Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of smart boulders to monitor mass movements via the Internet of Things: a pilot study in Nepal
School of Environmental Sciences, University of East Anglia,
Norwich Research Park, Norwich, UK
Georgina L. Bennett
College of Life and Environmental Sciences,
University of Exeter, Exeter, UK
Aldina M. A. Franco
School of Environmental Sciences, University of East Anglia,
Norwich Research Park, Norwich, UK
Michael R. Z. Whitworth
AECOM, Plymouth, UK
Kristen L. Cook
Helmholtz Centre, GFZ-Potsdam, Potsdam, Germany
Andreas Senn
Miromico AG, Zurich, Switzerland
John M. Reynolds
Reynolds International Ltd, Mold, UK
Related authors
Benedetta Dini, Pascal Lacroix, and Marie-Pierre Doin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1945, https://doi.org/10.5194/egusphere-2025-1945, 2025
Short summary
Short summary
Landslides can happen without warning. Traditional satellite radar (InSAR) methods help but have limits. Here, we show that lesser-used radar signals can act as early warning markers, when traditional methods fail. Using a landslide in Peru as example, we show signs of instability up to five years before failure. These findings suggest that alternative radar-based approaches can complement existing methods, detecting landslides earlier, with key applicability across large regions.
Benedetta Dini, Pascal Lacroix, and Marie-Pierre Doin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1945, https://doi.org/10.5194/egusphere-2025-1945, 2025
Short summary
Short summary
Landslides can happen without warning. Traditional satellite radar (InSAR) methods help but have limits. Here, we show that lesser-used radar signals can act as early warning markers, when traditional methods fail. Using a landslide in Peru as example, we show signs of instability up to five years before failure. These findings suggest that alternative radar-based approaches can complement existing methods, detecting landslides earlier, with key applicability across large regions.
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025, https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
Short summary
Short-lived, high-magnitude flood events across high mountain regions leave substantial geomorphic imprints, which are frequently triggered by excess precipitation, glacial lake outbursts, and natural dam breaches. These catastrophic floods highlight the importance of understanding the complex interaction between climatic, hydrological, and geological forces in bedrock catchments. Extreme floods can have long-term geomorphic consequences on river morphology and fluvial processes.
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024, https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
Short summary
The Himalayan landscape is particularly susceptible to extreme events, which interfere with increasing populations and the expansion of settlements and infrastructure. This preface introduces and summarizes the nine papers that are part of the special issue,
Estimating and predicting natural hazards and vulnerabilities in the Himalayan region.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Alessandro Sgarabotto, Irene Manzella, Kyle Roskilly, Miles J. Clark, Georgie L. Bennett, Chunbo Luo, and Aldina M. A. Franco
EGUsphere, https://doi.org/10.5194/egusphere-2023-2596, https://doi.org/10.5194/egusphere-2023-2596, 2023
Preprint archived
Short summary
Short summary
Smart sensors have been installed in boulders embedded in landslides to monitor the movements and characterise their hazards. Here, we present laboratory experiments to investigate how to use smart sensors to describe the movements of a cobble down an inclined plane and transmit the recorded motion data via a wireless network. This study contributes to understanding how to make the best use of smart sensors to describe boulder motion and assess the practicalities of their use in field settings.
Joshua N. Jones, Georgina L. Bennett, Claudia Abancó, Mark A. M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023, https://doi.org/10.5194/nhess-23-1095-2023, 2023
Short summary
Short summary
We modelled where landslides occur in the Philippines using landslide data from three typhoon events in 2009, 2018, and 2019. These models show where landslides occurred within the landscape. By comparing the different models, we found that the 2019 landslides were occurring all across the landscape, whereas the 2009 and 2018 landslides were mostly occurring at specific slope angles and aspects. This shows that landslide susceptibility must be considered variable through space and time.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Cited articles
Acharya, T. D., Mainali, S. C., Yang, I. T., and Lee, D. H.: Analysis of jure
landslide dam, Sindhupalchowk using GIS and Remote
Sensing, Int. Arch. Photogramm., 41, 201–203, https://doi.org/10.5194/isprsarchives-XLI-B6-201-2016, 2016.
Akeila, E., Salcic, Z., and Swain, A.: Smart pebble for monitoring riverbed
sediment transport, IEEE Sens. J., 10, 1705–1717, 2010.
