Willenbring, J. K., Lewis, A. R., Ashworth, A. C., and Caffee, M.: Extreme decay of meteoric beryllium-10 as a proxy for persistent
aridity, Sci. Rep., 5, 17813, https://doi.org/10.1038/srep17813, 2015.
Webb, P. N. and Harwood, D. M.: Late Cenozoic glacial history of the Ross
embayment, Antarctica, Quaternary Sci. Rev., 10, 215–223,
https://doi.org/10.1016/0277-3791(91)90020-U, 1991.
Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H., and Stott, L.
D.: Cenozoic marine sedimentation and ice-volume variation on the East
Antarctic craton, Geology, 12, 287–291,
https://doi.org/10.1130/0091-7613(1984)12<287:cmsaiv>2.0.co;2, 1984.
Webb, P. N., Harwood, D. M., Mabin, M. G. C., and McKelvey, B. C.: A marine and terrestrial Sirius Group succession, middle Beardmore Glacier-Queen
Alexandra Range, Transantarctic Mountains, Antarctica, Mar. Micropaleontol.,
27, 273–297, https://doi.org/10.1016/0377-8398(95)00066-6, 1996.
Welch, K. A., Lyons, W. B., Whisner, C., Gardner, C. B., Gooseff, M. N., Mcknight, D. M., and Priscu, J. C.: Spatial variations in the geochemistry of
glacial meltwater streams in the Taylor Valley, Antarctica, Antarct. Sci., 22, 662–672, https://doi.org/10.1017/S0954102010000702, 2010.
Willenbring, J. K. and von Blanckenburg, F.: Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics, Earth-Sci. Rev., 98, 105–122, https://doi.org/10.1016/j.earscirev.2009.10.008, 2010.
Wilson, G. S.: The neogene east antarctic ice sheet: A dynamic or stable
feature?, Quaternary Sci. Rev., 14, 101–123, https://doi.org/10.1016/0277-3791(95)00002-7, 1995.
You, C. F., Lee, T., and Li, Y. H.: The partition of Be between soil and
water, Chem. Geol., 77, 105–118, https://doi.org/10.1016/0009-2541(89)90136-8, 1989.
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free...