Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1115-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1115-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments
Elena Bastianon
CORRESPONDING AUTHOR
Energy and Environment Institute, University of Hull, Hull, HU6 7RX,
United Kingdom
Julie A. Hope
Energy and Environment Institute, University of Hull, Hull, HU6 7RX,
United Kingdom
Robert M. Dorrell
Energy and Environment Institute, University of Hull, Hull, HU6 7RX,
United Kingdom
Daniel R. Parsons
Energy and Environment Institute, University of Hull, Hull, HU6 7RX,
United Kingdom
Related authors
No articles found.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-3001, https://doi.org/10.5194/egusphere-2024-3001, 2024
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2132, https://doi.org/10.5194/egusphere-2024-2132, 2024
Short summary
Short summary
Leaky wooden dams are a type of natural flood management intervention that aim to reduce flood risk downstream by temporarily holding back water during a storm event and releasing it afterwards. These structures alter the river hydrology, and therefore the geomorphology, yet often this is excluded from numerical models. Here we show that by not simulating geomorphology we are currently underestimating the efficacy of these structures to reduce the flood peak and store water.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Chengbin Zou, Paul Carling, Zetao Feng, Daniel Parsons, and Xuanmei Fan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-119, https://doi.org/10.5194/tc-2022-119, 2022
Manuscript not accepted for further review
Short summary
Short summary
Climate change is causing mountain lakes behind glacier barriers to drain through ice tunnels as catastrophe floods, threatening people and infrastructure downstream. Understanding of how process works can mitigate the impacts by providing advanced warnings. A laboratory study of ice tunnel development improved understanding of how floods evolve. The principles of ice tunnel development were defined numerically and can be used to better model natural floods leading to improved prediction.
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021, https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Short summary
Unsustainable sand mining poses a threat to the stability of river channels. We use satellite imagery to estimate volumes of material removed from the Mekong River, Cambodia, over the period 2016–2020. We demonstrate that current rates of extraction now exceed previous estimates for the entire Mekong Basin and significantly exceed the volume of sand naturally transported by the river. Our work highlights the importance of satellite imagery in monitoring sand mining activity over large areas.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Related subject area
Biological: Bio-Geomorphology
On the relative role of abiotic and biotic controls in channel network development: insights from scaled tidal flume experiments
Benthos as a key driver of morphological change in coastal regions
Higher sediment redistribution rates related to burrowing animals than previously assumed as revealed by time-of-flight-based monitoring
Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply
Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand
Mapping landscape connectivity as a driver of species richness under tectonic and climatic forcing
Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile
Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales
Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate
Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Peter Arlinghaus, Corinna Schrum, Ingrid Kröncke, and Wenyan Zhang
Earth Surf. Dynam., 12, 537–558, https://doi.org/10.5194/esurf-12-537-2024, https://doi.org/10.5194/esurf-12-537-2024, 2024
Short summary
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Catherine Reid, John Begg, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, and Sofia-Katerina Kufner
Earth Surf. Dynam., 8, 351–366, https://doi.org/10.5194/esurf-8-351-2020, https://doi.org/10.5194/esurf-8-351-2020, 2020
Tristan Salles, Patrice Rey, and Enrico Bertuzzo
Earth Surf. Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019, https://doi.org/10.5194/esurf-7-895-2019, 2019
Short summary
Short summary
Mountainous landscapes have long been recognized as potential drivers for genetic drift, speciation, and ecological resilience. We present a novel approach that can be used to assess and quantify drivers of biodiversity, speciation, and endemism over geological time. Using coupled climate–landscape models, we show that biodiversity under tectonic and climatic forcing relates to landscape dynamics and that landscape complexity drives species richness through orogenic history.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
R. O. Tinoco and G. Coco
Earth Surf. Dynam., 2, 83–96, https://doi.org/10.5194/esurf-2-83-2014, https://doi.org/10.5194/esurf-2-83-2014, 2014
Cited articles
Amos, C. L., Droppo, I. G., Gomez, E. A., and Murphy, T. P.: The stability
of a remediated bed in Hamilton Harbour, Lake Ontario, Canada,
Sedimentology, 50, 149–168,
https://doi.org/10.1046òj.1365-3091.2003.00542.x, 2003.
Amos, C. L., Bergamasco, A., Umgiesser, G., Cappucci, S., Cloutier, D.,
DeNat, L., Flindt, M., Bonaldi, M., and Cristante, S.: The stability of
tidal flats in Venice Lagoon – the results of in-situ measurements using
two benthic, annular flumes, J. Mar. Syst., 51, 211–241,
https://doi.org/10.1016/j.jmarsys.2004.05.013, 2004.
Andersen, T. J.: Seasonal Variation in Erodibility of Two Temperate,
Microtidal Mudflats, Estuar. Coast. Shelf S., 53, 1–12,
https://doi.org/10.1006/ecss.2001.0790, 2001.
Andersen, T. J., Lanuru, M., van Bernem, C., Pejrup, M., and Riethmueller,
R.: Erodibility of a mixed mudflat dominated bymicrophytobenthos
andCerastoderma edule, East Frisian Wadden Sea, Germany, Estuar. Coast.
Shelf S., 87, 197–206, https//doi.org/10.1016/j.ecss.2009.10.014, 2010.
