Articles | Volume 9, issue 1
https://doi.org/10.5194/esurf-9-71-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-71-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Different coastal marsh sites reflect similar topographic conditions under which bare patches and vegetation recovery occur
Chen Wang
Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, State Environmental Protection Key Laboratory of Satellite Remote Sensing, Fengde East Road 4, Beijing 100094, China
Ecosystem Management Research Group, University of Antwerp,
Universiteitsplein 1, 2610 Wilrijk, Belgium
Lennert Schepers
Ecosystem Management Research Group, University of Antwerp,
Universiteitsplein 1, 2610 Wilrijk, Belgium
Matthew L. Kirwan
Virginia Institute of Marine Science, P.O. Box 1346, 1375 Greate Road, Gloucester Point, Virginia 23062, USA
Enrica Belluco
Department of Civil, Environmental, and Architectural Engineering,
University of Padova, Via Loredan 20, 35131 Padua, Italy
Andrea D'Alpaos
Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy
Qiao Wang
CORRESPONDING AUTHOR
Faculty of Geographical Science, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, P. R. China
Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, State Environmental Protection Key Laboratory of Satellite Remote Sensing, Fengde East Road 4, Beijing 100094, China
Shoujing Yin
CORRESPONDING AUTHOR
Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, State Environmental Protection Key Laboratory of Satellite Remote Sensing, Fengde East Road 4, Beijing 100094, China
Stijn Temmerman
Ecosystem Management Research Group, University of Antwerp,
Universiteitsplein 1, 2610 Wilrijk, Belgium
Related authors
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Guillaume Goodwin, Marco Marani, Sonia Silvestri, Luca Carniello, and Andrea D'Alpaos
Biogeosciences, 20, 4551–4576, https://doi.org/10.5194/bg-20-4551-2023, https://doi.org/10.5194/bg-20-4551-2023, 2023
Short summary
Short summary
Seagrass meadows are an emblematic coastal habitat. Their sensitivity to environmental change means that it is essential to monitor their evolution closely. However, high costs make this endeavor a technical challenge. Here, we used machine learning to map seagrass meadows in 148 satellite images in the Venice Lagoon, Italy. We found that adding information such as depth of the seabed and known seagrass location improved our capacity to map temporal change in seagrass habitat.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
T. Blount, S. Silvestri, M. Marani, and A. D’Alpaos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 57–62, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-57-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-57-2023, 2023
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Viviana Otero, Steven Pint, Klaas Deneudt, Maarten De Rijcke, Jonas Mortelmans, Lennert Schepers, Patricia Cabrera, Koen Sabbe, Wim Vyverman, Michiel Vandegehuchte, and Gert Everaert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-11, https://doi.org/10.5194/bg-2022-11, 2022
Revised manuscript not accepted
Short summary
Short summary
A mechanistic ecological model analysed which factors drive marine phytoplankton biomass dynamics in the southern part of the North Sea and how their relationship to primary production varies on a spatiotemporal scale. We found a spatiotemporal dependence, meaning that the effects of changing abiotic conditions on phytoplankton biomass dynamics are difficult to generalise. The tailor-made ecological model will enables to predict phytoplankton biomass dynamics under future climate scenarios.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Pietro Teatini, Cristina Da Lio, Luigi Tosi, Alessandro Bergamasco, Stefano Pasqual, Paolo Simonini, Veronica Girardi, Paolo Zorzan, Claudia Zoccarato, Massimiliano Ferronato, Marcella Roner, Marco Marani, Andrea D'Alpaos, Simonetta Cola, and Giuseppe Zambon
Proc. IAHS, 382, 345–351, https://doi.org/10.5194/piahs-382-345-2020, https://doi.org/10.5194/piahs-382-345-2020, 2020
Short summary
Short summary
An in-situ loading test was carried out in the Lazzaretto Nuovo salt-marsh in the Venice Lagoon, Italy. The test was aimed at characterizing the geotechnical properties of soils forming the marsh sedimentary body deposits. In fact porosity and compressibility are of paramount importance to quantify consolidation versus accretion and relative sea level rise. The fate of coastal marshlands in the next future will strongly depend of these processes.
Anna Botto, Enrica Belluco, and Matteo Camporese
Hydrol. Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018, https://doi.org/10.5194/hess-22-4251-2018, 2018
Short summary
Short summary
We present a multivariate application of the ensemble Kalman filter (EnKF) in hydrological modeling of a real-world hillslope test case with dominant unsaturated dynamics and strong nonlinearities. Overall, the EnKF is able to correctly update system state and soil parameters. However, multivariate data assimilation may lead to significant tradeoffs between model predictions of different variables, if the observation data are not high quality or representative.
Peter Mueller, Lisa M. Schile-Beers, Thomas J. Mozdzer, Gail L. Chmura, Thomas Dinter, Yakov Kuzyakov, Alma V. de Groot, Peter Esselink, Christian Smit, Andrea D'Alpaos, Carles Ibáñez, Magdalena Lazarus, Urs Neumeier, Beverly J. Johnson, Andrew H. Baldwin, Stephanie A. Yarwood, Diana I. Montemayor, Zaichao Yang, Jihua Wu, Kai Jensen, and Stefanie Nolte
Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018, https://doi.org/10.5194/bg-15-3189-2018, 2018
Marijn Van de Broek, Stijn Temmerman, Roel Merckx, and Gerard Govers
Biogeosciences, 13, 6611–6624, https://doi.org/10.5194/bg-13-6611-2016, https://doi.org/10.5194/bg-13-6611-2016, 2016
Short summary
Short summary
The results of this study on the organic carbon (OC) stocks of tidal marshes show that variations in OC stocks along estuaries are important and should be taken into account to make accurate estimates of the total amount of OC stored in these ecosystems. Moreover, our results clearly show that most studies underestimate the variation in OC stocks along estuaries due to a shallow sampling depth, neglecting the variation in OC decomposition after burial along estuaries.