Basnet, C. B. and Panthi, K. K.: Evaluation on the Minimum Principal Stress
State and Potential Hydraulic Jacking from the Shotcrete-Lined Pressure
Tunnel: A Case from Nepal, Rock Mech. Rock Eng., 52, 2377–2399,
https://doi.org/10.1007/s00603-019-1734-z, 2019.
Bennett, G. L. and Ryan, S.: Rock and Roll: Passive sensing of fluvial
bedload and wood transport and interaction, Geophysical Research Abstracts, 20, EGU2018-18272-1, 2018.
Bennett, G. L., Miller, S. R., Roering, J. J., and Schmidt, D. A.:
Landslides, threshold slopes, and the survival of relict terrain in the wake
of the Mendocino Triple Junction, Geology, 44, 363–366,
https://doi.org/10.1130/G37530.1, 2016a.
Bennett, G. L., Roering, J. J., Mackey, B. H., Handwerger, A. L., Schmidt,
D. A., and Guillod, B. P.: Historic drought puts the brakes on earthflows in
Northern California, Geophys. Res. Lett., 43, 5725–5731,
https://doi.org/10.1002/2016GL068378, 2016b.
Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J.,
Xie, P., and Huffman, G.: NASA Global Precipitation Measurement (GPM)
Integrated Multi-satellitE Retrievals for GPM (IMERG), National Aeronautics and Space Administration (NASA), Algorithm Theor. Basis Doc. Version 4.5, available at:
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf (last access: 1 May 2020), 2015.
Bonzanigo, L.: The Landslide of Campo Vallemaggia, in: World Geomorphological
Landscapes, Springer, Cham, Switzerland, 379–386, 2021.
Burtin, A., Bollinger, L., Cattin, R., Vergne, J., and Nábělek, J.
L.: Spatiotemporal sequence of Himalayan debris flow from analysis of
high-frequency seismic noise, J. Geophys. Res.-Earth, 114, F04009,
https://doi.org/10.1029/2008JF001198, 2009.
Burtin, A., Cattin, R., Bollinger, L., Vergne, J., Steer, P., Robert, A.,
Findling, N., and Tiberi, C.: Towards the hydrologic and bed load monitoring
from high-frequency seismic noise in a braided river: The “torrent de St
Pierre”, French Alps, J. Hydrol., 408, 43–53,
https://doi.org/10.1016/j.jhydrol.2011.07.014, 2011.
Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti,
A., Colombo, D., Novali, F., and Casagli, N.: Author Correction: Perspectives
on the prediction of catastrophic slope failures from satellite InSAR,
Sci. Rep.-UK, 9, 18773, https://doi.org/10.1038/s41598-019-55024-x, 2019.
Carr, J. C., DiBiase, R. A., and Yeh, E. C.: High resolution UAV surveys of bedrock rivers in Taiwan reveal connections between lithology, structure, and channel morphology, in: Fall Meeting 2018, American Geophysical Union, 10–14 December 2018, Washington, USA, T23A-0340, 2018.
Caviezel, A., Schaffner, M., Cavigelli, L., Niklaus, P., Bühler, Y.,
Bartelt, P., Magno, M., and Benini, L.: Design and Evaluation of a Low-Power
Sensor Device for Induced Rockfall Experiments, IEEE T. Instrum. Meas.,
67, 767–779, https://doi.org/10.1109/TIM.2017.2770799, 2018.
Clarke, A. O.: Estimating probable maximum floods in the Upper Santa Ana
basin, Southern California, from stream boulder size, Environ. Eng. Geosci.,
2, 165–182, https://doi.org/10.2113/gseegeosci.ii.2.165, 1996.
Collins, B. D. and Jibson, R. W.: Assessment of Existing and Potential
Landslide Hazards Resulting from the 25 April 2015 Gorkha, Nepal Earthquake
Sequence (ver.1.1, August 2015), US Geological Survey Open-file Report
2015-1142, US Geological Survey, available at: https://pubs.er.usgs.gov/publication/ofr20151142 (last access: 14 April 2021), 2015.