Austin, I., Andersen, T. J., and Edelvang K.: The influence of benthic
diatoms and invertebrates on the erodibility of an intertidal mudflat, the
Danish Wadden Sea, Estuar. Coast. Shelf S., 49, 99–111,
https://doi.org/10.1006/ecss.1998.0491, 1999.
Best, Ü. S., Van der Wegen, M., Dijkstra, J., Willemsen, P., Borsje, B.,
and Roelvink, D. J.: Do salt marshes survive sea level rise? Modelling wave
action, morphodynamics and vegetation dynamics, Environ. Modell.
Softw., 109, 152–166, https://doi.org/10.1016/j.envsoft.2018.08.004, 2018.
Borsje, B. W., de Vries, M. B., Bouma, T. J., Besio, G., Hulscher, S. J. M. H.,
and Herman, P. M. J.: Modeling bio-geomorphological influences for offshore
sandwaves, Cont. Shelf Res., 29, 1289–1301,
https://doi.org/10.1142/9789814277426_0367, 2009.
Brückner, M. Z. M., Braat, L., Schwarz, C., and Kleinhans, M. G.: What
Came First, Mud or Biostabilizers? Elucidating Interacting Effects in a
Coupled Model of Mud, Saltmarsh, Microphytobenthos, and Estuarine
Morphology, Water Resour. Res., 56, e2019WR026945,
https://doi.org/10.1029/2019WR026945, 2020.
Brückner, M. Z. M., Schwarz, C., Coco, G., Baar, A., Boechat Albernaz,
M., and Kleinhans, M. G.: Benthic species as mud patrol – modelled effects
of bioturbators and biofilms on large-scale estuarine mud and morphology,
Earth Surf. Proc. Land., 46, 1128–1144,
https://doi.org/10.1002/esp.5080, 2021.
Burne, R. V. and Moore, L. S.: Microbialites: organosedimentary deposits of
benthic microbial communities, Palaios, 2, 241–254, https://doi.org/10.2307/3514674, 1987.
Cahoon, L.: The role of benthic microalgae in neritic ecosystems, Oceanography and marine biology, 37, 47–86, 1999.
Caissie, D.: The thermal regime of rivers: a review, Freshwater Biol., 51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Chaudhry, M. H.: Open-Channel Flow, Second Edition, Springer, 523 pp., ISBN 978-3-030-96446-7, 2008.
Chen, X., Zhang, C. K., Paterson, D. M., Townend, I. H., Jin, C., Zhou, Z.,
Gong, Z., and Feng, Q.: The effect of cyclic variation of shear stress on
non-cohesive sediment stabilization by microbial biofilms: the role of
“biofilm precursors”, Earth Surf. Proc. Land., 44, 1471–1481, 2019.
Chen, X. D., Zhang, C. K., Paterson, D. M., Thompson, C. E. L., Townend, I.
H., Gong, Z., Zhou, Z., and Feng, Q., Hindered erosion: The biological
mediation of noncohesive sediment behavior, Water Resour. Res., 53,
4787–4801, https://doi.org/10.1002/2016WR020105, 2017.
Coco, G., Thrush, S. F., Green, M. O., and Hewitt, J.E., Feedbacks between
bivalve density, flow, and suspended sediment concentration on patch stable
states, Ecology, 87, 2862–2870,
https://doi.org/10.1890/0012-9658(2006)87[2862:FBBDFA]2.0.CO;2, 2006.
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and
Townend, I.: Morphodynamics of tidal networks: Advances and challenges,
Mar. Geol., 346, 1–16, https://doi.org/10.1016/j.margeo.2013.08.005,
2013.
Corenblit, D., Tabacchi, E., Steiger, J., and Gurnell, A. M.: Reciprocal
interactions and adjustments between fluvial landforms and vegetation
dynamics in river corridors: a review of complementary approaches,
Earth-Sci. Rev., 84, 56–86,
https://doi.org/10.1016/j.earscirev.2007.05.004, 2007.
Cozzoli, F., Gjoni, V., Del Pasqua, M., Hu, Z., Ysebaert, T., Herman, P. M.,
and Bouma, T. J.: A process based model of cohesive sediment resuspension
under bioturbators' influence, Sci. Total Environ., 670,
18–30, https://doi.org/10.1016/j.scitotenv.2019.03.085, 2019.
Decho, A. W.: Microbial biofilms in intertidal systems: an overview,
Cont. Shelf Res., 20, 1257–1273,
https://doi.org/10.1016/S0278-4343(00)00022-4, 2000.
de Deckere, E. M. G. T., Tolhurst, T. J., and De Brouwer, J. F. C.: Destabilization of cohesive intertidal sediments by infauna, Estuar. Coast. Shelf S., 53, 665–669, 2001.
Defew, E. C., Tolhurst, T. J., and Paterson, D. M.: Site-specific features influence sediment stability of intertidal flats, Hydrol. Earth Syst. Sci., 6, 971–982, https://doi.org/10.5194/hess-6-971-2002, 2002.