S. Smolders, Y. Plancke, S. Ides, P. Meire, and S. Temmerman
Nat. Hazards Earth Syst. Sci., 15, 1659–1675, https://doi.org/10.5194/nhess-15-1659-2015, https://doi.org/10.5194/nhess-15-1659-2015, 2015
Short summary
Short summary
Within a confined estuary, a large wetland can play an important role in storm surge mitigation. By use of a numerical model the effects of different wetland sizes, wetland elevations and wetland locations along the estuary on storm surge attenuation along the estuary were investigated. With this paper we aim to contribute towards a better understanding and wider implementation of ecosystem-based adaptation to increasing estuarine flood risks associated with storms.
M. L. Kirwan, G. R. Guntenspergen, and J. A. Langley
Biogeosciences, 11, 4801–4808, https://doi.org/10.5194/bg-11-4801-2014, https://doi.org/10.5194/bg-11-4801-2014, 2014
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Downstream rounding rate of pebbles in the Himalaya
A physics-based model for fluvial valley width
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Geomorphic indices for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, Korea
How water, temperature and seismicity control the preparation of massive rock slope failure (Hochvogel, DE/AT)
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
The impact of bedrock meander cutoffs on 50 ka-year-scale incision rates, San Juan River, Utah
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
River suspended-sand flux computation with uncertainty estimation, using water samples and high-resolution ADCP measurements
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Analysis of autogenic bifurcation processes resulting in river avulsion
Bedload transport fluctuations, flow conditions, and disequilibrium ratio at the Swiss Erlenbach stream: results from 27 years of high-resolution temporal measurements
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Coexistence of two dune scales in a lowland river
Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Barchan swarm dynamics from a Two-Flank Agent-Based Model
Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor
Numerical modelling of the evolution of a river reach with a complex morphology to help define future sustainable restoration decisions
Method to evaluate large-wood behavior in terms of the convection equation associated with sediment erosion and deposition
Effects of seasonal variations in vegetation and precipitation on catchment erosion rates along a climate and ecological gradient: insights from numerical modeling
On the use of convolutional deep learning to predict shoreline change
On the use of packing models for the prediction of fluvial sediment porosity
Automated riverbed composition analysis using deep learning on underwater images
Marsh-induced backwater: the influence of non-fluvial sedimentation on a delta's channel morphology and kinematics
Spatial and temporal variations in rockwall erosion rates derived from cosmogenic 10Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland
Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA
Geotechnical controls on erodibility in fluvial impact erosion
Linear-stability analysis of plane beds under flows with suspended loads
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-198, https://doi.org/10.5194/egusphere-2024-198, 2024
Short summary
Short summary
Geomorphic indices were used to understand topographic changes in response to tectonic activity. We applied indices to evaluate the relative tectonic intensity of Ulsan Fault Zone, one of the most active fault zones in Korea. We divided the UFZ into five segments based on spatial variation in intensity. We modelled the landscape evolution of study area and interpreted tectono-geomorphic history that the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-231, https://doi.org/10.5194/egusphere-2024-231, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the earth´s surface. Therefore, we must understand what controls the preparation of such events. By correlating four years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates, where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
EGUsphere, https://doi.org/10.5194/egusphere-2024-71, https://doi.org/10.5194/egusphere-2024-71, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate on the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Jessica Laible, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2348, https://doi.org/10.5194/egusphere-2023-2348, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross section. It merges water samples taken at various positions throughout the cross section with high-resolution acoustic velocity and discharge measurements. The method also determines the sand flux uncertainty and can be easily applied to other sites using the available open-source code.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024, https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Short summary
River bifurcations often show the closure of one branch (avulsion), whose causes are still poorly understood. Our model shows that when one branch stops transporting sediments, the other considerably erodes and captures much more flow, resulting in a self-sustaining process. This phenomenon intensifies when increasing the length of the branches, eventually leading to branch closure. This work may help to understand when avulsions occur and thus to design sustainable river restoration projects.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024, https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary
Short summary
Coastal flooding can cause significant damage to coastal ecosystems, infrastructure, and communities and is expected to increase in frequency with the acceleration of sea level rise. In order to respond to it, it is crucial to measure and model their frequency and intensity. Here, we show deep-learning techniques can be successfully used to automatically detect flooding events from complex coastal imagery, opening the way to real-time monitoring and data acquisition for model development.
Judith Y. Zomer, Bart Vermeulen, and Antonius J. F. Hoitink
Earth Surf. Dynam., 11, 1283–1298, https://doi.org/10.5194/esurf-11-1283-2023, https://doi.org/10.5194/esurf-11-1283-2023, 2023
Short summary
Short summary
Secondary bedforms that are superimposed on large, primary dunes likely play a large role in fluvial systems. This study demonstrates that they can be omnipresent. Especially during peak flows, they grow large and can have steep slopes, likely affecting flood risk and sediment transport dynamics. Primary dune morphology determines whether they continuously or intermittently migrate. During discharge peaks, the secondary bedforms can become the dominant dune scale.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Dominic T. Robson and Andreas C. W. Baas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2900, https://doi.org/10.5194/egusphere-2023-2900, 2023
Short summary
Short summary
We present simulations of large populations (swarms) of a type of sand dune known as barchans. Our findings reveal that the rate at which sand moves inside an asymmetric barchan is vital to the behaviour of swarms and that many observed properties of the dunes can be explained by similar rates. We also show that different directions of the wind and the density of dunes added to swarms play important roles in shaping their evolution.
Christopher Tomsett and Julian Leyland
Earth Surf. Dynam., 11, 1223–1249, https://doi.org/10.5194/esurf-11-1223-2023, https://doi.org/10.5194/esurf-11-1223-2023, 2023
Short summary
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Rabab Yassine, Ludovic Cassan, Hélène Roux, Olivier Frysou, and François Pérès
Earth Surf. Dynam., 11, 1199–1221, https://doi.org/10.5194/esurf-11-1199-2023, https://doi.org/10.5194/esurf-11-1199-2023, 2023
Short summary
Short summary
Predicting river morphology evolution is very complicated, especially for mountain rivers with complex morphologies such as the Lac des Gaves reach in France. A 2D hydromorphological model was developed to reproduce the channel's evolution and provide reliable volumetric predictions while revealing the challenge of choosing adapted sediment transport and friction laws. Our model can provide decision-makers with reliable predictions to design suitable restoration measures for this reach.
