Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Silvan Ragettli
CORRESPONDING AUTHOR
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Tabea Donauer
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Peter Molnar
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Ron Delnoije
Caritas Switzerland, Bamako, Mali
Tobias Siegfried
hydrosolutions Ltd., Venusstrasse 29, 8050 Zurich, Switzerland
Institute of Science, Technology and Policy, ETH Zurich, Zurich, Switzerland
Related authors
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-37, https://doi.org/10.5194/hess-2024-37, 2024
Revised manuscript under review for HESS
Short summary
Short summary
While rainwater is a key resource in crop production, its productivity faces challenges from climate change. Using a simple model of climate, water, and crop yield interactions, we found that rain-scarce croplands in Ethiopia are likely to experience decreases in crop yield during the main growing season, primarily due to future temperature increases. These insights are crucial for shaping future water management plans, policies, and informed decision-making for climate adaptation.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elena Leonarduzzi and Peter Molnar
Nat. Hazards Earth Syst. Sci., 20, 2905–2919, https://doi.org/10.5194/nhess-20-2905-2020, https://doi.org/10.5194/nhess-20-2905-2020, 2020
Short summary
Short summary
Landslides are a natural hazard that affects alpine regions. Here we focus on rainfall-induced shallow landslides and one of the most widely used approaches for their predictions: rainfall thresholds. We design several comparisons utilizing a landslide database and rainfall records in Switzerland. We find that using daily rather than hourly rainfall might be a better option in some circumstances, and mean annual precipitation and antecedent wetness can improve predictions at the regional scale.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci., 22, 3421–3434, https://doi.org/10.5194/hess-22-3421-2018, https://doi.org/10.5194/hess-22-3421-2018, 2018
Short summary
Short summary
We analyse the control of hydroclimatic factors – erosive rainfall, ice melt, and snowmelt – on suspended sediment concentration (SSC) of Alpine catchments regulated by hydropower, and we develop a multivariate hydroclimatic–informed rating curve. We show that while erosive rainfall determines the variability of SSC, ice melt generates the highest contribution to SSC per unit of runoff. This approach allows the exploration of climate–driven changes in fine sediment dynamics in Alpine catchments.
Anna Costa, Peter Molnar, Laura Stutenbecker, Maarten Bakker, Tiago A. Silva, Fritz Schlunegger, Stuart N. Lane, Jean-Luc Loizeau, and Stéphanie Girardclos
Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018, https://doi.org/10.5194/hess-22-509-2018, 2018
Short summary
Short summary
We explore the signal of a warmer climate in the suspended-sediment dynamics of a regulated and human-impacted Alpine catchment. We demonstrate that temperature-driven enhanced melting of glaciers, which occurred in the mid-1980s, played a dominant role in suspended sediment concentration rise, through increased runoff from sediment-rich proglacial areas, increased contribution of sediment-rich meltwater, and increased sediment supply in proglacial areas due to glacier recession.
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-419, https://doi.org/10.5194/hess-2017-419, 2017
Manuscript not accepted for further review
Short summary
Short summary
We develop a novel rating curve to simulate suspended sediment concentration (SSC) in Alpine catchments (Process-Based Rating Curve, PBRC). Instead of relating SSC to discharge, as in traditional approaches, we model SSC by differentiating the potential contributions of the main erosional and transport processes of Alpine environments: erosive rainfall, snowmelt, and icemelt. We show that PBRC significantly improves predictions of SSC, especially when analysing climate-induced changes.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar
Hydrol. Earth Syst. Sci., 20, 4177–4190, https://doi.org/10.5194/hess-20-4177-2016, https://doi.org/10.5194/hess-20-4177-2016, 2016
Short summary
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Matteo Saletti, Peter Molnar, Marwan A. Hassan, and Paolo Burlando
Earth Surf. Dynam., 4, 549–566, https://doi.org/10.5194/esurf-4-549-2016, https://doi.org/10.5194/esurf-4-549-2016, 2016
Short summary
Short summary
This study presents a new reduced-complexity model with few parameters linked to basic physical processes, which aims to reproduce the transport of sediment as bed load and the formation and stability of channel morphology in steep mountain streams. The model is able to simulate the formation and stability of steps, bed structures commonly encountered in steep channels, by assuming that their formation is due to intense sediment transport during high flows causing jamming of particles.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
K. Džubáková, P. Molnar, K. Schindler, and M. Trizna
Hydrol. Earth Syst. Sci., 19, 195–208, https://doi.org/10.5194/hess-19-195-2015, https://doi.org/10.5194/hess-19-195-2015, 2015
Short summary
Short summary
We use a high-resolution ground-based camera system with near-infrared sensitivity to quantify the response of riparian vegetation in an Alpine river to floods with the use of vegetation indices. The vegetation showed both damage and enhancement within 1 week following floods, with a selective impact determined by pre-flood vegetation vigour, morphological setting and intensity of flood forcing. The tested vegetation indices differed in the direction of predicted change in the range 0.7-35.8%.
