Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Silvan Ragettli
CORRESPONDING AUTHOR
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Tabea Donauer
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Peter Molnar
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Ron Delnoije
Caritas Switzerland, Bamako, Mali
Tobias Siegfried
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Institute of Science, Technology and Policy, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Wenyue Zou, Ruidong Li, Daniel B. Wright, Jovan Blagojevic, Peter Molnar, Mohammad A. Hussain, Yue Zhu, Yongkun Li, Guangheng Ni, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4099, https://doi.org/10.5194/egusphere-2025-4099, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present a framework using observed rainfall and temperature to generate realistic storms and simulate street-scale flooding for present and future climates. It integrates temperature-based rainfall scaling, storm-frequency estimation, and urban flood modeling, demonstrated in Beijing to assess changes in regional storm and flood depth, timing, and flow velocity. The workflow is data-light, physically grounded, and transferable worldwide.
Amber van Hamel, Peter Molnar, Joren Janzing, and Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 29, 2975–2995, https://doi.org/10.5194/hess-29-2975-2025, https://doi.org/10.5194/hess-29-2975-2025, 2025
Short summary
Short summary
Suspended sediment is a natural component of rivers, but extreme suspended sediment concentrations (SSCs) can have negative impacts on water use and aquatic ecosystems. We identify the main factors influencing the spatial and temporal variability of annual SSC regimes and extreme SSC events. Our analysis shows that different processes are more important for annual SSC regimes than for extreme events and that compound events driven by glacial melt and high-intensity rainfall led to the highest SSCs.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025, https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary
Short summary
In this study, we implement a climate, water, and crop interaction model to evaluate current conditions and project future changes in rainwater availability and its yield potential, with the goal of informing adaptation policies and strategies in Ethiopia. Although climate change is likely to increase rainfall in Ethiopia, our findings suggest that water-scarce croplands in Ethiopia are expected to face reduced crop yields during the main growing season due to increases in temperature.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elena Leonarduzzi and Peter Molnar
Nat. Hazards Earth Syst. Sci., 20, 2905–2919, https://doi.org/10.5194/nhess-20-2905-2020, https://doi.org/10.5194/nhess-20-2905-2020, 2020
Short summary
Short summary
Landslides are a natural hazard that affects alpine regions. Here we focus on rainfall-induced shallow landslides and one of the most widely used approaches for their predictions: rainfall thresholds. We design several comparisons utilizing a landslide database and rainfall records in Switzerland. We find that using daily rather than hourly rainfall might be a better option in some circumstances, and mean annual precipitation and antecedent wetness can improve predictions at the regional scale.
Cited articles
Albergel, J.: Sécheresse, désertification et resources en eau de
surface – application aux petits bassins du Burkina Faso, IAHS-AISH
publication, 168, 355–365, https://iahs.info/uploads/dms/iahs_168_0355.pdf (last access: 23 July 2022), 1987. a
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of
saturation vapor pressure, J. Appl. Meteorol., 35, 601–609,
https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. a
Amogu, O.: La dégradation des espaces sahéliens et ses
conséquences sur l'alluvionnement du fleuve Niger moyen, Ph.D. thesis,
Université Joseph Fourier Grenoble 1, 425 p., https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010046965.pdf, (last access: 23 July 2022), 2009. a
Amogu, O., Descroix, L., Yéro, K. S., Breton, E. L., Mamadou, I., Ali,
A., Vischel, T., Bader, J. C., Moussa, I. B., Gautier, E., Boubkraoui, S.,
and Belleudy, P.: Increasing river flows in the Sahel?, Water
(Switzerland), 2, 170–199, https://doi.org/10.3390/w2020170, 2010. a