Cook, K., Andermann, C., Adhikari, B., Schmitt, C., and Marc, O.:
Post-earthquake modification of 2015 Gorkha Earthquake landslides in the
Bhote Koshi River valley, in: EGU General Assembly 2016, 17–22 April 2016, Vienna, Austria, EPSC2016-9482, 2016.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya, Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Cox, R.: Megagravel deposits on the west coast of Ireland show the impacts
of severe storms, Weather, 75, 72–77, https://doi.org/10.1002/wea.3677, 2020.
Dini, B., Bennett, G. L., Franco, A. M. A., and Cook, K. L.: Hindi Landslide Timelapse, TIB, https://doi.org/10.5446/48980, 2020.
DMG: Geological map of parts of Sindhupalchok District (Barhabise area), Sheet No. 2785 04 (72E/13), Department of Mines and Geology, Kathmandu, Nepal, 2005.
DMG: A guide book on geological section along Arniko Highway (Kathmandu-Kodari road), Central Nepal, Department of Mines and Geology, Kathmandu, Nepal, 14 pp., 2006.
Flack, A., Nagy, M., Fielder, W., Couzin, I. D., and Wikelski, M.: From local
collective behavior to global migratory patterns in white storks, Science, 360, 911–914, 2018.
Frank, D., Foster, D., Chou, P., Kao, Y.-M., Sou, I. M., and Calantoni, J.:
Development and evaluation of an autonomous sensor for the observation of
sediment motion, J. Atmos. Ocean. Tech., 31, 1012–1019, 2014.
Gansser, A.: Geology of the Himalayas, Regional Geology Series, Wiley,
London, UK, 1964.
Gilbert, N. I., Correia, R. A., Silva, J. P., Pacheco, C., Catry, I.,
Atkinson, P. W., Gill, J. A., and Aldina, A. M.: Are white storks addicted to
junk food? Impacts of landfill use on the movement and behaviour of resident
white storks (Ciconia ciconia) from a partially migratory
population, Movement Ecology, 4, 7, https://doi.org/10.1186/s40462-016-0070-0, 2016.
Glueer, F., Loew, S., Manconi, A., and Aaron, J.: From Toppling to Sliding:
Progressive Evolution of the Moosfluh Landslide, Switzerland, J. Geophys. Res.-Earth, 124, 2899–2919, https://doi.org/10.1029/2019JF005019, 2019.
Gronz, O., Hiller, P. H., Wirtz, S., Becker, K., Iserloh, T., Seeger, M.,
Brings, C., Aberle, J., Casper, M. C., and Ries, J. B.: Smartstones: A small
9-axis sensor implanted in stones to track their movements, Catena, 142,
245–251, https://doi.org/10.1016/j.catena.2016.03.030, 2016.
Guo, C.-w., Huang, Y.-d., Yao, L.-k., and Alradi, H.: Size and spatial
distribution of landslides induced by the 2015 Gorkha earthquake in the
Bhote Koshi river watershed, J. Mt. Sci., 14, 1938–1950,
https://doi.org/10.1007/s11629-016-4140-y, 2017.
Handwerger, A. L., Fielding, E. J., Huang, M. H., Bennett, G. L., Liang, C.,
and Schulz, W. H.: Widespread Initiation, Reactivation, and Acceleration of
Landslides in the Northern California Coast Ranges due to Extreme Rainfall,
J. Geophys. Res.-Earth, 124, 1782–1797, https://doi.org/10.1029/2019JF005035, 2019.
Huber, M. L., Lupker, M., Gallen, S. F., Christl, M., and Gajurel, A. P.: Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas, Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, 2020.
Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N.: Design and
implementation of a landslide early warning system, Eng. Geol., 147–148,
124–136, https://doi.org/10.1016/j.enggeo.2012.07.017, 2012.
Kano, F., Walker, J., Sasaki, T., and Biro, D.: Head-mounted sensors reveal
visual attention of free-flying homing pigeons, J. Exp. Biol., 221,
jeb183475, https://doi.org/10.1242/jeb.183475, 2018.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington,
A., Fielding, E. J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J.,
Anderson, E., Bajracharya, S., Bawden, G. W., Breashears, D. F., Byers, A.,
Collins, B., Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L.,
Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut,
K., Huyck, C., Immerzeel, W. W., Jiang, L., Jibson, R., Kääb, A.,
Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Liu, S.,
Lv, M., McKinney, D., Nahirnick, N. K., Nan, Z., Ojha, S., Olsenholler, J.,
Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, Q. I., Raup, B. H.,
Regmi, D., Rounce, D. R., Sakai, A., Shangguan, D., Shea, J. M., Shrestha,
A. B., Shukla, A., Stumm, D., Van Der Kooij, M., Voss, K., Wang, X., Weihs,
B., Wolfe, D., Wu, L., Yao, X., Yoder, M. R., and Young, N.: Geomorphic and
geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake,
Science, 351, aac8353, https://doi.org/10.1126/science.aac8353, 2016.