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
L. Gaál, P. Molnar, and J. Szolgay
Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, https://doi.org/10.5194/hess-18-1561-2014, 2014
Related subject area
Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Evaluating the accuracy of binary classifiers for geomorphic applications
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
Drainage reorganization induces deviations in the scaling between valley width and drainage area
Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar)
Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data
Coastal change patterns from time series clustering of permanent laser scan data
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Relationships between regional coastal land cover distributions and elevation reveal data uncertainty in a sea-level rise impacts model
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features
A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms
Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X ( ∼ 2015) in the south-central Andes
Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
Unsupervised detection of salt marsh platforms: a topographic method
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques
Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models
Tree-root control of shallow landslides
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau
3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism
Frontiers in Geomorphometry and Earth Surface Dynamics: possibilities, limitations and perspectives
How does grid-resolution modulate the topographic expression of geomorphic processes?
Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes
Image-based surface reconstruction in geomorphometry – merits, limits and developments
Topography-based flow-directional roughness: potential and challenges
A nondimensional framework for exploring the relief structure of landscapes
Topographic roughness as a signature of the emergence of bedrock in eroding landscapes
Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution
Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics
Extracting topographic swath profiles across curved geomorphic features
Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024, https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Short summary
We evaluated the intensity and spatial extent of landscape change in the Hengduan Mountains by identifying areas where river network reorganization is occurring or expected in the future. We combine four metrics that measure topographic imbalances at different spatial and temporal scales. Our study provides a deeper understanding of the dynamic nature of the Hengduan Mountains landscape and associated drivers, such as tectonic uplift, and insights for applying similar methods elsewhere.
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024, https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Short summary
Accurately identifying the presence and absence of landforms is important to inferring processes and testing numerical models of landscape evolution. Using synthetic scenarios, I show that the Matthews correlation coefficient (MCC) should be favored over the F1 score when comparing accuracy across scenes where landform abundances vary. Despite the resilience of MCC to imbalanced data, strong sensitivity to the size and shape of features can still occur when truth and model data are misaligned.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021, https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020, https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short summary
This short communication presents an efficient method for analyzing large fault scarp data sets. The programs and workflow required are open-source and the methodology is easy to use; thus the barrier to entry is low. This tool can be applied to a broad range of active tectonic studies. A case study in the Taupo Volcanic Zone, New Zealand, exemplifies the novelty of this tool by generating results that are consistent with extensive field campaigns in only a few hours at a work station.
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Erika E. Lentz, Nathaniel G. Plant, and E. Robert Thieler
Earth Surf. Dynam., 7, 429–438, https://doi.org/10.5194/esurf-7-429-2019, https://doi.org/10.5194/esurf-7-429-2019, 2019
Short summary
Short summary
Our findings examine several data inputs for probabilistic regional sea-level rise (SLR) impact predictions. To predict coastal response to SLR, detailed information on the landscape, including elevation, vegetation, and/or level of development, is needed. However, we find that the inherent relationship between elevation and land cover datasets (e.g., beaches tend to be low lying) is used to reduce error in a coastal response to SLR model, suggesting new applications for areas of limited data.
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
Short summary
The shape of landscapes is influenced by climate changes, faulting or the nature of the rocks under the surface. One of the most sensitive parts of the landscape to these changes is the river system that eventually adapts to such changes by adapting its slope, the most extreme example being a waterfall. We here present an algorithm that extracts changes in river slope over large areas from satellite data with the aim of investigating climatic, tectonic or geologic changes in the landscape.
Ankit Kumar Verma and Mary Carol Bourke
Earth Surf. Dynam., 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019, https://doi.org/10.5194/esurf-7-45-2019, 2019
Short summary
Short summary
The article describes the development of a portable triangle control target to register structure-from-motion-derived topographic data. We were able to generate sub-millimetre-resolution 3-D models with sub-millimetre accuracy. We verified the accuracy of our models in an experiment and demonstrated the potential of our method by collecting microtopographic data on weathered Moenkopi sandstone in Arizona. The results from our study confirm the efficacy of our method at sub-millimetre scale.