Daisuke Harada and Shinji Egashira
Earth Surf. Dynam., 11, 1183–1197, https://doi.org/10.5194/esurf-11-1183-2023, https://doi.org/10.5194/esurf-11-1183-2023, 2023
Short summary
Short summary
This paper proposes a method for describing large-wood behavior in terms of the convection equation and the storage equation, which are associated with active sediment erosion and deposition. Compared to the existing Lagrangian method, the proposed method can easily simulate the behavior of large wood in the flow field with active sediment transport. The method is applied to the flood disaster in the Akatani River in 2017, and the 2-D flood flow computations are successfully performed.
Hemanti Sharma and Todd A. Ehlers
Earth Surf. Dynam., 11, 1161–1181, https://doi.org/10.5194/esurf-11-1161-2023, https://doi.org/10.5194/esurf-11-1161-2023, 2023
Short summary
Short summary
Seasonality in precipitation (P) and vegetation (V) influences catchment erosion (E), although which factor plays the dominant role is unclear. In this study, we performed a sensitivity analysis of E to P–V seasonality through numerical modeling. Our results suggest that P variations strongly influence seasonal variations in E, while the effect of seasonal V variations is secondary but significant. This is more pronounced in moderate and least pronounced in extreme environmental settings.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Christoph Rettinger, Mina Tabesh, Ulrich Rüde, Stefan Vollmer, and Roy M. Frings
Earth Surf. Dynam., 11, 1097–1115, https://doi.org/10.5194/esurf-11-1097-2023, https://doi.org/10.5194/esurf-11-1097-2023, 2023
Short summary
Short summary
Packing models promise efficient and accurate porosity predictions of fluvial sediment deposits. In this study, three packing models were reviewed, calibrated, and validated. Only two of the models were able to handle the continuous and large grain size distributions typically encountered in rivers. We showed that an extension by a cohesion model is necessary and developed guidelines for successful predictions in different rivers.
Alexander A. Ermilov, Gergely Benkő, and Sándor Baranya
Earth Surf. Dynam., 11, 1061–1095, https://doi.org/10.5194/esurf-11-1061-2023, https://doi.org/10.5194/esurf-11-1061-2023, 2023
Short summary
Short summary
A novel, artificial-intelligence-based riverbed sediment analysis methodology is introduced that uses underwater images to identify the characteristic sediment classes. The main novelties of the procedure are as follows: underwater images are used, the method enables continuous mapping of the riverbed along the measurement vessel’s route contrary to conventional techniques, the method is cost-efficient, and the method works without scaling.
Kelly M. Sanks, John B. Shaw, Samuel M. Zapp, José Silvestre, Ripul Dutt, and Kyle M. Straub
Earth Surf. Dynam., 11, 1035–1060, https://doi.org/10.5194/esurf-11-1035-2023, https://doi.org/10.5194/esurf-11-1035-2023, 2023
Short summary
Short summary
River deltas encompass many depositional environments (like channels and wetlands) that interact to produce coastal environments that change through time. The processes leading to sedimentation in wetlands are often neglected from physical delta models. We show that wetland sedimentation constrains flow to the channels, changes sedimentation rates, and produces channels more akin to field-scale deltas. These results have implications for the management of these vulnerable coastal landscapes.
Katharina Wetterauer and Dirk Scherler
Earth Surf. Dynam., 11, 1013–1033, https://doi.org/10.5194/esurf-11-1013-2023, https://doi.org/10.5194/esurf-11-1013-2023, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five Swiss glaciers around Pigne d'Arolla indicate an increase in erosion from the end of the Little Ice Age towards deglaciation but temporally more stable rates over the last ∼100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate-type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock, which can protect the more fractured sandstone bedrock from erosion.
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
Earth Surf. Dynam., 11, 979–994, https://doi.org/10.5194/esurf-11-979-2023, https://doi.org/10.5194/esurf-11-979-2023, 2023
Short summary
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023, https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Short summary
We investigated the influence of sediment transport modes on the formation of bedforms using theoretical analysis. The results of the theoretical analysis were verified with published data of plane beds obtained by fieldwork and laboratory experiments. We found that suspended sand particles can promote the formation of plane beds on a fine-grained bed, which suggests that the presence of suspended particles suppresses the development of dunes under submarine sediment-laden gravity currents.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Cited articles
Adamowicz, S. C. and Roman, C. T.: New England salt marsh pools: a quantitative analysis of geomorphic and geographic features, Wetlands, 25,
279–288, https://doi.org/10.1672/4, 2005.
Alkemade, I. S. W.: Kwaliteitsdocument Laseraltimetrie, Projectgebied Westerschelde, Ministerie van Verkeer en Waterstaat, Rijkswaterstaat, Delft,
the Netherlands, 2004.
Allen, J.: Morphodynamics of Holocene salt marshes: a review sketch from the
Atlantic and Southern North Sea coasts of Europe, Quaternay Sci. Rev., 19,
1155–1231, https://doi.org/10.1016/s0277-3791(99)00034-7, 2000.
Argow, B. A. and FitzGerald, D. M.: Winter processes on northern salt marshes: evaluating the impact of in-situ peat compaction due to ice loading, Wells, ME, Estuar. Coast. Shelf Sci., 69, 360–369, https://doi.org/10.1016/j.ecss.2006.05.006, 2006.
Bakker, R. B. and Bijkerk, W.: Toelichting Bij de Geomorfologische Kartering
Westerschelde 2008 op Basis van False Colour-Luchtfoto's 1:10.000, Report,
Ministerie van Verkeer en Waterstaat, Rijksinstituut, Adviesdienst
Geo-Informatie & ICT, Den Haag, Delft, the Netherlands, 2009.
