Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1145-2023
https://doi.org/10.5194/esurf-11-1145-2023
Research article
 | 
13 Nov 2023
Research article |  | 13 Nov 2023

On the use of convolutional deep learning to predict shoreline change

Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño

Related authors

Nationwide Application of a Rapid Tsunami Inundation Model to New Zealand: Assessing Infrastructure and Land Exposure
Tate Kimpton, Colin Whittaker, Pablo Higuera, and Liam Wotherspoon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3724,https://doi.org/10.5194/egusphere-2024-3724, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023,https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
A predictive equation for wave setup using genetic programming
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023,https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Scenario-based modelling of waves generated by sublacustrine explosive eruptions at Lake Taupō, New Zealand
Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023,https://doi.org/10.5194/nhess-23-955-2023, 2023
Short summary
Multilayer modelling of waves generated by explosive subaqueous volcanism
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022,https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
A numerical model for duricrust formation by water table fluctuations
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025,https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Width evolution of channel belts as a random walk
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025,https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary

Cited articles

Antolínez, J. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting climate-driven coastlines with a simple and efficient multiscale model, J. Geophys. Res.-Earth, 124, 1596–1624, https://doi.org/10.1029/2018JF004790, 2019. a
Biondi, D., Freni, G., Iacobellis, V., Mascaro, G., and Montanari, A.: Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice, Phys. Chem. Earth Pt. a/b/c, 42–44, 70–76, https://doi.org/10.1016/j.pce.2011.07.037, 2012. a
Blossier, B., Bryan, K. R., Daly, C. J., and Winter, C.: Shore and bar cross-shore migration, rotation, and breathing processes at an embayed beach, J. Geophys. Res.-Earth, 122, 1745–1770, https://doi.org/10.1002/2017JF004227, 2017. a, b
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a
Buscombe, D. and Goldstein, E. B.: A reproducible and reusable pipeline for segmentation of geoscientific imagery, Earth Space Sci., 9, e2022EA002332, https://doi.org/10.1029/2022EA002332, 2022. a
Download
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Share