Niamh Danielle Cullen, Ankit Kumar Verma, and Mary Clare Bourke
Earth Surf. Dynam., 6, 1023–1039, https://doi.org/10.5194/esurf-6-1023-2018, https://doi.org/10.5194/esurf-6-1023-2018, 2018
Short summary
Short summary
This research article provides a comparison between the traditional method of measuring erosion on rock shore platforms using a traversing micro-erosion meter (TMEM) and a new approach using structure from motion (SfM) photogrammetry. Our results indicate that SfM photogrammetry offers several advantages over the TMEM, allowing for erosion measurement at different scales on rock surfaces with low roughness while also providing a means to identify different processes and styles of erosion.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018, https://doi.org/10.5194/esurf-6-971-2018, 2018
Short summary
Short summary
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer TanDEM-X dataset from ~ 2015. We difference the datasets over hillslopes and gravel-bed channels to extract vertical land-level changes. These signals are associated with incision, aggradation, and landsliding. This requires careful correction of the SRTM-C biases using the TanDEM-X and propagation of significant uncertainties. The method can be applied to moderate relief areas with SRTM-C coverage.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Daniel Wujanz, Michael Avian, Daniel Krueger, and Frank Neitzel
Earth Surf. Dynam., 6, 303–317, https://doi.org/10.5194/esurf-6-303-2018, https://doi.org/10.5194/esurf-6-303-2018, 2018
Short summary
Short summary
The importance of increasing the degree of automation in the context of monitoring natural hazards or geological phenomena is apparent. A vital step in the processing chain of monitoring deformations is the transformation of captured epochs into a common reference systems. This led to the motivation to develop an algorithm that realistically carries out this task. The algorithm was tested on three different geomorphic events while the results were quite satisfactory.
Guillaume C. H. Goodwin, Simon M. Mudd, and Fiona J. Clubb
Earth Surf. Dynam., 6, 239–255, https://doi.org/10.5194/esurf-6-239-2018, https://doi.org/10.5194/esurf-6-239-2018, 2018
Short summary
Short summary
Salt marshes are valuable environments that provide multiple services to coastal communities. However, their fast-paced evolution poses a challenge to monitoring campaigns due to time-consuming processing. The Topographic Identification of Platforms (TIP) method uses high-resolution topographic data to automatically detect the limits of salt marsh platforms within a landscape. The TIP method provides sufficient accuracy to monitor salt marsh change over time, facilitating coastal management.
Ellen Schwalbe and Hans-Gerd Maas
Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, https://doi.org/10.5194/esurf-5-861-2017, 2017
Short summary
Short summary
The simple use of time-lapse cameras as a visual observation tool may already be a great help for environmental investigations. However, beyond that, they have the potential to also deliver precise measurements with high temporal and spatial resolution when applying appropriate processing techniques. In this paper we introduce a method for the determination of glacier motion fields from time-lapse images, but it might also be adapted for other environmental motion analysis tasks.
Wolfgang Schwanghart and Dirk Scherler
Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, https://doi.org/10.5194/esurf-5-821-2017, 2017
Short summary
Short summary
River profiles derived from digital elevation models are affected by errors. Here we present two new algorithms – quantile carving and the CRS algorithm – to hydrologically correct river profiles. Both algorithms preserve the downstream decreasing shape of river profiles, while CRS additionally smooths profiles to avoid artificial steps. Our algorithms are able to cope with the problems of overestimation and asymmetric error distributions.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Giulia Sofia, John K. Hillier, and Susan J. Conway
Earth Surf. Dynam., 4, 721–725, https://doi.org/10.5194/esurf-4-721-2016, https://doi.org/10.5194/esurf-4-721-2016, 2016
Short summary
Short summary
The interdisciplinarity of geomorphometry is its greatest strength and one of its major challenges. This special issue showcases exciting developments that are the building blocks for the next step-change in the field. In reading and compiling the contributions we hope that the scientific community will be inspired to seek out collaborations and share ideas across subject-boundaries, between technique-developers and users, enabling us as a community to gather knowledge from our digital landscape
Stuart W. D. Grieve, Simon M. Mudd, David T. Milodowski, Fiona J. Clubb, and David J. Furbish
Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, https://doi.org/10.5194/esurf-4-627-2016, 2016
Short summary
Short summary
High-resolution topographic data are becoming more prevalent, yet many areas of geomorphic interest do not have such data available. We produce topographic data at a range of resolutions to explore the influence of decreasing resolution of data on geomorphic analysis. We test the accuracy of the calculation of curvature, a hillslope sediment transport coefficient, and the identification of channel networks, providing guidelines for future use of these methods on low-resolution topographic data.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Sebastiano Trevisani and Marco Cavalli
Earth Surf. Dynam., 4, 343–358, https://doi.org/10.5194/esurf-4-343-2016, https://doi.org/10.5194/esurf-4-343-2016, 2016
Short summary
Short summary
The generalization of the concept of roughness implies the need to refer to a family of roughness indices capturing specific aspects of surface morphology. We test the application of a flow-oriented directional measure of roughness based on the geostatistical index MAD (median of absolute directional differences), computed considering gravity-driven flow direction. The use of flow-directional roughness improves geomorphometric modeling and the interpretation of landscape morphology.