Balke, T., Stock, M., Jensen, K., Bouma, T. J., and Kleyer, M.: A global
analysis of the seaward salt marsh extent: The importance of tidal range,
Water Resour. Res., 52, 3775–3786, https://doi.org/10.1002/2015WR018318, 2016.
Barbier, E. B., Koch, E. W., Silliman, B. R., Hacker, S. D., Wolanski, E.,
Primavera, J., Granek, E. F., Polasky, S., Aswani, S., Cramer, L. A., Stoms,
D. M., Kennedy, C. J., Bael, D., Kappel, C. V., Perillo, G. M. E., and Reed,
D. J.: Coastal ecosystem-based management with nonlinear ecological functions and values, Science, 319, 321–323, https://doi.org/10.1126/science.1150349, 2008.
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and
Silliman, B. R.: The value of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193, https://doi.org/10.1890/10-1510.1, 2011.
Bartholdy, J.: Salt marsh sedimentation, in: Principles of Tidal Sedimentology, edited by: Davis, R. A. and Dalrymple, R. W., Springer,
Dordrecht, the Netherlands, 151–185, 2012.
Baumann, R. H., Day, J. W., and Miller, C. A.: Mississippi deltaic wetland
survival: sedimentation versus coastal submergence, Science, 224, 1093–1095, https://doi.org/10.1126/science.224.4653.1093, 1984.
Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., and Marani, M.: Mapping salt-marsh vegetation by multispectral and
hyperspectral remote sensing, Remote Sens. Environ., 105, 54–67,
https://doi.org/10.1016/j.rse.2006.06.006, 2006.
Brückner, M. Z. M., Schwarz, C., van Dijk, W. M., van Oorschot, M., Douma, H., and Kleinhans, M. G.: Salt marsh establishment and eco-engineering effects in dynamic estuaries determined by species growth and mortality, J. Geophys. Res.-Earth, 124, 2962–2986, https://doi.org/10.1029/2019JF005092, 2019.
Carbognin, L., Teatini, P., and Tosi, L.: Eustacy and land subsidence in the
Venice Lagoon at the beginning of the new millennium, J. Mar. Syst., 51,
345–353, https://doi.org/10.1016/j.jmarsys.2004.05.021, 2004.
Carniello, L., Defina, A., and D'Alpaos, L.: Morphological evolution of the
Venice Lagoon: evidence from the past and trend for the future, J. Geophys.
Res., 114, F04002, https://doi.org/10.1029/2008jf001157, 2009.
Christiansen, T., Wiberg, P. L., and Milligan, T. G.: Flow and sediment
transport on a tidal salt marsh surface, Estuar. Coast. Shelf Sci., 50, 315–331, https://doi.org/10.1006/ecss.2000.0548, 2000.
Covi, M. P. and Kneib, R. T.: Intertidal distribution, population dynamics and production of the amphipod Uhlorchestia spartinophila in a Georgia, USA,
salt marsh, Mar. Biol., 121, 447–455, https://doi.org/10.1007/bf00349453, 1995.
D'Alpaos, A.: The mutual influence of biotic and abiotic components on the
long-term ecomorphodynamic evolution of salt-marsh ecosystems, Geomorphology, 126, 269–278, https://doi.org/10.1016/j.geomorph.2010.04.027, 2011.
D'Alpaos, A. and Marani, M.: Reading the signatures of biologic–geomorphic
feedbacks in salt-marsh landscapes, Adv. Water Resour., 93, 265–275,
https://doi.org/10.1016/j.advwatres.2015.09.004, 2016.
D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A.: Landscape evolution
in tidal embayments: modeling the interplay of erosion, sedimentation, and
vegetation dynamics, J. Geophys. Res., 112, F01008, https://doi.org/10.1029/2006jf000537, 2007.
D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A.: On the tidal
prism–channel area relations, J. Geophys. Res., 115, F01003,
https://doi.org/10.1029/2008jf001243, 2010.
D'Alpaos, A., Mudd, S. M., and Carniello, L.: Dynamic response of marshes to
perturbations in suspended sediment concentrations and rates of relative sea
level rise, J. Geophys. Res., 116, F04020, https://doi.org/10.1029/2011jf002093, 2011.
Day, J. W., Rybczyk, J., Scarton, F., Rismondo, A., Are, D., and Cecconi, G.: Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field and modelling approach, Estuar. Coast. Shelf Sci., 49, 607–628, https://doi.org/10.1006/ecss.1999.0522, 1999.
Day, J. W., Britsch, L. D., Hawes, S. R., Shaffer, G. P., Reed, D. J., and
Cahoon, D.: Pattern and process of land loss in the Mississippi delta: a spatial and temporal analysis of wetland habitat change, Estuaries, 23,
425–438, https://doi.org/10.2307/1353136, 2000.
Defendi, V., Kovačević, V., Arena, F., and Zaggia, L.: Estimating
sediment transport from acoustic measurements in the Venice Lagoon inlets,
Cont. Shelf Res., 30, 883–893, https://doi.org/10.1016/j.csr.2009.12.004, 2010.
DeLaune, R. D., Nyman, J. A., and Patrick, J. W. H.: Peat collapse, ponding
and wetland loss in a rapidly submerging coastal marsh, J. Coast. Res., 10,
1021–1030, 1994.
Elschot, K., Vermeulen, A., Vandenbruwaene, W., Bakker, J. P., Bouma, T. J.,
Stahl, J., Castelijns, H., and Temmerman, S.: Top-down vs. bottom-up control
on vegetation composition in a tidal marsh depends on scale, PLoS One, 12,
e0169960, https://doi.org/10.1371/journal.pone.0169960, 2017.
Erwin, R. M., Cahoon, D. R., Prosser, D. J., Sanders, G. M., and Hensel, P.:
Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the Mid-Atlantic Coast, USA, with implications to waterbirds, Estuar. Coasts, 29, 96–106, https://doi.org/10.1007/bf02784702, 2006.