Armon, M., Dente, E., Shmilovitz, Y., Mushkin, A., Cohen, T. J., Morin, E., and
Enzel, Y.: Determining Bathymetry of Shallow and Ephemeral Desert Lakes
Using Satellite Imagery and Altimetry, Geophys. Res. Lett., 47,
1–9, https://doi.org/10.1029/2020GL087367, 2020. a, b
Asfaw, W., Haile, A. T., and Rientjes, T.: Combining multisource satellite
data to estimate storage variation of a lake in the Rift Valley Basin,
Ethiopia, In. J. Appl. Earth Obs., 89, 102095, https://doi.org/10.1016/j.jag.2020.102095, 2020. a
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017. a
Bodian, A., Diop, L., Panthou, G., Dacosta, H., Deme, A., Dezetter, A., Ndiaye,
P. M., Diouf, I., and Visch, T.: Recent trend in hydroclimatic conditions in
the Senegal River basin, Water (Switzerland), 12, 1–12,
https://doi.org/10.3390/w12020436, 2020. a
Brouwer, J., Abdoul Kader, H. A., and Sommerhalter, T.: Wetlands help
maintain wetland and dryland biodiversity in the Sahel, but that role is
under threat: An example from 80 years of changes at Lake Tabalak in Niger,
Biodiversity, 15, 203–219, https://doi.org/10.1080/14888386.2014.934714, 2014. a
Buma, W. G., Lee, S. I., and Seo, J. Y.: Recent surface water extent of lake
Chad from multispectral sensors and GRACE, Sensors (Switzerland), 18, 7,
https://doi.org/10.3390/s18072082, 2018. a
Coe, M. T. and Foley, J. A.: Human and natural impacts on the water resources
of the Lake Chad basin, J. Geophys. Res.-Atmos., 106,
3349–3356, https://doi.org/10.1029/2000JD900587, 2001. a
Crétaux, J. F. and Birkett, C.: Lake studies from satellite radar
altimetry, Comptes Rendus-Geoscience, 338, 1098–1112,
https://doi.org/10.1016/j.crte.2006.08.002, 2006. a
Crétaux, J. F., Abarca-del Río, R., Bergé-Nguyen, M., Arsen,
A., Drolon, V., Clos, G., and Maisongrande, P.: Lake Volume Monitoring from
Space, Surv. Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6,
2016. a
Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P., and
Nguyen, C. C.: Rain-use-efficiency: What it tells us about the conflicting
sahel greening and sahelian paradox, Remote Sens., 6, 3446–3474,
https://doi.org/10.3390/rs6043446, 2014. a
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020. a
Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E.,
Olivry, J. C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R.,
Diedhiou, A., Le Breton, E., Mamadou, I., and Sighomnou, D.:
Spatio-temporal variability of hydrological regimes around the boundaries
between Sahelian and Sudanian areas of West Africa: A synthesis, J.
Hydrol., 375, 90–102, https://doi.org/10.1016/j.jhydrol.2008.12.012, 2009. a, b
DNEF/PAZU: Plan d'aménagement de gestion du Lac Wégnia – Projet
“Eco-Lac Wégnia”, Tech. rep., Ministère de l'Environnement, de
l'Assainissement et du Développement Durable, Direction Nationale des
Eaux et Forêts, Bamako, 48 p., 2018. a
Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., and van de Giesen,
N.: A 30 m resolution surfacewater mask including estimation of positional
and thematic differences using landsat 8, SRTM and OPenStreetMap: A case
study in the Murray-Darling basin, Australia, Remote Sens., 8, 5,
https://doi.org/10.3390/rs8050386, 2016. a, b
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain,
N., and Leduc, C.: Land clearing, climate variability, and water resources
increase in semiarid southwest Niger: A review, Water Resour. Res.,
45, 1–18, https://doi.org/10.1029/2007WR006785, 2009. a
Fowe, T., Karambiri, H., Paturel, J. E., Poussin, J. C., and Cecchi, P.: Water
balance of small reservoirs in the Volta basin: A case study of Boura
reservoir in Burkina Faso, Agr. Water Manage., 152, 99–109,
https://doi.org/10.1016/j.agwat.2015.01.006, 2015. a, b, c
Frappart, F., Hiernaux, P., Guichard, F., Mougin, E., Kergoat, L., Arjounin,
M., Lavenu, F., Koité, M., Paturel, J. E., and Lebel, T.: Rainfall
regime across the Sahel band in the Gourma region, Mali, J. Hydrol., 375, 128–142, https://doi.org/10.1016/j.jhydrol.2009.03.007, 2009. a
Gal, L., Grippa, M., Hiernaux, P., Pons, L., and Kergoat, L.: The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model, Hydrol. Earth Syst. Sci., 21, 4591–4613, https://doi.org/10.5194/hess-21-4591-2017, 2017. a, b, c
Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., and Lettenmaier, D. P.: On