Khanal, N. R., Hu, J. M., and Mool, P.: Glacial lake outburst flood risk in
the Poiqu/Bhote Koshi/Sun Koshi river basin in the Central Himalayas,
Mt. Res. Dev., 35, 351–364, https://doi.org/10.1659/MRD-JOURNAL-D-15-00009, 2015.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS J. Photogramm., 82, 10–26,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Le Breton, M., Baillet, L., Larose, E., Rey, E., Benech, P., Jongmans, D.,
Guyoton, F., and Jaboyedoff, M.: Passive radio-frequency identification
ranging, a dense and weather-robust technique for landslide displacement
monitoring, Eng. Geol., 250, 1–10, https://doi.org/10.1016/j.enggeo.2018.12.027, 2019.
Liu, M., Chen, N., Zhang, Y., and Deng, M.: Glacial lake inventory and lake
outburst flood/debris flow hazard assessment after the gorkha earthquake in
the Bhote Koshi Basin, Water, 12, 464, https://doi.org/10.3390/w12020464, 2020.
Loew, S., Gschwind, S., Gischig, V., Keller-Signer, A., and Valenti, G.:
Monitoring and early warning of the 2012 Preonzo catastrophic rockslope
failure, Landslides, 14, 141–154, https://doi.org/10.1007/s10346-016-0701-y, 2017.
Martha, T. R., Roy, P., Mazumdar, R., Govindharaj, K. B., and Kumar, K. V.:
Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha)
and Mw 7.3 (Dolakha) earthquakes in Nepal, Landslides, 14, 697–704,
https://doi.org/10.1007/s10346-016-0763-x, 2017.
Nathan Bradley, D. and Tucker, G. E.: Measuring gravel transport and
dispersion in a mountain river using passive radio tracers,
Earth Surf. Processes, 37, 1034–1045, https://doi.org/10.1002/esp.3223, 2012.
Naylor, L. A., Stephenson, W. J., Smith, H. C. M., Way, O., Mendelssohn, J.,
and Cowley, A.: Geomorphological control on boulder transport and coastal
erosion before, during and after an extreme extra-tropical cyclone, Earth Surf. Processes, 41, 685–700, https://doi.org/10.1002/esp.3900, 2016.
Panicker, J. G., Azman, M., and Kashyap, R.: A LoRa Wireless Mesh Network for
Wide-Area Animal Tracking, in: Proceedings of 2019 3rd IEEE International
Conference on Electrical, Computer and Communication Technologies (ICECCT), 20–22 February 2019, Coimbatore, India, 1–5, 2019.
Rai, S. M.: Geology along the Arniko Highway between Barabise and Kodari (Chin-Nepal Border) area, central Nepal Himalaya, Journal of Nepal Geological Society, 42, 41–50, 2011.
Rai, S. M., Yoshida, M., Upreti, B. N., and Ulak, P.: Geology of the Lesser and Higher Himalayan sequences along the Bhotekoshi River section between Syabru Besi and Rasuwa Gadhi (Nepal-China boarder) area, central Nepal Himalaya, Bull. Nepal Geol. Soc., vol. 34, 65–74, available at: https://www.researchgate.net/profile/Santa_Rai/publication/ 322917141_Geology_of_the_Lesser_and_Higher_Himalayan_ sequences_along_the_Bhotekoshi_River_section_between_ Syabru_Besi_and_Rasuwa_Gadhi_Nepal-_China_boarder_ area_central_Nepal_Himalaya/links/5a75c40545851541ce587 22b/Geology-of-the-Lesser-and-Higher-Himalayan-sequences-along-the-Bhotekoshi-River-section-between-Syabru-Besi-and-Rasuwa-Gadhi-Nepal-China-boarder-area-central-Nepal-Himalaya.pdf (last access: 13 April 2021), 2017.