Esselink, P., Dijkema, K. S., Sabine, R., and Geert, H.: Vertical accretion
and profile changes in abandoned man-made tidal marshes in the Dollard Estuary, the Netherlands, J. Coast. Res., 14, 570–582, 1998.
Fagherazzi, S.: The ephemeral life of a salt marsh, Geology, 41, 943–944,
https://doi.org/10.1130/focus082013.1, 2013.
Fagherazzi, S., Carniello, L., D'Alpaos, L., and Defina, A.: Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes,
P. Natl. Acad. Sci. USA, 103, 8337–8341, https://doi.org/10.1073/pnas.0508379103, 2006.
Fagherazzi, S., Palermo, C., Rulli, M. C., Carniello, L., and Defina, A.: Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal
flats, J. Geophys. Res., 112, F02024, https://doi.org/10.1029/2006jf000572, 2007.
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman,
S., D'Alpaos, A., van de Koppel, J., Rybczyk, J. M., Reyes, E., Craft, C., and Clough, J.: Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors, Rev. Geophys., 50, 294–295,
https://doi.org/10.1029/2011rg000359, 2012.
Fagherazzi, S., Mariotti, G., Wiberg, P., and McGlathery, K.: Marsh collapse
does not require sea level rise, Oceanography, 26, 70–77,
https://doi.org/10.5670/oceanog.2013.47, 2013.
Friedrichs, C. T. and Perry, J. E.: Tidal Salt Marsh Morphodynamics: A Synthesis, J. Coast. Res., 27, 7–37, 2001.
Ganju, N. K., Nidzieko, N. J., and Kirwan, M. L.: Inferring tidal wetland
stability from channel sediment fluxes: observations and a conceptual model,
J. Geophys. Res.-Earth, 118, 2045–2058, https://doi.org/10.1002/jgrf.20143, 2013.
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., and Silliman, B.
R.: The present and future role of coastal wetland vegetation in protecting
shorelines: answering recent challenges to the paradigm, Climatic Change, 106, 7–29, https://doi.org/10.1007/s10584-010-0003-7, 2011.
Gieskes, J. M., Elwany, H., Rasmussen, L., Han, S., Rathburn, A., and Deheyn, D. D.: Salinity variations in the Venice Lagoon, Italy: results from the SIOSED project, May 2005–February 2007, Mar. Chem., 154, 77–86,
https://doi.org/10.1016/j.marchem.2013.05.011, 2013.
Harshberger, J. W.: The origin and vegetation of salt marsh pools, Proc. Am.
Philos. Soc., 55, 481–484, 1916.
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., and Stive, M.: Laboratory
study on wave dissipation by vegetation in combined current–wave flow, Coast. Eng., 88, 131–142, https://doi.org/10.1016/j.coastaleng.2014.02.009, 2014.
Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z. B., Stive, M.,
and Bouma, T. J.: Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: the importance of temporal and spatial
variability in hydrodynamic forcing, J. Geophys. Res.-Biogeo., 120, 1450–1469, https://doi.org/10.1002/2014jg002870, 2015a.
Hu, Z., Wang, Z. B., Zitman, T. J., Stive, M. J. F., and Bouma, T. J.: Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory, J. Geophys. Res.-Earth, 120, 1803–1823, https://doi.org/10.1002/2015jf003486, 2015b.
Hu, Z., van der Wal, D., Cai, H., van Belzen, J., and Bouma, T. J.: Dynamic
equilibrium behaviour observed on two contrasting tidal flats from daily
monitoring of bed-level changes, Geomorphology, 311, 114–126,
https://doi.org/10.1016/j.geomorph.2018.03.025, 2018.
Huijs, S. W. E.: Geomorfologische Ontwikkeling van Het Intergetijdegebied in
de Westerschelde, 1935–1989, Rapport R 95-3, Universiteit Utrecht, Utrecht,
the Netherlands, 1995.
Kearney, M. S. and Rogers, A. S.: Forecasting sites of future coastal marsh
loss using topographical relationships and logistic regression, Wetl. Ecol.
Manage., 18, 449–461, https://doi.org/10.1007/s11273-010-9178-y, 2010.
Kearney, M. S., Grace, R. E., and Stevenson, J. C.: Marsh loss in nanticoke
estuary, Chesapeake Bay, Geogr. Rev., 78, 205–220, https://doi.org/10.2307/214178, 1988.
Kearney, M. S., Rogers, A. S., Townshend, J. R. G., Rizzo, E., Stutzer, D.,
Stevenson, J. C., and Sundborg, K.: Landsat imagery shows decline of coastal
marshes in Chesapeake and Delaware Bays, Eos Trans. Am. Geophys. Union, 83,
173–178, https://doi.org/10.1029/2002eo000112, 2002.
Kendrot, S. R.: Restoration through eradication: protecting Chesapeake Bay
marshlands from invasive nutria (Myocastor coypus), in: Island Invasives: Eradication and Management, in: Proceedings of the International Conference on Island Invasives (Occasional Papers of the IUCN Species Survival Commission Occasional Papers of the IUCN Species Survival Commission), edited by: Veitch, C. R., Clout, M. N., and Towns, D. R., IUCN, Gland, Switzerland, 313–319, 2011.
Kirwan, M. L. and Guntenspergen, G. R.: Influence of tidal range on the
stability of coastal marshland, J. Geophys. Res.-Earth, 115, F02009,
https://doi.org/10.1029/2009jf001400, 2010.
Kirwan, M. L. and Guntenspergen, G. R.: Feedbacks between inundation, root
production, and shoot growth in a rapidly submerging brackish marsh, J. Ecol., 100, 764–770, https://doi.org/10.1111/j.1365-2745.2012.01957.x, 2012.
Kirwan, M. L. and Guntenspergen, G. R.: Response of plant productivity to
experimental flooding in a stable and a submerging marsh, Ecosystems, 18,
903–913, https://doi.org/10.1007/s10021-015-9870-0, 2015.
Kirwan, M. L. and Megonigal, J. P.: Tidal wetland stability in the face of
human impacts and sea-level rise, Nature, 504, 53–60, https://doi.org/10.1038/nature12856, 2013.