Defew, E. C., Tolhurst, T. J., Paterson, D. M., and Hagerthey, S. E.: Can the stability of intertidal sediments be predicted from proxy parameters? An in situ investigation, in: Estuarine and Coastal Sciences Association, edited by: Raffaelli, D., Solan, M., Paterson, D. M., Buck, A. L., and Pomfret, J. R., 5, 61–70, ISBN 1353-6168, 2003.
Defina, A.: Two-dimensional shallow flow equations for partially dry areas,
Water Resour. Res., 36, 3251–3264, https://doi.org/10.1029/2000WR900167, 2000.
De Haas, T., Pierik, H., Van der Spek, A., Cohen, K., Van Maanen, B., and
Kleinhans, M.: Holocene evolution of tidal systems in The Netherlands:
Effects of rivers, coastal boundary conditions, ecoengineering species,
inherited relief and human interference, Earth-Sci. Rev., 177,
139–163, https://doi.org/10.1016/j.earscirev.2017.10.006, 2018.
Dickhudt, P. J., Friedrichs, C. T., Schaffner, L. C., and Sanford, L. P.:
Spatial and temporal variation in cohesive sediment erodibility in the York
River estuary, eastern USA: A biologically influenced equilibrium modified
by seasonal deposition, Mar. Geol., 267, 128–140,
https://doi.org/10.1016/j.margeo.2009.09.009, 2009.
Donadi, S., van der Heide, T., van der Zee, E. M., Eklof, J. S., van de
Koppel, J., Weerman, E. J., Piersma, T., Olff, H., and Eriksson, B. K.:
Cross-habitat interactions among bivalve species control community structure
on intertidal flats, Ecology, 94, 489–498, https://doi.org/10.1890/12-0048.1, 2013.
Droppo, I. G., Ross, N., Skafel, M., and Liss, S. N.: Biostabilisation of
cohesive sediment beds in a freshwater wave-dominated environment, Limnol.
Oceanogr., 52, 577–589, https://doi.org/10.4319/lo.2007.52.2.0577, 2007.
Fang, H. W., Shang, Q. Q., Chen, M. H., and He, G. J.: Changes in the
critical erosion velocity for sediment colonized by biofilm, Sedimentology,
61, 648–659, https://doi.org/10.1111/sed.12065, 2014.
Fang, H. W., Fazeli, M., Cheng, W., and Dey, S.: Transport of biofilm-coated
sediment particles, J. Hydraul. Res., 54, 631–645,
https://doi.org/10.1080/00221686.2016.1212938, 2016.
Fang, H. W., Lai, H. J., Cheng, W., Huang, L., and He, G. J.: Modeling
sediment transport with an integrated view of the biofilm effects, Water
Resour. Res., 53, 7536–7557, https://doi.org/10.1002/2017WR020628,
2017.
Friend, P. L., Ciavola, P., Cappucci, S., and Santos, R.: Biodependent bed
parameters as a proxy tool for sediment stability in mixed habitat
intertidal areas, Cont. Shelf Res., 23, 1899–1917,
https://doi.org/10.1016/j.csr.2002.12.001, 2003.
Friend, P. L., Lucas, C. H., Holligan, P. M., and Collins, M. B.: Microalgal
mediation of ripple mobility, Geobiology, 6, 70–82, https://doi.org/10.1111/j.1472-4669.2007.00108.x, 2008.
Grabowski, R. C., Droppo, I. G., and Wharton, G.: Erodibility of cohesive
sediment: The importance of sediment properties, Earth-Sci. Rev.,
105, 101–120, https://doi.org/10.1016/j.earscirev.2011.01.008, 2011.
Guarini, J.-M., Blanchard, G. F., Gros, P., Gouleau, D., and Bacher, C.: Dynamic model
of the short-term variability of microphytobentic biomass on temperate
intertidal mudflats, Mar. Ecol.-Prog. Ser., 195, 291–303,
https://doi.org/10.3354/meps195291, 2000.
Hakvoort, J. H. M., Heineke, M., Heymann, K., Kühl, H., Riethmüller,
R., and Witte, G.: A basis for mapping the erodibility of tidal flats by
optical remote sensing, Mar. Freshwater Res., 49, 867–873,
https://doi.org/10.1071/MF97090, 1998.
Haro, S., Jesus, B., Oiry, S., Papaspyrou, S., Lara, M., González, C.
J., and Corzo, A.: Microphytobenthos spatio-temporal dynamics across an
intertidal gradient using Random Forest classification and Sentinel-2
imagery, Sci. Total Environ., 804, 149983,
https://doi.org/10.1016/j.scitotenv.2021.149983, 2022.
Hillebrand, H. and Sommer, U.: Response of epilithic microphytobenthos of
the western Baltic Sea to in situ experiments with nutrient enrichment,
Mar. Ecol.-Prog. Ser., 160, 35–46,
https://doi.org/10.3354/meps160035, 1997.
Hillebrand, H., Worm, B., and Lotze, H.: Marine microbenthic community
structure regulated by nitrogen loading and grazing pressure, Mar. Ecol.-Prog. Ser., 204, 27–38,
https://doi.org/10.3354/meps204027, 2000.
Hirano, M.: River-bed degradation with armoring, Proceedings of the Japan
Society of Civil Engineers, 1971, 55–65,
https://doi.org/10.2208/jscej1969.1971.195_55, 1971.
