Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geospatial modelling of large-wood supply to rivers: a state-of-the-art model comparison in Swiss mountain river catchments
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Virginia Ruiz-Villanueva
C-CIA-Climate Change Impacts and Risks in the Anthropocene, Institute for Environmental Sciences (ISE), University of Geneva, 1205 Geneva, Switzerland
Institute of Earth Surface Dynamics (IDYST), Faculty of Geoscience and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Alexandre Badoux
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Christian Rickli
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Andrea Mini
Institute of Earth Surface Dynamics (IDYST), Faculty of Geoscience and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Markus Stoffel
C-CIA-Climate Change Impacts and Risks in the Anthropocene, Institute for Environmental Sciences (ISE), University of Geneva, 1205 Geneva, Switzerland
Dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
Dieter Rickenmann
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Related authors
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025, https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Short summary
This study presents a novel convolutional-neural-network approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods across diverse data sources. Using a database of 15 228 fully labelled images, the model achieved a weighted mean average precision of 67 %. Fine-tuning parameters and sampling techniques can improve performance by over 10 % in some cases, offering valuable insights into ecosystem management.
Karolina Janecka, Kerstin Treydte, Silvia Piccinelli, Loïc Francon, Marçal Argelich Ninot, Johannes Edvardsson, Christophe Corona, Veiko Lehsten, and Markus Stoffel
EGUsphere, https://doi.org/10.5194/egusphere-2025-79, https://doi.org/10.5194/egusphere-2025-79, 2025
Short summary
Short summary
Peatlands hold valuable insights about past climate, but the link between tree growth and water conditions remains unclear. We analyzed tree-ring stable isotopes from Scots pines in Swedish peatlands to study their response to water levels and climate. Unlike tree-ring widths, stable isotopes showed strong, consistent signals of water table levels and summer climate. This improves our ability to reconstruct past climate changes from peatland trees.
Zheng Chen, Siming He, Alexandre Badoux, and Dieter Rickenmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2525, https://doi.org/10.5194/egusphere-2024-2525, 2024
Short summary
Short summary
We developed a novel bedload monitoring system, which integrates phased microphone arrays and an accelerometer for enhanced performance. This monitoring system can be used to identify bedload particle impact locations on the system plate with precision using beamforming techniques applied to the generated microphone signals. Optimal use of multiple types of signals recorded by the monitoring system improves the accuracy of bedload size prediction.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Cited articles
Bachmann Walker, A.: Ausmass und Auftreten von Seitenerosionen bei Hochwasser. Auswertung von hydraulisch verursachten Seitenerosionen und Herleitung von empirischen Zusammenhängen zur Ermittlung des Erosionsausmasses und -auftreten, Master thesis, Institute of Geography, University of Bern, Switzerland, 157 pp., 2012.
Beechie, T. J., Pess, G., Kennard, P., Bilby, R. E., and Bolton, S.:
Modeling Recovery Rates and Pathways for Woody Debris Recruitment in Northwestern Washington Streams, N. Am. J. Fish. Manage., 20, 436–452, https://doi.org/10.1577/1548-8675(2000)020<0436:mrrapf>.3.co;2, 2000.
Benda, L. and Bigelow, P.:
On the patterns and processes of wood in northern California streams, Geomorphology, 209, 79–97, https://doi.org/10.1016/j.geomorph.2013.11.028, 2014.
Benda, L., Miller, D., Andras, K., Bigelow, P., Reeves, G., and Michael, D.:
NetMap: A new tool in support of watershed science and resource management, Forest Sci., 53, 206–219, 2007.
Benda, L. E. and Sias, J. C.:
A quantitative framework for evaluating the mass balance of in-stream organic debris, Forest Ecol. Manag., 172, 1–16, https://doi.org/10.1016/S0378-1127(01)00576-X, 2003.
Benda, L. E., Litschert, S. E., Reeves, G., and Pabst, R.:
Thinning and in-stream wood recruitment in riparian second growth forests in coastal Oregon and the use of buffers and tree tipping as mitigation, J. Forestry Res., 27, 821–836, https://doi.org/10.1007/s11676-015-0173-2, 2016.
Bezzola, G. R., Gantenbein, S., Hollenstein, R., and Minor, H. E.:
Verklausung von Brückenquerschnitten, in: Internationales Symposium Moderne Methoden und Konzepte im Wasserbau, Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 175, Zürich, Switzerland, 87–98, https://ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/2000-2009/175.pdf (last access: 8 June 2023), 2002.
Bishop, M. P. and Giardino, J. R.: 1.01 – Technology-Driven Geomorphology:
Introduction and Overview, in: Treatise on Geomorphology, 2nd Edn., edited by: Shroder, J. F., Academic Press, 1–17,
https://doi.org/10.1016/B978-0-12-818234-5.00171-1, 2022.