Kirwan, M. L. and Murray, A. B.: A coupled geomorphic and ecological model of tidal marsh evolution, P. Natl. Acad. Sci. USA, 104, 6118–6122,
https://doi.org/10.1073/pnas.0700958104, 2007.
Kirwan, M. L., Murray, A. B., and Boyd, W. S.: Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands, Geophys.
Res. Lett., 35, L05403, https://doi.org/10.1029/2007gl032681, 2008.
Kirwan, M. L., Guntenspergen, G. R., D'Alpaos, A., Morris, J. T., Mudd, S. M., and Temmerman, S.: Limits on the adaptability of coastal marshes to rising sea level, Geophys. Res. Lett., 37, 58–94, https://doi.org/10.1029/2010gl045489, 2010.
Kirwan, M. L., Murray, A. B., Donnelly, J. P., and Corbett, D. R.: Rapid wetland expansion during European settlement and its implication for marsh
survival under modern sediment delivery rates, Geology, 39, 507–510,
https://doi.org/10.1130/g31789.1, 2011.
Leonard, L. A.: Controls of sediment transport and deposition in an incised
mainland marsh basin, Southeastern North Carolina, Wetlands, 17, 263–274,
https://doi.org/10.1007/bf03161414, 1997.
Marani, M., Belluco, E., D'Alpaos, A., Defina, A., Lanzoni, S., and Rinaldo,
A.: On the drainage density of tidal networks, Water Resour. Res., 39,
5029–5035, https://doi.org/10.1029/2001wr001051, 2003.
Marani, M., Silvestri, S., Belluco, E., Ursino, N., Comerlati, A., Tosatto,
O., and Putti, M.: Spatial organization and ecohydrological interactions in
oxygen-limited vegetation ecosystems, Water Resour. Res., 42, 387–403,
https://doi.org/10.1029/2005wr004582, 2006.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.:
Biologically-controlled multiple equilibria of tidal landforms and the fate
of the Venice Lagoon, Geophys. Res. Lett., 34, 224–238, https://doi.org/10.1029/2007gl030178, 2007.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.: The
importance of being coupled: stable states and catastrophic shifts in tidal
biomorphodynamics, J. Geophys. Res., 115, F04004, https://doi.org/10.1029/2009jf001600, 2010.
Mariotti, G.: Revisiting salt marsh resilience to sea level rise: are ponds
responsible for permanent land loss?, J. Geophys. Res.-Earth, 121, 1391–1407, https://doi.org/10.1002/2016jf003900, 2016.
Mariotti, G. and Fagherazzi, S.: A numerical model for the coupled long-term
evolution of salt marshes and tidal flats, J. Geophys. Res., 115, F01004,
https://doi.org/10.1029/2009jf001326, 2010.
Mariotti, G. and Fagherazzi, S.: Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise, P. Natl. Acad. Sci. USA, 110, 5353–5356, https://doi.org/10.1073/pnas.1219600110, 2013.
McGlathery, K., Reidenbach, M., D'Odorico, P., Fagherazzi, S., Pace, M., and
Porter, J.: Nonlinear dynamics and alternative stable states in shallow coastal systems, Oceanography, 26, 220–231, https://doi.org/10.5670/oceanog.2013.66, 2013.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9,
552–560, https://doi.org/10.1890/110004, 2011.
Miller, W. R. and Egler, F. E.: Vegetation of the wequetequock-pawcatuck
tidal-marshes, Connecticut, Ecol. Monogr., 20, 143–172, https://doi.org/10.2307/1943548, 1950.
Millette, T. L., Argow, B. A., Marcano, E., Hayward, C., Hopkinson, C. S., and Valentine, V.: Salt marsh geomorphological analysesviaintegration of
multitemporal multispectral remote sensing with LIDAR and GIS, J. Coast. Res., 265, 809–816, https://doi.org/10.2112/jcoastres-d-09-00101.1, 2010.
Moffett, K., Nardin, W., Silvestri, S., Wang, C., and Temmerman, S.:
Multiple stable states and catastrophic shifts in coastal wetlands: progress, challenges, and opportunities in validating theory using remote sensing and other methods, Remote Sens., 7, 10184–10226, https://doi.org/10.3390/rs70810184, 2015.
Morton, R. A., Tiling, G., and Ferina, N. F.: Causes of hot-spot wetland loss in the Mississippi delta plain, Environ. Geosci., 10, 71–80,
https://doi.org/10.1306/eg100202007, 2003.
Moskalski, S. M. and Sommerfield, C. K.: Suspended sediment deposition and
trapping efficiency in a Delaware salt marsh, Geomorphology, 139–140,
195–204, https://doi.org/10.1016/j.geomorph.2011.10.018, 2012.
Mudd, S. M., D'Alpaos, A., and Morris, J. T.: How does vegetation affect
sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation, J. Geophys. Res., 115, F03029, https://doi.org/10.1029/2009jf001566, 2010.
Neumeier, U. R. S. and Amos, C. L.: The influence of vegetation on turbulence and flow velocities in European salt-marshes, Sedimentology, 53, 259–277, https://doi.org/10.1111/j.1365-3091.2006.00772.x, 2006.
Nyman, J. A., Walters, R. J., Delaune, R. D., and Patrick, W. H.: Marsh vertical accretion via vegetative growth, Estuar. Coast. Shelf Sci., 69,
370–380, https://doi.org/10.1016/j.ecss.2006.05.041, 2006.
OCM Partners: 2003 Maryland Department of Natural Resources LiDAR: Dorchester, Somerset, Talbot, and Wicomico Counties, with portions of Caroline, Kent and Queen Anne's Counties, available at:
https://www.fisheries.noaa.gov/inport/item/49781, last access: 6 February 2021.
Ortiz, A. C., Roy, S., and Edmonds, D. A.: Land loss by pond expansion on the Mississippi river delta plain, Geophys. Res. Lett., 44, 3635–3642,
https://doi.org/10.1002/2017gl073079, 2017.