Hohl, S. V. and Viehmann, S.: Stromatolites as geochemical archives to
reconstruct microbial habitats through deep time: Potential and pitfalls of
novel radiogenic and stable isotope systems, Earth-Sci. Rev., 218,
103683, https://doi.org/10.1016/j.earscirev.2021.103683, 2021.
Hope, J. A., Paterson, D. M., and Thrush, S. F.: The role of
microphytobenthos in soft-sediment ecological networks and their
contribution to the delivery of multiple ecosystem services, J.
Ecol., 108, 815–830, https://doi.org/10.1111/1365-2745.13322, 2019.
Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., Parsons, D. R.,
Manning, A. J., Bass, S. J., Lichtman, I. D., Thorne, P. D., Ye, L., and
Paterson, D. M.: Interactions between sediment microbial ecology and
physical dynamics drive heterogeneity in contextually similar depositional
systems, Limnol. Oceanogr., 65, 2403–2419,
https://doi.org/10.1002/lno.11461, 2020.
Katz, S., Segura, C., and Warren, D.: The influence of channel bed
disturbance on benthic Chlorophyll a: A high resolution perspective,
Geomorphology, 305, 141–153, https://doi.org/10.1016/j.geomorph.2017.11.010, 2018.
Kent, A. G., Garcia, C. A., and Martiny, A. C.: Increased biofilm formation
due to high-temperature adaptation in marine Roseobacter, Nat.
Microbiol., 3, 989–995, https://doi.org/10.1038/s41564-018-0213-8,
2018.
Koh, C. H., Khim, J. S., Araki, H., Yamanishi, H., and Kenichi, K.: Within-day
and seasonal patterns of microphytobenthos biomass determined by
co-measurement of sediment and water column chlorophylls in the intertidal
mudflat of nanaura, Estuar. Coast. Shelf S., 72, 42–52,
https://doi.org/10.1016/j.ecss.2006.10.005, 2007.
Labiod, C., Godillot, R., and Caussadea, B.: The relationship between stream
periphyton dynamics and near-bed turbulence in rough open-channel flow,
Ecol. Model., 209, 78–96, https://doi.org/10.1016/j.ecolmodel.2007.06.011,
2007.
Lanuru, M., Riethmuller, R., van Bernem, C., and Heymann, K.: The effect of
bedforms (crest and trough systems) on sediment erodibility on a
back-barrier tidal flat of the East Frisian Wadden Sea, Germany, Estuar.
Coast. Shelf S., 72, 603–614, https://doi.org/10.1016/j.ecss.2006.11.009,
2007.
Lanzoni, S. and Seminara, G.: Long-term evolution and morphodynamic
equilibrium of tidal channels, J. Geophys. Res., 107, 3001,
https://doi.org/10.1029/2000JC000468, 2002.
Le Hir, P., Monbet, Y., and Orvain, F.: Sediment erodability in sediment
transporti modeling: can we account for biota effects?, Cont. Shelf
Res., 27, 1116–1143, https://doi.org/10.1016/j.csr.2005.11.016, 2007.
Lubarsky, H. V., Hubas, C., Chocholek, M., Larson, F., Manz, W., Paterson,
D. M., and Gerbersdorf, S.: The stabilisation potential of individual and
mixed assemblages of natural bacteria and microalgae, PLoS ONE, 5, e13794,
https://doi.org/10.1371/journal.pone.0013794, 2010.
MacIntyre, H., Geider, R., and Miller, D.: Microphytobenthos: The Ecological
Role of the “Secret Garden” of Unvegetated, Shallow-Water Marine Habitats.
I. Distribution, Abundance and Primary Production, Estuar. Coast., 19,
186–201, https://doi.org/10.2307/1352224, 1996.
Majdi, N., Uthoff, J., Traunspurger, W., Laffaille, P., and Maire, A.:
Effect of water warming on the structure of biofilm-dwelling communities,
Ecol. Indic., 117, 106622,
https://doi.org/10.1016/j.ecolind.2020.106622, 2020.
Malarkey, J., Baas, J. H., Hope, J. A., Aspden, R. J., Parsons, D. R., Peakall,
J., Paterson, D. M., Schindler, R. J., Ye, L., Lichtman, L. D., Bass, S. J.,
Davies, A. G., Manning, A. J., and Thorne, P. D.: The pervasive role of
biological cohesion in bedform development, Nat. Commun., 6, 6257,
https://doi.org/10.1038/ncomms7257, 2015.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.:
Biologically-controlled multiple equilibria of tidal landforms and the fate
of the Venice lagoon, Geophys. Res. Lett., 34, L11402,
https://https://doi.org/10.1029/2007GL030178, 2007.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.: The
importance of being coupled: Stable states and catastrophic shifts in tidal
biomorphodynamics, J. Geophys. Res.-Earth, 115, F04004,
https://doi.org/10.1029/2009JF001600, 2010.
Marcarelli, A. M., Bechtold, H. A., Rugenski, A. T., and Inouye, R. S.:
Nutrient limitation of biofilm biomass and metabolism in the Upper Snake
River basin, southeast Idaho, USA, Hydrobiologia, 620, 63–76,
https://doi.org/10.1007/s10750-008-9615-6, 2008.
