Articles | Volume 10, issue 2
https://doi.org/10.5194/esurf-10-367-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-367-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estuarine morphodynamics and development modified by floodplain formation
Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Lonneke Roelofs
Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Steven A. H. Weisscher
Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Ivar R. Lokhorst
Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Nelen & Schuurmans, Zakkendragershof 34–44, 3511 AE Utrecht, the Netherlands
Lisanne Braat
Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Related authors
Marco Schrijver, Maarten van der Vegt, Gerben Ruessink, and Maarten Kleinhans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1202, https://doi.org/10.5194/egusphere-2025-1202, 2025
Short summary
Short summary
Mid-channel bars in estuaries are important habitats and bird foraging areas. We measured current velocities on and along the tidal flat of an estuarine mid-channel bar. Our analysis shows that the intertidal currents have a much more three-dimensional pattern than those on shore-connected tidal flats. Existing models for tidal flats underestimate flow velocities on the mid-channel bar, which has consequences for sediment transport and morphodynamics.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
Marco Schrijver, Maarten van der Vegt, Gerben Ruessink, and Maarten Kleinhans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1202, https://doi.org/10.5194/egusphere-2025-1202, 2025
Short summary
Short summary
Mid-channel bars in estuaries are important habitats and bird foraging areas. We measured current velocities on and along the tidal flat of an estuarine mid-channel bar. Our analysis shows that the intertidal currents have a much more three-dimensional pattern than those on shore-connected tidal flats. Existing models for tidal flats underestimate flow velocities on the mid-channel bar, which has consequences for sediment transport and morphodynamics.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
Cited articles
Ashmore, P.:
How do gravel-bed rivers braid?, Can. J. Earth Sci., 28, 326–341, 1991. a
Baar, A. W., Boechat Albernaz, M., van Dijk, W. M., and Kleinhans, M. G.:
Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport, Nat. Commun., 10, 4903, https://doi.org/10.1038/s41467-019-12753-x, 2019. a, b
Baptist, M., Babobic, V., Rodriguez Uthurburu, J., Keijzer, M., Uittenbogaard, R., Mynett, A., and Verwey, A.:
On inducing equations for vegetation resistance, J. Hydraul. Res., 45, 1–16, 2006. a
Boechat Albernaz, M., Roelofs, L., Pierik, H. J., and Kleinhans, M. G.:
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodyanmics, Earth Surf. Proc. Land., 45, 3824–3841, https://doi.org/10.1002/esp.5003, 2020. a, b
Bouma, T., van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A., Davies, A., Galvan, C., Hawkins, S., Hoggart, S., Lara, J., Losada, I., Maza, M., Ondiviela, B., Skov, M., Strain, E., Thompson, R., Yang, S., Zanuttigh, B., Zhang, L., and Herman, P.:
Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities and steps to take, Coast. Eng., 87, 147–157, https://doi.org/10.1016/j.coastaleng.2013.11.014, 2014. a
Braat, L., van Kessel, T., Leuven, J. R. F. W., and Kleinhans, M. G.:
Effects of mud supply on large-scale estuary morphology and development over centuries to millennia, Earth Surf. Dynam., 5, 617–652, https://doi.org/10.5194/esurf-5-617-2017, 2017. a, b, c, d
Brown, J. and Davies, A.:
Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport, Geomorphology, 114, 431–439, https://doi.org/10.1016/j.geomorph.2009.08.006, 2010. a, b
Brückner, M., Braat, L., Schwarz, C., and Kleinhans, M.:
What came first, mud or biostabilizers? Elucidating interacting effects in a coupled model of mud, saltmarsh, microphytobenthos and estuarine morphology, Water Resour. Res., 56, e2019WR026945, https://doi.org/10.1029/2019WR026945, 2020. a, b, c, d, e, f, g
Brückner, M. Z., McMahon, W. J., and Kleinhans, M. G.:
Muddying the waters: modeling the effects of early land plants in paleozoic estuaries, Palaios, 36, 173–181, https://doi.org/10.2110/palo.2020.073, 2021. a, b
Dalrymple, R. and Choi, K.:
Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation, Earth-Sci. Rev., 81, 135–174, 2007. a