Stuart W. D. Grieve, Simon M. Mudd, Martin D. Hurst, and David T. Milodowski
Earth Surf. Dynam., 4, 309–325, https://doi.org/10.5194/esurf-4-309-2016, https://doi.org/10.5194/esurf-4-309-2016, 2016
Short summary
Short summary
Relationships between the erosion rate and topographic relief of hillslopes have been demonstrated in a number of diverse settings and such patterns can be used to identify the impact of tectonic plate motion on the Earth's surface. Here we present an open-source software tool which can be used to explore these relationships in any landscape where high-resolution topographic data have been collected.
D. T. Milodowski, S. M. Mudd, and E. T. A. Mitchard
Earth Surf. Dynam., 3, 483–499, https://doi.org/10.5194/esurf-3-483-2015, https://doi.org/10.5194/esurf-3-483-2015, 2015
Short summary
Short summary
Rock is exposed at the Earth surface when erosion rates locally exceed rates of soil production. This transition is marked by a diagnostic increase in topographic roughness, which we demonstrate can be a powerful indicator of the location of rock outcrop in a landscape. Using this to explore how hillslopes in two landscapes respond to increasing erosion rates, we find that the transition from soil-mantled to bedrock hillslopes is patchy and spatially heterogeneous.
M. T. Melis, F. Mundula, F. DessÌ, R. Cioni, and A. Funedda
Earth Surf. Dynam., 2, 481–492, https://doi.org/10.5194/esurf-2-481-2014, https://doi.org/10.5194/esurf-2-481-2014, 2014
S. Zhao and W. Cheng
Earth Surf. Dynam., 2, 433–441, https://doi.org/10.5194/esurf-2-433-2014, https://doi.org/10.5194/esurf-2-433-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
W. Schwanghart and D. Scherler
Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, https://doi.org/10.5194/esurf-2-1-2014, 2014
Cited articles
Albergel, J.: Sécheresse, désertification et resources en eau de
surface – application aux petits bassins du Burkina Faso, IAHS-AISH
publication, 168, 355–365, https://iahs.info/uploads/dms/iahs_168_0355.pdf (last access: 23 July 2022), 1987. a
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of
saturation vapor pressure, J. Appl. Meteorol., 35, 601–609,
https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. a
Amogu, O.: La dégradation des espaces sahéliens et ses
conséquences sur l'alluvionnement du fleuve Niger moyen, Ph.D. thesis,
Université Joseph Fourier Grenoble 1, 425 p., https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010046965.pdf, (last access: 23 July 2022), 2009. a
Amogu, O., Descroix, L., Yéro, K. S., Breton, E. L., Mamadou, I., Ali,
A., Vischel, T., Bader, J. C., Moussa, I. B., Gautier, E., Boubkraoui, S.,
and Belleudy, P.: Increasing river flows in the Sahel?, Water
(Switzerland), 2, 170–199, https://doi.org/10.3390/w2020170, 2010. a
Armon, M., Dente, E., Shmilovitz, Y., Mushkin, A., Cohen, T. J., Morin, E., and
Enzel, Y.: Determining Bathymetry of Shallow and Ephemeral Desert Lakes
Using Satellite Imagery and Altimetry, Geophys. Res. Lett., 47,
1–9, https://doi.org/10.1029/2020GL087367, 2020. a, b
Asfaw, W., Haile, A. T., and Rientjes, T.: Combining multisource satellite
data to estimate storage variation of a lake in the Rift Valley Basin,
Ethiopia, In. J. Appl. Earth Obs., 89, 102095, https://doi.org/10.1016/j.jag.2020.102095, 2020. a
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017. a
Bodian, A., Diop, L., Panthou, G., Dacosta, H., Deme, A., Dezetter, A., Ndiaye,
P. M., Diouf, I., and Visch, T.: Recent trend in hydroclimatic conditions in
the Senegal River basin, Water (Switzerland), 12, 1–12,
https://doi.org/10.3390/w12020436, 2020. a
Brouwer, J., Abdoul Kader, H. A., and Sommerhalter, T.: Wetlands help
maintain wetland and dryland biodiversity in the Sahel, but that role is
under threat: An example from 80 years of changes at Lake Tabalak in Niger,
Biodiversity, 15, 203–219, https://doi.org/10.1080/14888386.2014.934714, 2014. a
Buma, W. G., Lee, S. I., and Seo, J. Y.: Recent surface water extent of lake
Chad from multispectral sensors and GRACE, Sensors (Switzerland), 18, 7,
https://doi.org/10.3390/s18072082, 2018. a
Coe, M. T. and Foley, J. A.: Human and natural impacts on the water resources
of the Lake Chad basin, J. Geophys. Res.-Atmos., 106,
3349–3356, https://doi.org/10.1029/2000JD900587, 2001. a
Crétaux, J. F. and Birkett, C.: Lake studies from satellite radar
altimetry, Comptes Rendus-Geoscience, 338, 1098–1112,
https://doi.org/10.1016/j.crte.2006.08.002, 2006. a
Crétaux, J. F., Abarca-del Río, R., Bergé-Nguyen, M., Arsen,
A., Drolon, V., Clos, G., and Maisongrande, P.: Lake Volume Monitoring from
Space, Surv. Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6,
2016. a
Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P., and
Nguyen, C. C.: Rain-use-efficiency: What it tells us about the conflicting