Blaschke, T., Tiede, D., and Heurich, M.: 3D landscape metrics to modelling forest structure and diversity based on laser scanning data, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-8W2, 129–132, 2004.
Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights of evidence modelling: a new approach to mapping mineral potential, in: Statistical applications in the earth sciences, Paper 89-9, edited by: Agterberg, F. P. and Bonham-Carter, G., Canadian Government Publishing Centre, Ottawa, Ontario, Canada, 171–183, https://www.ige.unicamp.br/sdm/ArcSDM31/documentation/WofE1.pdf (last access: 8 June 2023), 1990.
Bragg, D. C.: Simulating catastrophic and individualistic large woody debris recruitment for a small riparian system, Ecology, 81, 1383–1394, https://doi.org/10.2307/177215, 2000.
Braudrick, C. A., Grant, G. E., Ishikawa, Y., and Ikeda, H.:
Dynamics of wood transport in streams: A flume experiment, Earth Surf. Proc. Land., 22, 669–683, https://doi.org/10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>.0.CO;2-L, 1997.
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.:
Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments, Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.
Cislaghi, A., Rigon, E., Lenzi, M. A., and Bischetti, G. B.:
A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments, Geomorphology, 306, 108–127, https://doi.org/10.1016/j.geomorph.2018.01.009, 2018.
Comiti, F., Lucía, A., and Rickenmann, D.:
Large wood recruitment and transport during large floods: A review, Geomorphology, 269, 23–39, https://doi.org/10.1016/j.geomorph.2016.06.016, 2016.
Dixon, S. J.: Investigating the effects of large wood and forest management on flood risk and flood hydrology, PhD thesis, University of Southhampton, Geography and Environment, UK, 404 pp., https://eprints.soton.ac.uk/365560/ (last access: 8 June 2023), 2013.
Dorren, L.: FINT – Find individual trees. User manual, ecorisQ paper, 5 pp., https://www.ecorisq.org/docs/FINT_manual_EN.pdf (last access: 8 June 2023), 2017.
Downs, P. W. and Simon, A.:
Fluvial geomorphological analysis of the recruitment of large woody debris in the Yalobusha river network, Central Mississippi, USA, Geomorphology, 37, 65–91, https://doi.org/10.1016/S0169-555X(00)00063-5, 2001.
Eaton, B. C., Hassan, M. A., and Davidson, S. L.:
Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream, J. Geophys. Res.-Earth, 117, 1–18, https://doi.org/10.1029/2012JF002385, 2012.
Finch, B. and Ruiz-Villanueva, V.:
Exploring the potential of the Graph Theory to large wood supply and transfer in river networks, in: Proceedings of the EGU General Assembly 2022, EGU22-8232, https://doi.org/10.5194/egusphere-egu22-8232, 2022.
FOEN: Einzugsgebietsgliederung Schweiz: EZGG-CH, Bundesamt für Umwelt, Bern, Switzerland, http://www.bafu.admin.ch/ezgg-ch (last access: 8 June 2023), 2015.
FOEN: Schwemmholz in Fliessgewässern: Ein praxisorientiertes Forschungsprojekt, Umwelt-Wissen Nr. 1910, Bundesamt für Umwelt, Bern, Switzerland, 100 pp., https://www.bafu.admin.ch/bafu/de/home/themen/naturgefahren/publikationen-studien/publikationen/schwemmholz-in-fliessgewaessern.html (last access: 8 June 2023), 2019.
Franceschi, S., Antonello, A., Crema, S., and Comiti, F.: GIS-based approach to assess large wood transport in mountain rivers during floods [preprint], https://doi.org/10.13140/RG.2.2.31787.08480, 2019.
Gasser, E., Simon, A., Perona, P., Dorren, L., Hübl, J., and Schwarz, M.:
Quantification of potential recruitment of large woody debris in mountain catchments considering the effects of vegetation on hydraulic and geotechnical bank erosion and shallow landslides, in: E3S Web of Conferences, 40, edited by: Paquier, A. and Rivière, N., https://doi.org/10.1051/e3sconf/20184002046, 2018.
Gasser, E., Schwarz, M., Simon, A., Perona, P., Phillips, C., Hübl, J., and Dorren, L.:
A review of modeling the effects of vegetation on large wood recruitment processes in mountain catchments, Earth-Sci. Rev., 194, 350–373, https://doi.org/10.1016/j.earscirev.2019.04.013, 2019.
Gasser, E., Perona, P., Dorren, L., Phillips, C., Hübl, J., and Schwarz, M.: A new framework to model hydraulic bank erosion considering the effects of roots, Water, 12, 893, https://doi.org/10.3390/w12030893, 2020.