de Haas, T., Pierik, H., van der Spek, A., Cohen, K., van Maanen, B., and Kleinhans, M.: Long-term evolution of tidal systems: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference, Earth-Sci. Rev., 177, 139–163, https://doi.org/10.1016/j.earscirev.2017.10.006, 2018. a, b, c, d, e, f, g, h
de Haas, T., van der Valk, L., Cohen, K., Pierik, H., Weisscher, S., Hijma, M., van der Spek, A., and Kleinhans, M.:
Long-term evolution of the Old Rhine estuary: Unravelling effects of changing boundary conditions and inherited landscape, Depositional Record, 5, 84–108, https://doi.org/10.1002/dep2.56, 2019. a, b
Dronkers, J.: Convergence of estuarine channels, Cont. Shelf Res., 144, 120–133, https://doi.org/10.1016/j.csr.2017.06.012, 2017. a
FitzGerald, D. M. and Hughes, Z.:
Marsh Processes and Their Response to Climate Change and Sea-Level Rise, Annu. Rev. Earth Pl. Sc., 47, 481–517, https://doi.org/10.1146/annurev-earth-082517-010255, 2019. a
Gran, K. and Paola, C.:
Riparian vegetation controls on braided stream dynamics, Water Resour. Res., 37, 3275–3283, 2001. a
Kirwan, M., Temmerman, S., Skeehan, E., Guntenspergen, G., and Fagherazzi, S.:
Overestimation of marsh vulnerability to sea level rise, Nat. Clim. Change, 6, 253–260, https://doi.org/10.1038/NCLIMATE2909, 2016. a, b
Kleinhans, M., de Vries, B., Braat, L., and van Oorschot, M.:
Living landscapes: muddy and vegetated floodplain effects on fluvial pattern in an incised river, Earth Surf. Proc. Land., 43, 1618–1632, https://doi.org/10.1002/esp.4437, 2018. a, b, c, d
Kleinhans, M. G.: Sorting out river channel patterns, Prog. Phys. Geog., 34, 287–326, https://doi.org/10.1177/0309133310365300, 2010. a
Kleinhans, M. G., van Dijk, W., van de Lageweg, W., Hoyal, D., Markies, H., van Maarseveen, M., Roosendaal, C., van Weesep, W., van Breemen, D., Hoendervoogt, R., and Cheshier, N.:
Quantifiable effectiveness of experimental scaling of river- and delta morphodynamics and stratigraphy, Earth-Sci. Rev., 133, 43–61, https://doi.org/10.1016/j.earscirev.2014.03.001, 2014. a, b
Kleinhans, M. G., Braudrick, C., van Dijk, W., van de Lageweg, W., Teske, R., and van Oorschot, M.:
Swiftness of biomorphodynamics in Lilliput- to Giant-sized rivers and deltas, Geomorphology, 244, 56–73, https://doi.org/10.1016/j.geomorph.2015.04.022, 2015a. a, b
Kleinhans, M. G., Terwisscha van Scheltinga, R., van der Vegt, M., and Markies, H.:
Turning the tide: growth and dynamics of a tidal basin and inlet in experiments, J. Geophys. Res.-Earth, 120, 95–119, https://doi.org/10.1002/2014JF003127, 2015b. a, b
Kleinhans, M. G., van der Vegt, M., Leuven, J., Braat, L., Markies, H., Simmelink, A., Roosendaal, C., van Eijk, A., Vrijbergen, P., and van Maarseveen, M.:
Turning the tide: comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries, Earth Surf. Dynam., 5, 731–756, https://doi.org/10.5194/esurf-5-731-2017, 2017. a, b, c, d
Kleinhans, M. G., Roeelofs, L., Weisscher, S. A. H., Lokhorst, I. R., and Braat, L.: Data supplement to “Estuarine morphodynamics and development modified by floodplain formation”, YODA [data set],
https://doi.org/10.24416/UU01-R3ZUC9, 2021. a, b
Leuven, J., de Haas, T., Braat, L., and Kleinhans, M. G.:
Topographic forcing of tidal sandbar patterns for irregular estuary planforms, Earth Surf. Proc. Land., 43, 172–186, https://doi.org/10.1002/esp.4166, 2018a. a
Leuven, J., Verhoeve, S., Van Dijk, W., Selaković, S., and Kleinhans, M.:
Empirical Assessment Tool for Bathymetry, Flow Velocity and Salinity in Estuaries Based on Tidal Amplitude and Remotely-Sensed Imagery, Remote Sens.-Basel, 10, https://doi.org/10.3390/rs10121915, 2018b. a
Leuven, J. R. F. W., Braat, L., van Dijk, W. M., de Haas, T., van Onselen, E. P., Ruessink, B. G., and Kleinhans, M. G.:
Growing Forced Bars Determine Nonideal Estuary Planform, J. Geophys. Res.-Earth, 123, 2971–2992, https://doi.org/10.1029/2018JF004718, 2018. a, b, c, d
Lokhorst, I. R., Braat, L., Leuven, J. R. F. W., Baar, A. W., van Oorschot, M., Selaković, S., and Kleinhans, M. G.:
Morphological effects of vegetation on the tidal–fluvial transition in Holocene estuaries, Earth Surf. Dynam., 6, 883–901, https://doi.org/10.5194/esurf-6-883-2018, 2018. a, b, c
Lokhorst, I. R., de Lange, S. I., van Buiten, G., Selakovic, S., and Kleinhans, M. G.:
Species selection and assessment of eco-engineering effects of seedlings for biogeomorphological landscape experiments, Earth Surf. Proc. Land., 44, 2922–2935, https://doi.org/10.1002/esp.4702, 2019. a, b, c, d, e, f, g, h, i, j, k, l