Mariotti, G. and Canestrelli, A.: Long-term morphodynamics of muddy
backbarrier basins: Fill in or empty out?, Water Resour. Res., 53,
7029–7054, https://doi.org/10.1002/2017wr020461, 2017.
Mariotti, G. and Fagherazzi, S.: Modeling the effect of tides and waves on
benthic biofilms, J. Geophys. Res., 117, G04010,
https://doi.org/10.1029/2012JG002064, 2012.
Meire, P., Ysebaert, T., Van Damme, S., Van den Bergh, E., Maris, T., and
Struyf, E.: The Scheldt estuary: A description of a changing ecosystem,
Hydrobiologia, 540, 1–11, https://doi.org/10.1007/s10750-005-0896-8, 2005.
Méléder, V., Savelli, R., Barnett, A., Polsenaere, P., Gernez, P.,
Cugier, P., Lerouxel, A., Le Bris, A., Dupuy, C., Le Fouest, V., and Lavaud, J.:
Mapping the Intertidal Microphytobenthos Gross Primary Production Part
I: Coupling Multispectral Remote Sensing and Physical Modeling, Front.
Mar. Sci., 7, 521, https://doi.org/10.3389/fmars.2020.00520, 2020.
Montani, S., Magni, P., and Abe, N.: Seasonal and interannual patterns of
intertidal microphytobenthos in combination with laboratory and areal
production estimates, Mar. Ecol.-Prog. Ser., 249, 79–91,
https://doi.org/10.3354/meps249079, 2003.
Montserrat, F., Van Colen, C., Degraer, S., Ysebaert, T., and Herman, P.:
Benthic community-mediated sediment dynamics, Mar. Ecol.-Prog. Ser., 372, 43–59, https://doi.org/10.3354/meps07769, 2008.
Murray, F., Douglas, A., and Solan, M.: Species that share traits do not
necessarily form distinct and universally applicable functional effect
groups, Mar. Ecol.-Prog. Ser., 516, 23–34,
https://doi.org/10.3354/meps11020, 2014.
Noffke, N.: Turbulent lifestyle: microbial mats on Earth's sandy beaches –
today and 3 billion years ago, GSA Today, 18, 4–9,
https://doi.org/10.1130/GSATG7A.1, 2008.
Noffke, N., Christian, D., Wacey, D., and Hazen, R. M.: Microbially induced
sedimentary structures recording an ancient ecosystem in the ca. 3.48
billion-year-old Dresser Formation, Pilbara, Western Australia, Astrobiology,
13, 1103–1124, https://doi.org/10.1089/ast.2013.1030, 2013.
Orvain, F., Guizien, K., Lefebvre, S., Bréret, M., and Dupuy, C.:
Relevance of macrozoobenthic grazers to understand the dynamic behavior of
sediment erodibility and microphytobenthos resuspension in sunny summer
conditions, J. Sea Res., 92, 46–55, https://doi.org/10.1016/j.seares.2014.03.004, 2014.
Parsons, D. R., Schindler, R. J., Hope, J. A., Malarkey, J., Baas, J. H.,
Peakall, J., Manning, A. J., Ye, J., Simmons, S., Paterson, D. M., Aspden,
R. J., Bass, S. J., Davies, A. J., Lichtman, I. D., and Thorne, P. D.: The role
of biophysical cohesion on subaqueous bed form size, Geophys. Res.
Lett., 43, 1566–1573, https://doi.org/10.1002/2016GL067667, 2016.
Paterson, D. M.: Short term changes in the erodibility of intertidal
cohesive sediments related to the migratory behavior of epipelic diatoms,
Limnol. Oceanogr., 34, 223–234, https://doi.org/10.4319/LO.1989.34.1.0223, 1989.
Paterson, D. M.: Biological mediation of sediment erodibility: ecology and
physical dynamics, in Cohesive Sediments, edited by: Burt, N., Parker, R.,
Watts, J., Wiley Interscience, New York, 215–230, ISBN 978-3-540-34782-8, 1997.
Paterson, D. M., Yallop, M. L., and George, C.: Spatial variability in sediment erodibility on the island of Texel,
in: Biostabilization of Sediments, edited by: Krumbein, W. E., Paterson, D. M. , and Stal, L., Verlag, Oldenburg, Germany, 107–120, 1994.
Paterson, D. M., Wiltshire, K. H., Miles, A., Blackburn, J., Davidson, I.,
Yates, M. G., McGrorty, S., and Eastwood:, J. A.: Microbiological mediation
of spectral reflectance from intertidal cohesive sediments, Limnol.
Oceanogr., 43, 1207–1221, https://doi.org/10.4319/lo.1998.43.6.1207,
1998.
Paterson, D. M., Tolhurst, T. J., Kelly, J. A., Honeywill, C., de Deckere,
E. M. G. T., Huet, V., Shayler, S. A., Black, K. S., de Brouwer, J., and
Davidson, I.: Variations in sediment properties, Skeffling mudflat, Humber
Estuary, UK, Cont. Shelf Res., 20, 1373–1396,
https://doi.org/10.1016/S0278-4343(00)00028-5, 2000.
Paterson, D. M., Hope J. A., Kenworthy J., Biles C. L., and Gerbersdorf, S.