Ginzler, C., Price, B., Bösch, R., Fischer, C., Hobi, M. L., Psomas, A., Rehush, N., Wang, Z., and Waser, L. T.: Area-Wide Products, in: Swiss National Forest Inventory – Methods and Models of the Fourth Assessment, edited by: Fischer, C. and Traub, B., Springer International Publishing, Cham, Switzerland, 125–142, https://doi.org/10.1007/978-3-030-19293-8, 2019.
Gregory, S. V., Meleason, M. A., and Sobota, D. J.: Modeling the dynamics of wood in streams and rivers, in: American Fisheries Society and their issues are called Symposium, edited by: Gregory, S. V., Boyer, K., and Gurnell, A., 315–335, https://doi.org/10.47886/9781888569568, 2003.
Gurnell, A. M. and Bertoldi, W.: 6.17 – Wood in Fluvial Systems, in: Treatise on Geomorphology, 2nd Edn., Elsevier, 6.1, 320–352, https://doi.org/10.1016/B978-0-12-409548-9.12415-7, 2020.
Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., and Cummins, K. W.: Ecology of coarse woody debris in temperate ecosystems, in: Advances in ecological research, edited by: MacFadyen, A. and Ford, E. D., Orlando, Florida, USA, Academic Press, 15, 133–302, https://doi.org/10.1016/S0065-2504(08)60121-X, 1986.
Hassan, M. A., Bird, S., Reid, D., and Hogan, D.:
Simulated wood budgets in two mountain streams, Geomorphology, 259, 119–133, https://doi.org/10.1016/j.geomorph.2016.02.010, 2016.
Hunziker, G.: Schwemmholz Zulg: Untersuchungen zum Schwemmholzaufkommen in der Zulg und deren Seitenbächen, Hunziker Gefahrenmanagement Bericht (Gemeinde Steffisburg), 51 pp., 2017.
Hunzinger, L. and Durrer, S.: Seitenerosion, in: Ereignisanalyse Hochwasser 2005, Teil 2 – Analyse von Prozessen, Massnahmen und Gefahrengrundlagen, Umwelt-Wissen, Nr. 0825, edited by: Bezzola, G. R. and Hegg, C., Bundesamt für Umwelt BAFU and Eidg. Forschungsanstalt WSL, Bern, Switzerland, 125–136, https://www.bafu.admin.ch/bafu/de/home/themen/naturgefahren (last access: 8 June 2023), 2008.
Hupp, C. R. and Simon, A.:
Bank accretion and development of vegetated depositional surfaces along modified alluvial channels, Geomorphology, 4, 111–124, https://doi.org/10.1016/0169-555X(91)90023-4, 1991.
Kasprak, A., Magilligan, F. J., Nislow, K. H., Snyder, N. P.:
A LIDAR-derived evaluation of watershed-scale large woody debris sources and recruitment mechanisms: Coastal Maine, USA, River Res. Appl., 28, 1462–1476, https://doi.org/10.1002/rra.1532, 2012.
Kennard, P., Pess, G., Beechie, T., Bilby, R., and Berg, D.: Riparian-in-a-box: A manager's tool to predict the impacts of riparian management on fish habitat, in: Forest–Fish Conference: Land Management Practices Affecting Aquatic Ecosystems, edited by: Brewin, M. and Monit, D., Natural Resources Canada, Canadian Forest Service Information Report NOR-X-356, Canadian Forest Service, Calgary, Alberta, Cananda, 483–490, https://cfs.nrcan.gc.ca/publications?id=11639 (last access: 8 June 2023), 1999.
Lassettre, N. S. and Kondolf, G. M.:
Large woody debris in urban stream channels: Redefining the problem, River Res. Appl., 28, 1477–1487, https://doi.org/10.1002/rra.1538, 2012.
Losey, S. and Wehrli, A.: Schutzwald in der Schweiz. Vom Projekt SilvaProtect-CH zum harmonisierten Schutzwald, FOEN – Federal Office for the Environment, Bern, Switzerland, 29 pp., https://www.newsd.admin.ch/newsd/message/attachments/29559.pdf (last access: 8 June 2023) 2013.
Lucía, A., Andrea, A., Daniela, C., Marco, C., Stefano, C., Silvia, F., Enrico, M., Martin, N., Stefan, S., and Francesco, C.:
Monitoring and Modeling Large Wood Recruitment and Transport in a Mountain Basin of North-Eastern Italy, in: Engineering Geology for Society and Territory – Volume 3, Springer International Publishing, Cham, Switzerland, 155–158, https://doi.org/10.1007/978-3-319-09054-2_31, 2015a.
Lucía, A., Comiti, F., Borga, M., Cavalli, M., and Marchi, L.:
Dynamics of large wood during a flash flood in two mountain catchments, Nat. Hazards Earth Syst. Sci., 15, 1741–1755, https://doi.org/10.5194/nhess-15-1741-2015, 2015b.