sahel greening and sahelian paradox, Remote Sens., 6, 3446–3474,
https://doi.org/10.3390/rs6043446, 2014. a
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020. a
Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E.,
Olivry, J. C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R.,
Diedhiou, A., Le Breton, E., Mamadou, I., and Sighomnou, D.:
Spatio-temporal variability of hydrological regimes around the boundaries
between Sahelian and Sudanian areas of West Africa: A synthesis, J.
Hydrol., 375, 90–102, https://doi.org/10.1016/j.jhydrol.2008.12.012, 2009. a, b
DNEF/PAZU: Plan d'aménagement de gestion du Lac Wégnia – Projet
“Eco-Lac Wégnia”, Tech. rep., Ministère de l'Environnement, de
l'Assainissement et du Développement Durable, Direction Nationale des
Eaux et Forêts, Bamako, 48 p., 2018. a
Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., and van de Giesen,
N.: A 30 m resolution surfacewater mask including estimation of positional
and thematic differences using landsat 8, SRTM and OPenStreetMap: A case
study in the Murray-Darling basin, Australia, Remote Sens., 8, 5,
https://doi.org/10.3390/rs8050386, 2016. a, b
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain,
N., and Leduc, C.: Land clearing, climate variability, and water resources
increase in semiarid southwest Niger: A review, Water Resour. Res.,
45, 1–18, https://doi.org/10.1029/2007WR006785, 2009. a
Fowe, T., Karambiri, H., Paturel, J. E., Poussin, J. C., and Cecchi, P.: Water
balance of small reservoirs in the Volta basin: A case study of Boura
reservoir in Burkina Faso, Agr. Water Manage., 152, 99–109,
https://doi.org/10.1016/j.agwat.2015.01.006, 2015. a, b, c
Frappart, F., Hiernaux, P., Guichard, F., Mougin, E., Kergoat, L., Arjounin,
M., Lavenu, F., Koité, M., Paturel, J. E., and Lebel, T.: Rainfall
regime across the Sahel band in the Gourma region, Mali, J. Hydrol., 375, 128–142, https://doi.org/10.1016/j.jhydrol.2009.03.007, 2009. a
Gal, L., Grippa, M., Hiernaux, P., Pons, L., and Kergoat, L.: The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model, Hydrol. Earth Syst. Sci., 21, 4591–4613, https://doi.org/10.5194/hess-21-4591-2017, 2017. a, b, c
Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., and Lettenmaier, D. P.: On
the causes of the shrinking of Lake Chad, Environ. Res. Lett., 6, 3,
https://doi.org/10.1088/1748-9326/6/3/034021, 2011. a, b, c
Gardelle, J., Hiernaux, P., Kergoat, L., and Grippa, M.: Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali), Hydrol. Earth Syst. Sci., 14, 309–324, https://doi.org/10.5194/hess-14-309-2010, 2010. a
Gilbert, R. O.: Statistical methods for environmental pollution monitoring,
New York, John Wiley & Sons, ISBN 9780471288787, 1987. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
2017. a
Guo, D., Westra, S., and Maier, H. R.: An R package for modelling actual,
potential and reference evapotranspiration, Environ. Modell. Softw., 78, 216–224, https://doi.org/10.1016/j.envsoft.2015.12.019, 2016. a
Haas, E. M., Bartholomé, E., and Combal, B.: Time series analysis of
optical remote sensing data for the mapping of temporary surface water bodies
in sub-Saharan western Africa, J. Hydrol., 370, 52–63,
https://doi.org/10.1016/j.jhydrol.2009.02.052, 2009. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,
J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Heygster, G., Dannenberg, J., and Notholt, J.: Topographic mapping of the
german tidal flats analyzing SAR images with the waterline method, IEEE
T. Geosci. Remote, 48, 1019–1030,
https://doi.org/10.1109/TGRS.2009.2031843, 2010. a
Karambiri, H., Ribolzi, O., Delhoume, J. P., Ducloux, J., Coudrain-Ribstein,
A., and Casenave, A.: Importance of soil surface characteristics on water
erosion in a small grazed Sahelian catchment, Hydrol. Process., 17,
1495–1507, https://doi.org/10.1002/hyp.1195, 2003. a
Kendall, M.: Rank Correlation Methods, Charles Griffin, London, 202 p., ISBN 9780852641996, 1975. a
Kwang, C., Jnr, E. M. O., and Amoah, A. S.: Comparing of Landsat 8 and
Sentinel 2A using Water Extraction Indexes over Volta River, J.
Geogr. Geol., 10, 1, https://doi.org/10.5539/jgg.v10n1p1, 2017. a
Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., and
Cappelaere, B.: Land clearance and hydrological change in the Sahel: SW
Niger, Global Planet. Change, 61, 135–150,
https://doi.org/10.1016/j.gloplacha.2007.08.011, 2008. a
Lemoalle, J., Bader, J. C., Leblanc, M., and Sedick, A.: Recent changes in
Lake Chad: Observations, simulations and management options (1973–2011),
Global Planet. Change, 80–81, 247–254,
https://doi.org/10.1016/j.gloplacha.2011.07.004, 2012. a
Li, Z., Heygster, G., and Notholt, J.: Intertidal topographic maps and
morphological changes in the German Wadden Sea between 1996–1999 and
2006–2009 from the waterline method and SAR images, IEEE J. Sel.