the causes of the shrinking of Lake Chad, Environ. Res. Lett., 6, 3,
https://doi.org/10.1088/1748-9326/6/3/034021, 2011. a, b, c
Gardelle, J., Hiernaux, P., Kergoat, L., and Grippa, M.: Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali), Hydrol. Earth Syst. Sci., 14, 309–324, https://doi.org/10.5194/hess-14-309-2010, 2010. a
Gilbert, R. O.: Statistical methods for environmental pollution monitoring,
New York, John Wiley & Sons, ISBN 9780471288787, 1987. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
2017. a
Guo, D., Westra, S., and Maier, H. R.: An R package for modelling actual,
potential and reference evapotranspiration, Environ. Modell. Softw., 78, 216–224, https://doi.org/10.1016/j.envsoft.2015.12.019, 2016. a
Haas, E. M., Bartholomé, E., and Combal, B.: Time series analysis of
optical remote sensing data for the mapping of temporary surface water bodies
in sub-Saharan western Africa, J. Hydrol., 370, 52–63,
https://doi.org/10.1016/j.jhydrol.2009.02.052, 2009. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,
J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Heygster, G., Dannenberg, J., and Notholt, J.: Topographic mapping of the
german tidal flats analyzing SAR images with the waterline method, IEEE
T. Geosci. Remote, 48, 1019–1030,
https://doi.org/10.1109/TGRS.2009.2031843, 2010. a
Karambiri, H., Ribolzi, O., Delhoume, J. P., Ducloux, J., Coudrain-Ribstein,
A., and Casenave, A.: Importance of soil surface characteristics on water
erosion in a small grazed Sahelian catchment, Hydrol. Process., 17,
1495–1507, https://doi.org/10.1002/hyp.1195, 2003. a
Kendall, M.: Rank Correlation Methods, Charles Griffin, London, 202 p., ISBN 9780852641996, 1975. a
Kwang, C., Jnr, E. M. O., and Amoah, A. S.: Comparing of Landsat 8 and
Sentinel 2A using Water Extraction Indexes over Volta River, J.
Geogr. Geol., 10, 1, https://doi.org/10.5539/jgg.v10n1p1, 2017. a
Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., and
Cappelaere, B.: Land clearance and hydrological change in the Sahel: SW
Niger, Global Planet. Change, 61, 135–150,
https://doi.org/10.1016/j.gloplacha.2007.08.011, 2008. a
Lemoalle, J., Bader, J. C., Leblanc, M., and Sedick, A.: Recent changes in
Lake Chad: Observations, simulations and management options (1973–2011),
Global Planet. Change, 80–81, 247–254,
https://doi.org/10.1016/j.gloplacha.2011.07.004, 2012. a
Li, Z., Heygster, G., and Notholt, J.: Intertidal topographic maps and
morphological changes in the German Wadden Sea between 1996–1999 and
2006–2009 from the waterline method and SAR images, IEEE J. Sel.
Top. Appl., 7, 3210–3224, https://doi.org/10.1109/JSTARS.2014.2313062, 2014. a
Ma, Y., Xu, N., Sun, J., Wang, X. H., Yang, F., and Li, S.: Estimating water
levels and volumes of lakes dated back to the 1980s using Landsat imagery and
photon-counting lidar datasets, Remote Sens. Environ., 232,
111287, https://doi.org/10.1016/j.rse.2019.111287, 2019. a, b, c
Mahmood, R. and Jia, S.: Assessment of hydro-climatic trends and causes of
dramatically declining stream flow to Lake Chad, Africa, using a hydrological
approach, Sci. Total Environ., 675, 122–140,
https://doi.org/10.1016/j.scitotenv.2019.04.219, 2019. a, b
Markert, K. N., Markert, A. M., Mayer, T., Nauman, C., Haag, A., Poortinga, A.,
Bhandari, B., Thwal, N. S., Kunlamai, T., Chishtie, F., Kwant, M.,
Phongsapan, K., Clinton, N., Towashiraporn, P., and Saah, D.: Comparing
Sentinel-1 surface water mapping algorithms and radiometric terrain
correction processing in southeast Asia utilizing Google Earth Engine,
Remote Sens., 12, 1–20, https://doi.org/10.3390/RS12152469, 2020. a
Mason, D. C., Davenport, I. J., Robinson, G. J., Flather, R. A., and McCartney,
B. S.: Construction of an inter‐tidal digital elevation model by the
‘Water‐Line' Method, Geophys. Res. Lett., 22, 3187–3190,
https://doi.org/10.1029/95GL03168, 1995. a
Mason, D. C., Amin, M., Davenport, I. J., Flather, R. A., Robinson, G. J., and
Smith, J. A.: Measurement of recent intertidal sediment transport in
Morecambe Bay using the waterline method, Estuarine, Coastal and Shelf
Science, 49, 427–456, https://doi.org/10.1006/ecss.1999.0508, 1999. a
Militino, A. F., Montesino-SanMartin, M., Pérez-Goya, U., and Ugarte,