U.: Form, function and physics: the ecology of biogenic stabilisation,
J. Soil. Sediment.,
18, 3044–3054, https://doi.org/10.1007/s11368-018-2005-4, 2018.
Perkins, R., Honeywill, C., Consalvey, M., Austin, H. A., Tolhurst, T., and
Paterson, D.: Changes in microphytobenthic chlorophyll a and EPS resulting
from sediment compaction due to de-watering: Opposing patterns in
concentration and content, Cont. Shelf Res., 23, 575–586,
https://doi.org/10.1016/S0278-4343(03)00006-2, 2003.
Pinckney, J. L.: A Mini-Review of the Contribution of Benthic Microalgae to
the Ecology of the Continental Shelf in the South Atlantic Bight, Estuar.
Coast., 41, 2070–2078, https://doi.org/10.1007/s12237-018-0401-z, 2018.
Pivato, M., Carniello, L., Gardner, J., Silvestri, S., and Marani, M.: Water
and sediment temperature dynamics in shallow tidal environments: The role of
the heat flux at the sediment-water interface, Adv. Water Resour.,
113, 126–140, https://doi.org/10.1016/j.advwatres.2018.01.009, 2018.
Pivato, M., Carniello, L., Moro, I., and D'Odorico, P.: On the feedback
between water turbidity and microphytobenthos growth in shallow tidal
environments, Earth Surf. Proc. Land., 44, 1192–1206,
https://doi.org/10.1002/esp.4567, 2019.
Posey, M. H., Alphin, T. D., Cahoon, L., Lindquist, D., and Becker, M. E.:
Interactive effects of nutrient additions and predation on interfaunal
communities, Estuaries, 22, 785–792, https://doi.org/10.2307/1353111, 1999.
Pratt, D. R., Pilditch, C. A., Lohrer, A. M., and Thrush, S. F.: The effects
of short-term increases in turbidity on sandflat microphytobenthic
productivity and nutrient fluxes, J. Sea Res., 92, 170–177,
https://doi.org10.1016/j.seares.2013.07.009, 2014.
Riethmüller, R., Heineke, M., Kühl, H., and Keuker-Rüdiger, R.:
Chlorophyll a concentration as an index of sediment surface stabilisation by
microphytobenthos?, Cont. Shelf Res., 20, 1351–1372,
https://doi.org/10.1016/s0278-4343(00)00027-3, 2000.
Righetti, M. and Lucarelli, C.: May the Shields theory be extended to
cohesive and adhesive benthic sediments?, J. Geophys. Res.-Oceans, 112, C05039, https://doi.org/10.1029/2006JC003669, 2007.
Ruddy, G., Turley, C. M., and Junes, T. E. R.: Ecological interaction and
sediment transport on an intertidal mudflat I. Evidence for a biologically
mediated sediment-water interface, in: Sedimentary Processes in the Intertidal Zone, edited by: Black, K. S., Paterson, D. M., and
Cramp, A., Geological
Society, London, Special Publication, 139, 135–148, https://doi.org/10.1144/GSL.SP.1998.139.01.11, 1998.
Savage, C., Thrush, S. F., Lohrer, A. M., and Hewitt, J. E.: Ecosystem services transcend boundaries: estuaries provide resource subsidies and influence functional diversity in coastal benthic communities, PLoS ONE, 7, e42708, https://doi.org/10.1371/journal.pone.0042708, 2012.
Savelli, R., Dupuy, C., Barillé, L., Lerouxel, A., Guizien, K., Philippe, A., Bocher, P., Polsenaere, P., and Le Fouest, V.: On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study, Biogeosciences, 15, 7243–7271, https://doi.org/10.5194/bg-15-7243-2018, 2018.
Savelli, R., Méléder, V., Cugier, P., Polsenaere, P., Dupuy, C.,
Lavaud, J., Barnett, A., and Le Fouest, V.: Mapping the Intertidal
Microphytobenthos Gross Primary Production, Part II: Merging Remote Sensing
and Physical-Biological Coupled Modeling, Front. Mar. Sci., 7, 521,
https://doi.org/10.3389/fmars.2020.00521, 2020.
Schmidt, H., Thom, M., King, L., Wieprecht, S., and Gerbersdorf, S. U.: The
effect of seasonality upon the development of lotic biofilms and microbial
biostabilisation, Freshwater Biol., 61, 963–978,
https://doi.org/10.1111/fwb.12760, 2016.
Schmidt, H., Thom, M., Wieprecht, S., Manz, W., and Gerbersdorf, S. U.: The
effect of light intensity and shear stress on microbial biostabilisation and
the community composition of natural biofilms, Research and Reports in
Biology, 9, 1–16, https://doi.org/10.2147/RRB.S145282, 2018.
Smith, D. J. and Underwood, G. J. C.: The production of extracellular
carbohydrates by estuarine benthic diatoms: the effects of growth phase and
light and dark treatment, J. Phycol., 36, 321–333, 2000.
Seminara, G., Lanzoni, S., Tambroni, N., and Toffolon, M.: How long are
tidal channels?, J. Fluid Mech., 643, 479–494,
https://doi.org/10.1017/S0022112009992308, 2010.