Top. Appl., 7, 3210–3224, https://doi.org/10.1109/JSTARS.2014.2313062, 2014. a
Ma, Y., Xu, N., Sun, J., Wang, X. H., Yang, F., and Li, S.: Estimating water
levels and volumes of lakes dated back to the 1980s using Landsat imagery and
photon-counting lidar datasets, Remote Sens. Environ., 232,
111287, https://doi.org/10.1016/j.rse.2019.111287, 2019. a, b, c
Mahmood, R. and Jia, S.: Assessment of hydro-climatic trends and causes of
dramatically declining stream flow to Lake Chad, Africa, using a hydrological
approach, Sci. Total Environ., 675, 122–140,
https://doi.org/10.1016/j.scitotenv.2019.04.219, 2019. a, b
Markert, K. N., Markert, A. M., Mayer, T., Nauman, C., Haag, A., Poortinga, A.,
Bhandari, B., Thwal, N. S., Kunlamai, T., Chishtie, F., Kwant, M.,
Phongsapan, K., Clinton, N., Towashiraporn, P., and Saah, D.: Comparing
Sentinel-1 surface water mapping algorithms and radiometric terrain
correction processing in southeast Asia utilizing Google Earth Engine,
Remote Sens., 12, 1–20, https://doi.org/10.3390/RS12152469, 2020. a
Mason, D. C., Davenport, I. J., Robinson, G. J., Flather, R. A., and McCartney,
B. S.: Construction of an inter‐tidal digital elevation model by the
‘Water‐Line' Method, Geophys. Res. Lett., 22, 3187–3190,
https://doi.org/10.1029/95GL03168, 1995. a
Mason, D. C., Amin, M., Davenport, I. J., Flather, R. A., Robinson, G. J., and
Smith, J. A.: Measurement of recent intertidal sediment transport in
Morecambe Bay using the waterline method, Estuarine, Coastal and Shelf
Science, 49, 427–456, https://doi.org/10.1006/ecss.1999.0508, 1999. a
Militino, A. F., Montesino-SanMartin, M., Pérez-Goya, U., and Ugarte,
M. D.: Using RGISTools to estimate water levels in reservoirs and lakes,
Remote Sens., 12, 1–19, https://doi.org/10.3390/rs12121934, 2020. a
Nguyen, M. D., Baez-Villanueva, O. M., Bui, D. D., Nguyen, P. T., and Ribbe,
L.: Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought
Prone Areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon),
Remote Sens., 12, 1–18, https://doi.org/10.3390/rs12020281, 2020. a, b
Nippes, K. R.: Sedimentation in shallow depressions – A case study of Lake
Magui, Western Mali/West Africa, GeoJournal, 9, 335–341,
https://doi.org/10.1007/BF00171597, 1984. a
Nouaceur, Z. and Murarescu, O.: Rainfall variability and trend analysis of
rainfall in west Africa (Senegal, Mauritania, Burkina Faso), Water
(Switzerland), 12, 6, https://doi.org/10.3390/W12061754, 2020. a
Otsu, N.: A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern., SMC-9, 62–66, https://doi.org/10.1109/tsmc.1979.4310076, 1979. a
Oyebande, L. and Odunuga, S.: Climate Change Impact on Water Resources at the
Transboundary Level in West Africa: The Cases of the Senegal, Niger and Volta
Basins, The Open Hydrology Journal, 4, 163–172,
https://doi.org/10.2174/1874378101004010163, 2013. a
Panthou, G., Vischel, T., and Lebel, T.: Recent trends in the regime of
extreme rainfall in the Central Sahel, Int. J. Climatol.,