Robins, P. and Davies, A.:
Morphological controls in sandy estuaries: the influence of tidal flats and bathymetry on sediment transport, Ocean Dynam., 60, 503–517, https://doi.org/10.1007/s10236-010-0268-4, 2010. a
Savenije, H.:
Prediction in ungauged estuaries: an integrated theory, Water Resour. Res., 51, 2464–2476, https://doi.org/10.1002/2015WR016936, 2015. a
Stark, J., Smolders, S., Meire, P., and Temmerman, S.:
Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary, Estuar. Coast. Shelf S., 198, 138–155, https://doi.org/10.1016/j.ecss.2017.09.004, 2017. a
Swinkels, C., Jeuken, C., Wang, Z., and Nicholls, R.:
Presence of connecting channels in the Western Scheldt Estuary, J. Coastal Res., 25, 627–640, https://doi.org/10.2112/06-0719.1, 2009. a
Tal, M. and Paola, C.: Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments, Earth Surf. Proc. Land., 35, 1014–1028, https://doi.org/10.1002/esp.1908, 2010. a
Tamura, T., Saito, Y., Bateman, M., Nguyen, V., Ta, T., and Matsumoto, D.:
Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta, Mar. Geol., 326–328, 140–153, https://doi.org/10.1016/j.margeo.2012.08.004, 2012. a
van de Lageweg, W., van Dijk, W., and Kleinhans, M.:
Channel belt architecture formed by an experimental meandering river, Sedimentology, 60, 840–859, https://doi.org/10.1111/j.1365-3091.2012.01365.x, 2013. a
van der Spek, A.:
Tidal asymmetry and long-term evolution of Holocene tidal basins in The Netherlands: simulation of palaeo-tides in the Schelde estuary, Mar. Geol., 141, 71–90, 1997. a
van der Wegen, M.: Numerical modeling of the impact of sea level rise on tidal basin morphodynamics, J. Geophys. Res. Earth Surf., 118, 447–460, https://doi.org/10.1002/jgrf.20034, 2013. a
van Dijk, W. M., Van de Lageweg, W. I., and Kleinhans, M. G.:
Formation of a cohesive floodplain in a dynamic experimental meandering river, Earth Surf. Proc. Land., 38, 1550–1565, https://doi.org/10.1002/esp.3400, 2013b. a
van Dijk, W. M., Cox, J. R., Leuven, J. R., Cleveringa, J., Taal, M., Hiatt, M. R., Sonke, W., Verbeek, K., Speckmann, B., and Kleinhans, M. G.:
The vulnerability of tidal flats and multi-channel estuaries to dredging and disposal, Anthropocene Coasts, 4, 36–60, https://doi.org/10.1139/anc-2020-0006, 2021. a, b, c, d, e
van Oorschot, M., Kleinhans, M., Geerling, G., and Middelkoop, H.:
Distinct patterns of interaction between vegetation and morphodynamics, Earth Surf. Proc. Land., 41, 791–808, https://doi.org/10.1002/esp.3864, 2016. a, b
Wang, Z., van Maren, D., Ding, P., Yang, S., van Prooijen, B., de Vet, P., Winterwerp, J., de Vriend, H., Stive, M., and He, Q.:
Human impacts on morphodynamic thresholds in estuarine systems, Cont. Shelf Res., 111, 174–183, https://doi.org/10.1016/j.csr.2015.08.009, 2015. a, b, c, d
Weisscher, S., Van den Hoven, K., Pierik, H., and Kleinhans, M.:
Building and raising land: mud and vegetation effects in infilling estuaries, J. Geophys. Res.-Earth, 127, e2021JF006298, https://doi.org/10.1029/2021JF006298, 2022. a
Weisscher, S. A. H., Shimizu, Y., and Kleinhans, M. G.: Upstream perturbation and floodplain formation effects on chute-cutoff-dominated meandering river pattern and dynamics, Earth Surf. Proc. Land., 44, 2156–2169, https://doi.org/10.1002/esp.4638, 2019. a
Weisscher, S. A. H., Boechat-Albernaz, M., Leuven, J. R. F. W., Van Dijk, W. M., Shimizu, Y., and Kleinhans, M. G.:
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics, Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, 2020. a, b, c
Whitfield, A., Elliott, M., Basset, A., Blaber, S., and West, R.:
Paradigms in estuarine ecology – A review of the Remane diagram with a suggested revised model for estuaries, Estuar. Coast. Shelf S., 97, 78–90, https://doi.org/10.1016/j.ecss.2011.11.026, 2012. a
Ysebaert, T., van der Hoek, D.-J., Wortelboer, R., Wijsman, J. W., Tangelder, M., and Nolte, A.:
Management options for restoring estuarine dynamics and implications for ecosystems: A quantitative approach for the Southwest Delta in the Netherlands, Ocean Coast. Manage., 121, 33–48, https://doi.org/10.1016/j.ocecoaman.2015.11.005, 2016. a
Zhou, Z., Coco, G., Jimenez, M., Olabarrieta, M., van der Wegen, M., and Townend, I.:
Morphodynamics of river-influenced back-barrier tidal basins: The role of landscape and hydrodynamic settings, Water Resour. Res., 50, 9514–9535, https://doi.org/10.1002/2014WR015891, 2014. a
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and...