Pendleton, E. and Stevenson, J.: Investigations of Marsh Losses at Blackwater Refuge: Final Report, University of Maryland Center for Environmental and Estuarine Studies, Cambridge, MA, 1983.
Penland, S., Wayne, L., Britsch, L. D., Williams, S. J., Beall, A. D., and
Butterworth, V. C.: Geomorphic Classification of Coastal Land Loss between 1932 and 1990 in the Mississippi River Delta Plain, Southeastern Louisiana, USGS Open File Report 00-417, Coastal Marine Geology Program, US Geological Survey, Woods Hole, MA, 2000.
planetek italia: ikonos, available at:
https://www.planetek.it/prodotti/tutti_i_prodotti/ikonos, last access: 6 February 2021.
R Core Team: A Language and Environment for Statistical Computing R, Vienna, Austria, 2016.
Redfield, A. C.: Development of a New England salt marsh, Ecol. Monogr., 42,
201–237, https://doi.org/10.2307/1942263, 1972.
Reed, D. J.: Sediment dynamics and deposition in a retreating coastal salt
marsh, Estuar. Coast. Shelf Sci., 26, 67–79, https://doi.org/10.1016/0272-7714(88)90012-1, 1988.
Reed, D. J., Spencer, T., Murray, A. L., French, J. R., and Leonard, L.:
Marsh surface sediment deposition and the role of tidal creeks: implications
for created and managed coastal marshes, J. Coast. Conserv., 5, 81–90,
https://doi.org/10.1007/bf02802742, 1999.
Reitsma, J. M.: Toelichting Bij de Vegetatiekartering Westerschelde 2004 op
Basis Vanfalse Colour-Luchtfoto's , Report, Ministerie van
Verkeer en Waterstaat, Rijksinstituut, Adviesdienst Geo-Informatie & ICT,
Den Haag, Delft, the Netherlands, 2006.
Rijkswaterstaat: Open data Rijkswaterstaat, available at:
https://www.rijkswaterstaat.nl/zakelijk/open-data, last access: 6 February 2021.
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E.:
Tidal networks: 2. Watershed delineation and comparative network morphology,
Water Resour. Res., 35, 3905–3917, https://doi.org/10.1029/1999wr900237, 1999a.
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E.:
Tidal networks: 3. Landscape-forming discharges and studies in empirical
geomorphic relationships, Water Resour. Res., 35, 3919–3929,
https://doi.org/10.1029/1999wr900238, 1999b.
Roner, M., D'Alpaos, A., Ghinassi, M., Marani, M., Silvestri, S., Franceschinis, E., and Realdon, N.: Spatial variation of salt-marsh organic
and inorganic deposition and organic carbon accumulation: inferences from the Venice Lagoon, Italy, Adv. Water Resour., 93, 276–287,
https://doi.org/10.1016/j.advwatres.2015.11.011, 2016.
Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., and Fontolan, G.:
Sediment budget in the Lagoon of Venice, Italy, Cont. Shelf Res., 30, 934–949, https://doi.org/10.1016/j.csr.2009.07.002, 2010.
Scheffer, M. and Carpenter, S. R.: Catastrophic regime shifts in ecosystems:
linking theory to observation, Trends Ecol. Evol., 18, 648–656,
https://doi.org/10.1016/j.tree.2003.09.002, 2003.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.:
Catastrophic shifts in ecosystems, Nature, 413, 591–596, https://doi.org/10.1038/35098000, 2001.
Schepers, L., Kirwan, M., Guntenspergen, G., and Temmerman, S.: Spatio-temporal development of vegetation die-off in a submerging coastal
marsh, Limnol. Oceanogr., 62, 137–150, https://doi.org/10.1002/lno.10381, 2017.
Silliman, B. R.: Drought, snails, and large-scale die-off of Southern U.S. salt marshes, Science, 310, 1803–1806, https://doi.org/10.1126/science.1118229, 2005.
Silvestri, S., Defina, A., and Marani, M.: Tidal regime, salinity and salt
marsh plant zonation, Estuar. Coast. Shelf Sci., 62, 119–130,
https://doi.org/10.1016/j.ecss.2004.08.010, 2005.
Stevenson, J. C., Kearney, M. S., and Pendleton, E. C.: Sedimentation and
erosion in a Chesapeake Bay brackish marsh system, Mar. Geol., 67, 213–235,
https://doi.org/10.1016/0025-3227(85)90093-3, 1985.
Temmerman, S. and Kirwan, M. L.: Building land with a rising sea, Science,
349, 588–589, https://doi.org/10.1126/science.aac8312, 2015.
Temmerman, S., Govers, G., Meire, P., and Wartel, S.: Modelling long-term
tidal marsh growth under changing tidal conditions and suspended sediment
concentrations, Scheldt estuary, Belgium, Mar. Geol., 193, 151–169,
https://doi.org/10.1016/s0025-3227(02)00642-4, 2003a.
Temmerman, S., Govers, G., Wartel, S., and Meire, P.: Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal
marsh, Scheldt estuary, Belgium, SW Netherlands, Earth Surf. Proc. Land., 28, 739–755, https://doi.org/10.1002/esp.495, 2003b.
Temmerman, S., Govers, G., Meire, P., and Wartel, S.: Simulating the long-term development of levee–basin topography on tidal marshes,
Geomorphology, 63, 39–55, https://doi.org/10.1016/j.geomorph.2004.03.004, 2004.
Temmerman, S., Moonen, P., Schoelynck, J., Govers, G., and Bouma, T. J.: Impact of vegetation die-off on spatial flow patterns over a tidal marsh,
Geophys. Res. Lett., 39, L03406, https://doi.org/10.1029/2011gl050502, 2012.
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and
De Vriend, H. J.: Ecosystem-based coastal defence in the face of global change, Nature, 504, 79–83, https://doi.org/10.1038/nature12859, 2013.