34, 3998–4006, https://doi.org/10.1002/joc.3984, 2014. a
Papa, F., Crétaux, J. F., Grippa, M., Robert, E., Trigg, M., Tshimanga,
R. M., Kitambo, B., Paris, A., Carr, A., Fleischmann, A. S., de Fleury, M.,
Gbetkom, P. G., Calmettes, B., and Calmant, S.: Water Resources in Africa
under Global Change: Monitoring Surface Waters from Space, Surv. Geophys., 1–51, https://doi.org/10.1007/s10712-022-09700-9, 2022. a
Penman, H. L.: Natural evaporation from open water, hare soil and grass,
Proceedings of the Royal Society of London, Series A, Mathematical and
physical sciences, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948. a, b
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and
Crétaux, J. F.: The Lake Chad hydrology under current climate change,
Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-62417-w, 2020. a, b
Ragettli, S., Donauer, T., and Siegfried, T.: wegnia-sb [Google Earth Engine Application], https://hydrosolutions.users.earthengine.app/view/wegnia-sb (last access: 23 July 2022), 2022a. a
Ragettli, S., Donauer, T., and Siegfried, T.: GEE-SedimentBalance, Zenodo [code], https://doi.org/10.5281/zenodo.6833034, 2022b. a
Robert, E., Kergoat, L., Soumaguel, N., Merlet, S., Martinez, J. M., Diawara,
M., and Grippa, M.: Analysis of suspended particulate matter and its drivers
in Sahelian Ponds and Lakes by remote sensing (landsat and MODIS): Gourma
Region, Mali, Remote Sens., 9, 12, https://doi.org/10.3390/rs9121272, 2017. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, Bull. Am. Meteor. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Ryu, J. H., Kim, C. H., Lee, Y. K., Won, J. S., Chun, S. S., and Lee, S.:
Detecting the intertidal morphologic change using satellite data,
Estuarine, Coastal and Shelf Science, 78, 623–632,
https://doi.org/10.1016/j.ecss.2008.01.020, 2008. a
Salameh, E., Frappart, F., Almar, R., Baptista, P., Heygster, G., Lubac, B.,
Raucoules, D., Almeida, L. P., Bergsma, E. W., Capo, S., De Michele, M. D.,
Idier, D., Li, Z., Marieu, V., Poupardin, A., Silva, P. A., Turki, I., and
Laignel, B.: Monitoring Beach Topography and Nearshore Bathymetry Using
Spaceborne Remote Sens.: A Review, Remote Sens., 11, 19,
https://doi.org/10.3390/rs11192212, 2019. a, b
Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M., and Schüth,
C.: Climate change or irrigated agriculture – what drives the water level
decline of Lake Urmia, Sci. Rep., 10, 1–10,
https://doi.org/10.1038/s41598-019-57150-y, 2020. a
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968. a, b
Soti, V., Puech, C., Lo Seen, D., Bertran, A., Vignolles, C., Mondet, B., Dessay, N., and Tran, A.: The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal), Hydrol. Earth Syst. Sci., 14, 1449–1464, https://doi.org/10.5194/hess-14-1449-2010, 2010. a
Storey, J., Roy, D. P., Masek, J., Gascon, F., Dwyer, J., and Choate, M.: A
note on the temporary misregistration of Landsat-8 Operational Land Imager
(OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery, Remote Sens.
