Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1145-2023
https://doi.org/10.5194/esurf-11-1145-2023
Research article
 | 
13 Nov 2023
Research article |  | 13 Nov 2023

On the use of convolutional deep learning to predict shoreline change

Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño

Related authors

Development and Validation of an Early Warning System for Coastal Flooding on a Mediterranean Urban Beach
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292,https://doi.org/10.5194/egusphere-2025-2292, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Nationwide Application of a Rapid Tsunami Inundation Model to New Zealand: Assessing Infrastructure and Land Exposure
Tate Kimpton, Colin Whittaker, Pablo Higuera, and Liam Wotherspoon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3724,https://doi.org/10.5194/egusphere-2024-3724, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023,https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
A predictive equation for wave setup using genetic programming
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023,https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Scenario-based modelling of waves generated by sublacustrine explosive eruptions at Lake Taupō, New Zealand
Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023,https://doi.org/10.5194/nhess-23-955-2023, 2023
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025,https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Multiple equilibrium configurations in river-dominated deltas
Lorenzo Durante, Nicoletta Tambroni, and Michele Bolla Pittaluga
Earth Surf. Dynam., 13, 455–471, https://doi.org/10.5194/esurf-13-455-2025,https://doi.org/10.5194/esurf-13-455-2025, 2025
Short summary
Investigating the celerity of propagation for small perturbations and dispersive sediment aggradation under a supercritical flow
Hasan Eslami, Erfan Poursoleymanzadeh, Mojtaba Hiteh, Keivan Tavakoli, Melika Yavari Nia, Ehsan Zadehali, Reihaneh Zarrabi, and Alessio Radice
Earth Surf. Dynam., 13, 437–454, https://doi.org/10.5194/esurf-13-437-2025,https://doi.org/10.5194/esurf-13-437-2025, 2025
Short summary
Short communication: Multiscale topographic complexity analysis with pyTopoComplexity
Larry Syu-Heng Lai, Adam M. Booth, Alison R. Duvall, and Erich Herzig
Earth Surf. Dynam., 13, 417–435, https://doi.org/10.5194/esurf-13-417-2025,https://doi.org/10.5194/esurf-13-417-2025, 2025
Short summary
Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025,https://doi.org/10.5194/esurf-13-365-2025, 2025
Short summary

Cited articles

Antolínez, J. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting climate-driven coastlines with a simple and efficient multiscale model, J. Geophys. Res.-Earth, 124, 1596–1624, https://doi.org/10.1029/2018JF004790, 2019. a
Biondi, D., Freni, G., Iacobellis, V., Mascaro, G., and Montanari, A.: Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice, Phys. Chem. Earth Pt. a/b/c, 42–44, 70–76, https://doi.org/10.1016/j.pce.2011.07.037, 2012. a
Blossier, B., Bryan, K. R., Daly, C. J., and Winter, C.: Shore and bar cross-shore migration, rotation, and breathing processes at an embayed beach, J. Geophys. Res.-Earth, 122, 1745–1770, https://doi.org/10.1002/2017JF004227, 2017. a, b
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a
Buscombe, D. and Goldstein, E. B.: A reproducible and reusable pipeline for segmentation of geoscientific imagery, Earth Space Sci., 9, e2022EA002332, https://doi.org/10.1029/2022EA002332, 2022. a
Download
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Share