Shang, Q. Q., Fang, H. W., Zhao, H. M., He, G. J., and Cui, Z. H.: Biofilm
effects on size gradation, drag coefficient and settling velocity of
sediment particles, Int. J. Sediment Res., 29,
471–480, https://doi.org/10.1016/S1001-6279(14)60060-3, 2014.
Smith, N. P.: Observations and simulations of water-sediment heat exchange
in a shallow coastal lagoon, Estuaries, 25, 483–487,
https://doi.org/10.1007/BF02695989, 2002.
Sutherland, T. F., Grant, J., and Amos, C. L.: The effect of carbohydrate
production by the diatom Nitzschia curvilineata on the erodibility of
sediment, Limnol. Oceanogr., 43, 65–72,
https://doi.org/10.4319/lo.1998.43.1.0065, 1998.
Tambroni, N., Bolla Pittaluga, M., and Seminara, G.: Laboratory observations
on the morphodynamic evolution of tidal channels and tidal inlets, J.
Geophys. Res., 110, F04009, https://doi.org/10.1029/2004JF000243,
2005.
Thom, M., Schmidt, H., Gerbersdorf, S. U., and Wieprecht, S.: Seasonal
biostabilisation and erosion behavior of fluvial biofilms under different
hydrodynamic and light conditions, Int. J. Sediment
Res., 30, 271–284, https://doi.org/10.1016/j.ijsrc.2015.03.015, 2015.
Thrush, S. F., Hewitt, J. E., and Lohrer, A. M.: Interaction networks in
coastal soft-sediments highlight the potential for change in ecological
resilience, Ecol. Appl., 22, 1213–1223,
https://doi.org/10.2307/23213955, 2012.
Todeschini, I., Toffolon, M., and Tubino, M.: Long-term morphological
evolution of funnel-shape tide-dominated estuaries, J. Geophys. Res., 113,
C05005, https://doi.org/10.1029/2007JC004094, 2008.
Tolhurst, T. J., Black, K. S., Paterson, D. M., Mitchener, H. J., Termaat, G. R., and
Shayler, S. A.: A comparison and measurement standardisation of four
in situ devices for determining the erosion shear stress of intertidal
sediments, Cont. Shelf Res., 20, 1397–1418,
https://doi.org/10.1016/S0278-4343(00)00029-7, 2000a.
Tolhurst, T. J., Riethmüller, R., and Paterson, D. M.: In situ versus
laboratory analysis of sediment stability from intertidal mudflats,
Cont. Shelf Res., 20, 1317–1334,
https://doi.org/10.1016/S0278-4343(00)00025-X 2000b.
Tolhurst, T. J., Gust, G., and Paterson, D. M.: The influence of an
extracellular polymeric substance (EPS) on cohesive sediment stability, Proceed. Mar. Sci., 5, 409–425,
https://doi.org/10.1016/S1568-2692(02)80030-4, 2002.
Tolhurst, T. J., Defew, E. C., de Brouwer, J. F. C., Wolfstein, K., Stal, L.
J., and Paterson, D. M.: Small-scale temporal and spatial variability in the
erosion threshold and properties of cohesive intertidal sediments,
Cont. Shelf Res., 26, 351–362,
https://doi.org/10.1016/j.csr.2005.11.007, 2006.
Tolhurst, T. J., Black, K., and Paterson, D.: Muddy Sediment Erosion:
Insights from Field Studies, J. Hydraul. Eng., 135, 79–89,
https://doi.org/10.1061/(ASCE)0733-9429(2009)135:2(73), 2009.
Uehlinger, U., Buhrer, H., and Reichert, P.: Periphyton dynamics in a
floodprone prealpine river: Evaluation of significant processes by modeling,
Freshwater Biol., 36, 249–263,
https://doi.org/10.1046/j.1365-2427.1996.00082.x, 1996.
Underwood, G. J. C.: Adaptations of tropical marine microphytobenthic
assemblages along a gradient of light and nutrient availability in Suva
Lagoon, Fiji, Eur. J. Phycol., 37, 449–462, 2002.
Underwood, G. J. C. and Paterson, D. M.: Seasonal changes in diatom
biomass, sediment stability and biogenic stabilization in the Severn
Estuary, J. Mar. Biol. Assoc. UK, 73, 871–887, https://doi.org/10.1017/S0025315400034780, 1993.
Underwood, G. J. C., Paterson, D. M., and Parkes, R. J.: The measurement of
microbial carbohydrate exopolymers from intertidal sediments, Limnol.
Oceanogr., 40, 1243–1253, https://doi.org/10.4319/lo.1995.40.7.1243,
1995.
Valentine, K., Mariotti, G., and Fagherazzi, S.: Repeated erosion of cohesive sediments with biofilms, Adv. Geosci., 39, 9–14, https://doi.org/10.5194/adgeo-39-9-2014, 2014.
van de Lageweg, W. I., McLelland, S. J., and Parsons, D. R.: Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate, Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, 2018.
Van de Vijsel, R., van Belzen, J., Bouma, T. J., van der Wal, D., Cusseddu,
V., Purkis, S. J., Rietkerk, M., and van de Koppel, J.: Estuarine biofilm
patterns: Modern analogues for Precambrian self-organization, Earth Surf.