Environ., 186, 121–122, https://doi.org/10.1016/j.rse.2016.08.025, 2016. a
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression
Analysis, I–II, Proc. Kon. Ned. Akad. v. Wetensch. A., 53, 386–392,
521–525, 1397–1412, 1950. a
Touré Halimatou, A., Kalifa, T., and Kyei-Baffour, N.: Assessment of
changing trends of daily precipitation and temperature extremes in Bamako and
Ségou in Mali from 1961–2014, Weather and Climate Extremes, 18,
8–16, https://doi.org/10.1016/j.wace.2017.09.002, 2017. a
van de Giesen, N., Hut, R., and Selker, J.: The Trans-African
Hydro-Meteorological Observatory (TAHMO), Wiley Interdisciplinary Reviews-Water, 1, 341–348, https://doi.org/10.1002/wat2.1034, 2014. a
Vandemeulebrouck, P., Fauchet, J.-S., and Dufour, S.: Production de
données photogrammétriques pour la création de
données topographiques et d'une orthomosaïque de haute
précision; Lac Wegnia – Mali, Tech. rep., Sylvatrop Consulting,
Conakry, Guinea, 23 p., 2019. a
Weekley, D. and Li, X.: Tracking Multidecadal Lake Water Dynamics with Landsat
Imagery and Topography/Bathymetry, Water Resour. Res., 55, 8350–8367,
https://doi.org/10.1029/2019WR025500, 2019. a, b, c
Xu, H.: Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery, Int. J.
Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006. a
Xu, N., Ma, Y., Zhang, W., Wang, X. H., Yang, F., and Su, D.: Monitoring
annual changes of lake water levels and volumes over 1984–2018 using
landsat imagery and ICESat-2 data, Remote Sens., 12, 1–22,
https://doi.org/10.3390/rs12234004, 2020. a
Xu, Z., jin Kim, D., Kim, S. H., Cho, Y. K., and Lee, S. G.: Estimation of
seasonal topographic variation in tidal flats using waterline method: A case
study in Gomso and Hampyeong Bay, South Korea, Estuarine, Coastal and Shelf
Science, 183, 213–220, https://doi.org/10.1016/j.ecss.2016.10.026, 2016. a
Yang, X., Chen, Y., and Wang, J.: Combined use of Sentinel-2 and Landsat 8 to
monitor water surface area dynamics using Google Earth Engine, Remote Sens. Lett., 11, 687–696, https://doi.org/10.1080/2150704X.2020.1757780, 2020. a, b
Yue, H. and Liu, Y.: Variations in the lake area, water level, and water
volume of Hongjiannao Lake during 1986–2018 based on Landsat and ASTER GDEM
data, Environ. Monit. Assess., 191, 10,
https://doi.org/10.1007/s10661-019-7715-6, 2019. a
Zhu, W., Yan, J., and Jia, S.: Monitoring recent fluctuations of the southern
pool of lake chad using multiple remote sensing data: Implications for water
balance analysis, Remote Sens., 9, 10, https://doi.org/10.3390/rs9101032, 2017. a
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
This paper presents a novel methodology to identify and quantitatively analyze deposition and...