Tommasini, L., Carniello, L., Ghinassi, M., Roner, M., and D'Alpaos, A.:
Changes in the wind-wave field and related salt-marsh lateral erosion: inferences from the evolution of the Venice Lagoon in the last four centuries, Earth Surf. Proc. Land., 44, 1633–1646, https://doi.org/10.1002/esp.4599, 2019.
Turner, R. E. and Rao, Y. S.: Relationships between wetland fragmentation
and recent hydrologic changes in a deltaic coast, Estuaries, 13, 272–281,
https://doi.org/10.2307/1351918, 1990.
Ursino, N., Silvestri, S., and Marani, M.: Subsurface flow and vegetation
patterns in tidal environments, Water Resour. Res., 40, 191–201,
https://doi.org/10.1029/2003wr002702, 2004.
USGS: EarthExplorer, available at: https://earthexplorer.usgs.gov/, last access: 6 February 2021.
van Belzen, J., van de Koppel, J., Kirwan, M. L., van der Wal, D., Herman, P. M. J., Dakos, V., Kéfi, S., Scheffer, M., Guntenspergen, G. R., and Bouma, T. J.: Vegetation recovery in tidal marshes reveals critical slowing
down under increased inundation, Nat. Commun., 8, 15811, https://doi.org/10.1038/ncomms15811, 2017.
van Damme, S., Struyf, E., Maris, T., Ysebaert, T., Dehairs, F., Tackx, M.,
Heip, C., and Meire, P.: Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach, Hydrobiologia, 540, 29–45, https://doi.org/10.1007/s10750-004-7102-2, 2005.
Vandenbruwaene, W., Temmerman, S., Bouma, T. J., Klaassen, P. C., de Vries,
M. B., Callaghan, D. P., van Steeg, P., Dekker, F., van Duren, L. A., Martini, E., Balke, T., Biermans, G., Schoelynck, J., and Meire, P.: Flow
interaction with dynamic vegetation patches: implications for biogeomorphic
evolution of a tidal landscape, J. Geophys. Res.-Earth, 116, 155–170, https://doi.org/10.1029/2010jf001788, 2011.
Vandenbruwaene, W., Bouma, T. J., Meire, P., and Temmerman, S.: Bio-geomorphic effects on tidal channel evolution: impact of vegetation
establishment and tidal prism change, Earth Surf. Proc. Land., 38, 122–132, https://doi.org/10.1002/esp.3265, 2013.
van der Pluijm, A. M. and de Jong, D. J.: Historisch Overzicht Schorareaal
in Zuid-West Nederland, Report Werkdocument RIKZ/OS-98.860 x, Rijkswaterstaat –Rijksinstituut voor Kust en Zee, Utrecht, the Netherlands, 1998.
van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J., Bertness, M. D.,
van der Wal, D., Bakker, J. P., and Bouma, T. J.: Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes, Ecosystems, 11, 1133–1141, https://doi.org/10.1007/s10021-008-9184-6, 2008.
Venier, C., D'Alpaos, A., and Marani, M.: Evaluation of sediment properties
using wind and turbidity observations in the shallow tidal areas of the Venice Lagoon, J. Geophys. Res.-Earth, 119, 1604–1616, https://doi.org/10.1002/2013jf003019, 2014.
Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., and Rosati, J. D.: The potential of wetlands in reducing storm surge, Ocean Eng., 37, 59–68, https://doi.org/10.1016/j.oceaneng.2009.07.018, 2010.
Wang, C. and Temmerman, S.: Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states? An empirical study on intertidal flats and marshes, J. Geophys. Res.-Earth, 118, 229–240, https://doi.org/10.1029/2012jf002474, 2013.
Wang, C., Menenti, M., Stoll, M. P., Feola, A., Belluco, E., and Marani, M.:
Separation of ground and low vegetation signatures in LiDAR measurements of
salt-marsh environments, IEEE T. Geosci. Remote, 47, 2014–2023,
https://doi.org/10.1109/tgrs.2008.2010490, 2009.
Wilson, C. A., Hughes, Z. J., FitzGerald, D. M., Hopkinson, C. S., Valentine, V., and Kolker, A. S.: Saltmarsh pool and tidal creek morphodynamics: dynamic equilibrium of northern latitude saltmarshes?, Geomorphology, 213, 99–115, https://doi.org/10.1016/j.geomorph.2014.01.002, 2014.
Wilson, K. R., Kelley, J. T., Croitoru, A., Dionne, M., Belknap, D. F., and
Steneck, R.: Stratigraphic and ecophysical characterizations of salt pools:
dynamic landforms of the webhannet salt marsh, Wells, ME, USA, Estuar. Coasts, 32, 855–870, https://doi.org/10.1007/s12237-009-9203-7, 2009.
Wilson, K. R., Kelley, J. T., Tanner, B. R., and Belknap, D. F.: Probing the
origins and stratigraphic signature of salt pools from north-temperate
marshes in Maine, U.S.A., J. Coast. Res., 26, 1007–1026,
https://doi.org/10.2112/jcoastres-d-10-00007.1, 2010.
Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T., and Luo, X. X.: Wave
attenuation at a salt marsh margin: a case study of an exposed coast on the
yangtze estuary, Estuar. Coasts, 35, 169–182, https://doi.org/10.1007/s12237-011-9424-4, 2012.
Zaggia, L. and Ferla, M.: Studies on water and suspended sediment transport
at the Venice Lagoon inlets, in: Proceedings of the Fifth International Symposium WAVES, 3–7 July 2005, Madrid, Spain, 1–10, 2005.
Zirino, A., Elwany, H., Neira, C., Maicu, F., Mendoza, G., and Levin, L. A.:
Salinity and its variability in the Lagoon of Venice, 2000–2009, Adv. Oceanogr. Limnol., 5, 41–59, https://doi.org/10.4081/aiol.2014.5350, 2014.
Short summary
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of bare patches is a symptom of habitat degradation. We found that the occurrence of bare patches and regrowth of vegetation is related to spatial variations in soil surface elevation and to the distance and connectivity to tidal creeks. These relations are similar in three marshes at very different geographical locations. Our results may help nature managers to conserve and restore coastal marshes.
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of...