Regmi, A. D., Dhital, M. R., Zhang, J.-Q., Su, L.-J., and Chen, X.-Q.:
Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal, J. Mt. Sci., 13, 1941–1957,
https://doi.org/10.1007/s11629-015-3688-2, 2016.
Reynolds, J. M.: Integrated Geohazard Assessments in high mountain
environments: examples from the Hindu Kush-Karakoram-Himalayan Region, in:
Proceedings of ASIA, Da Nang, Vietnam, 1–8, 2018a.
Reynolds, J. M.: Integrated geohazard assessments to aid resilience of
hydropower infrastructure, International Water Power & Dam Construction, 18–20, available at: https://www.waterpowermagazine.com/features/featureintegrated-geohazard-assessments-to-aid-resilience-of-hydropower-infrastructure-6222733/ (last access: 13 April 2021), 2018b.
Reynolds, J. M.: The role of Disaster Risk Management strategies in managing
natural hazards, in: Proceedings of ASIA, Da Nang, Vietnam, 13–15 March 2018, 2018c.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the
Himalayas, Quatern. Int., 65–66, 31–47, 2000.
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F.,
Chamlagain, D., and Godt, J. W.: The size, distribution, and mobility of
landslides caused by the 2015 Mw 7.8 Gorkha earthquake, Nepal, Geomorphology,
301, 121–138, https://doi.org/10.1016/j.geomorph.2017.01.030, 2018.
Serna, J. and Panzar, J.: Crews use explosives to blast boulders plugging
creeks in Montecito, Los Angeles Times, USA, available at:
https://www.latimes.com/local/lanow/la-me-ln-boulder-explosions-montecito-20180117-story.html (last access: 1 September 2020), 2018.
Shobe, C. M., Bennett, G. L., Tucker, G. E., Roback, K., Miller, S. R., and
Roering, J. J.: Boulders as a lithologic control on river and landscape
response to tectonic forcing at the Mendocino triple junction, GSA Bull.,
133, 647–662, https://doi.org/10.1130/b35385.1, 2020.
Soriano-Redondo, A., Acácio, M., Franco, A. M. A., Herlander Martins,
B., Moreira, F., Rogerson, K., and Catry, I.: Testing alternative methods for
estimation of bird migration phenology from GPS tracking data, Ibis, 162, 581–588, https://doi.org/10.1111/ibi.12809, 2020.
Tanoli, J. I., Ningsheng, C., Regmi, A. D., and Jun, L.: Spatial distribution
analysis and susceptibility mapping of landslides triggered before and after
Mw7.8 Gorkha earthquake along Upper Bhote Koshi, Nepal, Arab. J. Geosci.,
10, 277, https://doi.org/10.1007/s12517-017-3026-9, 2017.
Tsai, V. C., Minchew, B., Lamb, M. P., and Ampuero, J. P.: A physical model
for seismic noise generation from sediment transport in rivers, Geophys.
Res. Lett., 39, L02404, https://doi.org/10.1029/2011GL050255, 2012.
Upreti, B. N.: An overview of the stratigraphy and tectonics of the Nepal
Himalaya, J. Asian Earth Sci., 17, 577–606, https://doi.org/10.1016/S1367-9120(99)00047-4, 1999.
Wahlen, S., Meier, L., and Darms, G.: Rockfall Alarm System with Automatic Road Closure/Reopening and long-term Slope Monitoring for major European North-South Route (Axenstrasse), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5138, https://doi.org/10.5194/egusphere-egu2020-5138, 2020.
Whitworth, M. R. Z., Moore, A., Francis, M., Hubbard, S., and Manandhar, S.:
Building a more resilient Nepal – The utilisation of the resilience
scorecard for Kathmandu, Nepal following the Gorkha Earthquake of 2015,
Lowl. Technol. Int., 21, 229–236, 2020.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(27159 KB) - Full-text XML
- Corrigendum
-
Supplement
(663 KB) - BibTeX
- EndNote
Short summary
We use long-range smart sensors connected to a network based on the Internet of Things to explore the possibility of detecting hazardous boulder movements in real time. Prior to the 2019 monsoon season we inserted the devices in 23 boulders spread over debris flow channels and a landslide in northeastern Nepal. The data obtained in this pilot study show the potential of this technology to be used in remote hazard-prone areas in future early warning systems.
We use long-range smart sensors connected to a network based on the Internet of Things to...