Proc. Land., 45, 1141–1154, https://doi.org/10.1002/esp.4783,
2020.
Vignaga, E., Sloan, D. M., Luo, X., Haynes, H., Phoenix, V. R., and Sloan,
W. T.: Erosion of biofilm-bound fluvial sediments, Nat. Geosci., 6,
770–774, https://doi.org/10.1038/NGEO1891, 2013.
Viparelli, E., Sequeiros, O. E., Cantelli, A., Wilcock, P. R., and Parker,
G.: River morphodynamics with creation/consumption of grain size
stratigraphy 2: numerical model, J. Hydraul. Res., 48,
727–741, https://doi.org/10.1080/00221686.2010.526759, 2010.
Viparelli, E., Borhani, S., Torres, R., and Kendall, C. G. S. C. K.:
Equilibrium of tidal channels carrying nonuniform sand and interacting with
the ocean, Geomorphology, 329, 1–16,
https://doi.org/10.1016/j.geomorph.2018.12.017, 2019.
Walles, B., de Paiva, J. S., van Prooijen, B. C., Ysebaert, T., and Smaal, A.
C.: The Ecosystem Engineer Crassostrea gigas Affects Tidal Flat Morphology
Beyond the Boundary of Their Reef Structures, Estuar. Coast, 38, 941–950,
https://doi.org/10.1007/s12237-014-9860-z, 2015.
Waqas, A., Neumeier, U., and Rochon, A.: Seasonal changes in sediment
erodibility associated with biostabilisation in subarctic intertidal
environment, St. Lawrence Estuary, Canada, Estuar. Coast. Shelf
S., 245, 106935, https://doi.org/10.1016/j.ecss.2020.106935, 2020.
Weerman, E. J., van de Koppel, J., Eppinga, M. B., Montserrat, F., Liu, Q.,
and Herman, P. M. J.: Spatial self-organization on intertidal mudflats
through biophysical stress divergence, Am. Nat., 176,
E15–E32, https://doi.org/10.1086/652991, 2010.
Weerman, E. J., Herman, P. M. J., and Van de Koppel, J.: Top-down control
inhibits spatial self-organization of a patterned landscape, Ecology, 92,
487–495, https://doi.org/10.1890/10-0270.1, 2011a.
Weerman, E., Herman, P., and van de Koppel, J.: Macrobenthos abundance and
distribution on a spatially patterned intertidal flat, Mar. Ecol.-Prog. Ser., 440, 95–103, https://doi.org/10.3354/meps09332, 2011b.
Widdows, J., Brinsley, M. D., Salkeld, P. N., and Lucas, C. H.: Influence of
biota on spatial and temporal variation in sediment erodibility and material
flux on a tidal flat (Westerschelde, The Netherlands), Mar. Ecol.-Prog. Ser., 194, 23–37, https://doi.org/10.3354/meps194023, 2000.
Widdows, J., Friend, P. L., Bale, A. J., Brinsley, M. D., Pope, N. D., and
Thompson, C. E. L.: Inter-comparison between five devices for determining
erodability of intertidal sediments, Cont. Shelf Res., 27,
1174–1189, https://doi.org/10.1016/j.csr.2005.10.006, 2007.
Wood, R. and Widdows, J.: A model of sediment transport over an intertidal
transect, comparing the influences of biological and physical factors,
Limnol. Oceanogr., 47, 848–855,
https:doi.org/10.4319/lo.2002.47.3.0848, 2002.
Yallop, M., de Winder, B., Paterson, D. M., and Stal, L. J.: Comparative
structure, primary production and biogenic stabilization of cohesive and
non-cohesive marine sediments inhabited by microphytobenthos, Estuar.
Coast. Shelf S., 39, 565–582,
https://doi.org/10.1016/S0272-7714(06)80010-7, 1994a.
Yallop, M., de Winder, B., Paterson, D. M., and Stal, L. J.: Comparative
structure, primary production and biogenic stabilization of cohesive and
non-cohesive marine sediments inhabited by microphytobenthos, Estuar.
Coast. Shelf S., 39, 565–582,
https://doi.org/10.1016/S0272-7714(06)80010-7, 1994b.
Zhang, T., Tian, B., Wang, Y., Liu, D., Sun, S., Duan, Y., and Zhou, Y.:
Quantifying seasonal variations in microphytobenthos biomass on estuarine
tidal flats using Sentinel-1/2 data, Sci. Total Environ., 777,
146051, https://doi.org/10.1016/j.scitotenv.2021.146051, 2021.
Zhu, Q., van Prooijen, B. C., Maan, D. C., Wang, Z. B., Yao, P., Daggers,
T., and Yang, S. L.: The heterogeneity of mudflat erodibility,
Geomorphology, 345, 106834, https://doi.org/10.1016/j.geomorph.2019.106834, 2019.
Short summary
Biological activity in shallow tidal environments significantly influence sediment dynamics and morphology. Here, a bio-morphodynamic model is developed that accounts for hydro-climate variations in biofilm development to estimate the effect of biostabilisation on the bed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm under a range of disturbance periodicities and intensities, shaping the channel equilibrium profile.
Biological activity in shallow tidal environments significantly influence sediment dynamics and...