M. D.: Using RGISTools to estimate water levels in reservoirs and lakes,
Remote Sens., 12, 1–19, https://doi.org/10.3390/rs12121934, 2020. a
Nguyen, M. D., Baez-Villanueva, O. M., Bui, D. D., Nguyen, P. T., and Ribbe,
L.: Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought
Prone Areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon),
Remote Sens., 12, 1–18, https://doi.org/10.3390/rs12020281, 2020. a, b
Nippes, K. R.: Sedimentation in shallow depressions – A case study of Lake
Magui, Western Mali/West Africa, GeoJournal, 9, 335–341,
https://doi.org/10.1007/BF00171597, 1984. a
Nouaceur, Z. and Murarescu, O.: Rainfall variability and trend analysis of
rainfall in west Africa (Senegal, Mauritania, Burkina Faso), Water
(Switzerland), 12, 6, https://doi.org/10.3390/W12061754, 2020. a
Otsu, N.: A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern., SMC-9, 62–66, https://doi.org/10.1109/tsmc.1979.4310076, 1979. a
Oyebande, L. and Odunuga, S.: Climate Change Impact on Water Resources at the
Transboundary Level in West Africa: The Cases of the Senegal, Niger and Volta
Basins, The Open Hydrology Journal, 4, 163–172,
https://doi.org/10.2174/1874378101004010163, 2013. a
Panthou, G., Vischel, T., and Lebel, T.: Recent trends in the regime of
extreme rainfall in the Central Sahel, Int. J. Climatol.,
34, 3998–4006, https://doi.org/10.1002/joc.3984, 2014. a
Papa, F., Crétaux, J. F., Grippa, M., Robert, E., Trigg, M., Tshimanga,
R. M., Kitambo, B., Paris, A., Carr, A., Fleischmann, A. S., de Fleury, M.,
Gbetkom, P. G., Calmettes, B., and Calmant, S.: Water Resources in Africa
under Global Change: Monitoring Surface Waters from Space, Surv. Geophys., 1–51, https://doi.org/10.1007/s10712-022-09700-9, 2022. a
Penman, H. L.: Natural evaporation from open water, hare soil and grass,
Proceedings of the Royal Society of London, Series A, Mathematical and
physical sciences, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948. a, b
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and
Crétaux, J. F.: The Lake Chad hydrology under current climate change,
Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-62417-w, 2020. a, b
Ragettli, S., Donauer, T., and Siegfried, T.: wegnia-sb [Google Earth Engine Application], https://hydrosolutions.users.earthengine.app/view/wegnia-sb (last access: 23 July 2022), 2022a. a
Ragettli, S., Donauer, T., and Siegfried, T.: GEE-SedimentBalance, Zenodo [code], https://doi.org/10.5281/zenodo.6833034, 2022b. a
Robert, E., Kergoat, L., Soumaguel, N., Merlet, S., Martinez, J. M., Diawara,
M., and Grippa, M.: Analysis of suspended particulate matter and its drivers
in Sahelian Ponds and Lakes by remote sensing (landsat and MODIS): Gourma
Region, Mali, Remote Sens., 9, 12, https://doi.org/10.3390/rs9121272, 2017. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, Bull. Am. Meteor. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Ryu, J. H., Kim, C. H., Lee, Y. K., Won, J. S., Chun, S. S., and Lee, S.:
Detecting the intertidal morphologic change using satellite data,
Estuarine, Coastal and Shelf Science, 78, 623–632,
https://doi.org/10.1016/j.ecss.2008.01.020, 2008. a
Salameh, E., Frappart, F., Almar, R., Baptista, P., Heygster, G., Lubac, B.,
Raucoules, D., Almeida, L. P., Bergsma, E. W., Capo, S., De Michele, M. D.,
Idier, D., Li, Z., Marieu, V., Poupardin, A., Silva, P. A., Turki, I., and
Laignel, B.: Monitoring Beach Topography and Nearshore Bathymetry Using
Spaceborne Remote Sens.: A Review, Remote Sens., 11, 19,
https://doi.org/10.3390/rs11192212, 2019. a, b
Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M., and Schüth,
C.: Climate change or irrigated agriculture – what drives the water level
decline of Lake Urmia, Sci. Rep., 10, 1–10,
https://doi.org/10.1038/s41598-019-57150-y, 2020. a
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968. a, b
Soti, V., Puech, C., Lo Seen, D., Bertran, A., Vignolles, C., Mondet, B., Dessay, N., and Tran, A.: The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal), Hydrol. Earth Syst. Sci., 14, 1449–1464, https://doi.org/10.5194/hess-14-1449-2010, 2010. a
Storey, J., Roy, D. P., Masek, J., Gascon, F., Dwyer, J., and Choate, M.: A
note on the temporary misregistration of Landsat-8 Operational Land Imager
(OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery, Remote Sens.
Environ., 186, 121–122, https://doi.org/10.1016/j.rse.2016.08.025, 2016. a
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression
Analysis, I–II, Proc. Kon. Ned. Akad. v. Wetensch. A., 53, 386–392,
521–525, 1397–1412, 1950. a
Touré Halimatou, A., Kalifa, T., and Kyei-Baffour, N.: Assessment of
changing trends of daily precipitation and temperature extremes in Bamako and
Ségou in Mali from 1961–2014, Weather and Climate Extremes, 18,
8–16, https://doi.org/10.1016/j.wace.2017.09.002, 2017. a
van de Giesen, N., Hut, R., and Selker, J.: The Trans-African
Hydro-Meteorological Observatory (TAHMO), Wiley Interdisciplinary Reviews-Water, 1, 341–348, https://doi.org/10.1002/wat2.1034, 2014. a
Vandemeulebrouck, P., Fauchet, J.-S., and Dufour, S.: Production de
données photogrammétriques pour la création de
données topographiques et d'une orthomosaïque de haute
précision; Lac Wegnia – Mali, Tech. rep., Sylvatrop Consulting,
Conakry, Guinea, 23 p., 2019. a
Weekley, D. and Li, X.: Tracking Multidecadal Lake Water Dynamics with Landsat
Imagery and Topography/Bathymetry, Water Resour. Res., 55, 8350–8367,
https://doi.org/10.1029/2019WR025500, 2019. a, b, c
Xu, H.: Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery, Int. J.
Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006. a
Xu, N., Ma, Y., Zhang, W., Wang, X. H., Yang, F., and Su, D.: Monitoring
annual changes of lake water levels and volumes over 1984–2018 using
landsat imagery and ICESat-2 data, Remote Sens., 12, 1–22,
https://doi.org/10.3390/rs12234004, 2020. a
Xu, Z., jin Kim, D., Kim, S. H., Cho, Y. K., and Lee, S. G.: Estimation of
seasonal topographic variation in tidal flats using waterline method: A case
study in Gomso and Hampyeong Bay, South Korea, Estuarine, Coastal and Shelf
Science, 183, 213–220, https://doi.org/10.1016/j.ecss.2016.10.026, 2016. a
Yang, X., Chen, Y., and Wang, J.: Combined use of Sentinel-2 and Landsat 8 to
monitor water surface area dynamics using Google Earth Engine, Remote Sens. Lett., 11, 687–696, https://doi.org/10.1080/2150704X.2020.1757780, 2020. a, b
Yue, H. and Liu, Y.: Variations in the lake area, water level, and water
volume of Hongjiannao Lake during 1986–2018 based on Landsat and ASTER GDEM
data, Environ. Monit. Assess., 191, 10,
https://doi.org/10.1007/s10661-019-7715-6, 2019. a
Zhu, W., Yan, J., and Jia, S.: Monitoring recent fluctuations of the southern
pool of lake chad using multiple remote sensing data: Implications for water
balance analysis, Remote Sens., 9, 10, https://doi.org/10.3390/rs9101032, 2017. a
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
This paper presents a novel methodology to identify and quantitatively analyze deposition and...