Lucía, A., Schwientek, M., Eberle, J., and Zarfl, C.:
Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016, Sci. Total Environ., 640–641, 315–326, https://doi.org/10.1016/j.scitotenv.2018.05.186, 2018.
Malanson, G. P. and Kupfer, J. A.:
Simulated fate of leaf litter and large woody debris at a riparian cutbank, Can. J. Forest Res., 23, 582–590, 1993.
Martin, D. and Benda, L.:
Patterns of in-stream wood recruitment and transport at the watershed scale, T. Am. Fish. Soc., 130, 940–958, 2001.
Mazzorana, B., Zischg, A., Largiader, A., and Hübl, J.:
Hazard index maps for woody material recruitment and transport in alpine catchments, Nat. Hazards Earth Syst. Sci., 9, 197–209, https://doi.org/10.5194/nhess-9-197-2009, 2009.
Mazzorana, B., Hübl, J., Zischg, A., and Largiader, A.:
Modelling woody material transport and deposition in alpine rivers, Nat. Hazards, 56, 425–449, https://doi.org/10.1007/s11069-009-9492-y, 2011.
Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A., and Valdebenito, G.:
Assessing and mitigating large wood-related hazards in mountain streams: recent approaches, J. Flood Risk Manag., 11, 207–222, https://doi.org/10.1111/jfr3.12316, 2018.
Meleason, M. A., Gregory, S. V., and Bolte, J. P.:
Implications of riparian management strategies on wood in streams of the Pacific northwest, Ecol. Appl., 13, 1212–1221, https://doi.org/10.1890/02-5004, 2003.
Montgomery, D. R. and Dietrich, W. E.:
A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, https://doi.org/10.1029/93WR02979, 1994.
Montgomery, D. R. and Piégay, H.:
Wood in rivers: interactions with channel morphology and processes, Geomorphology, 51, 1–5, https://doi.org/10.1016/S0169-555X(02)00322-7, 2003.
Murphy, M. L. and Koski, K. V.:
Input and Depletion of Woody Debris in Alaska Streams and Implications for Streamside Management, N. Am. J. Fish. Manage., 9, 427–436, https://doi.org/10.1577/1548-8675(1989)009<0427:iadowd>.3.co;2, 1989.
Nakamura, F., Seo, J., Akasaka, T., and Swanson, F. J.:
Large wood, sediment, and flow regimes: Their interactions and temporal changes caused by human impacts in Japan, Geomorphology, 279, 176–187, https://doi.org/10.1016/j.geomorph.2016.09.001, 2017.
Piégay, H., Thévenet, A., and Citterio, A.:
Input, storage and distribution of large woody debris along a mountain river continuum, the Drôme River, France, Catena, 35, 19–39, https://doi.org/10.1016/S0341-8162(98)00120-9, 1999.
Rainville, R. C., Rainville, S. C., and Linder, E. L.:
Riparian silvicultural strategiesfor fish habitat emphasis, in: Foresters's future: leaders or followers. Society of American Foresters National Conference Proceedings, SAF Publication, 8–13, Society of American Foresters, Bethesda, Maryland, USA, 186–196, 1986.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (last access: 8 June 2023), 2019.
Rickenmann, D.: Schwemmholz und Hochwasser, Wasser Energie Luft, 89, 115–119, 1997.
Rickenmann, D. and Koschni, A.:
Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland, Hydrol. Process., 24, 993–1007, https://doi.org/10.1002/hyp.7536, 2010.
Rickenmann, D., Canuto, N., Koschni, A.: Ereignisanalyse Hochwasser 2005. Teilprojekt Vertiefung Wildbäche: Einfluss von Lithologie/Geotechnik und Niederschlag auf die Wildbachaktivität beim Hochwasser 2005, Swiss Federal Office for Environment, Birmensdorf, Switzerland, 44 pp., 2008.
Rickenmann, D., Badoux, A., and Hunzinger, L.:
Significance of sediment transport processes during piedmont floods: the 2005 flood events in Switzerland, Earth Surf. Proc. Land., 41, 224–230, https://doi.org/10.1002/esp.3835, 2016.
Rickli, C. and Bucher, H.: Einfluss ufernaher Bestockungen auf das Schwemmholzvorkommen in Wildbächen, Eidg. Forschungsanstalt für Wald Schnee und Landschaft WSL, Birmensdorf, Switzerland, 94 pp., https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:8757 (last access: 8 June 2023), 2006.
Rickli, C., McArdell, B., Badoux, A., Loup, B.: Database shallow landslides and hillslope debris flows, in: Proceedings of the 13th Congress INTERPRAEVENT 2016, 30 May to 2 June 2016, Luzern, Switzerland, edited by: Koboltschnig, G., International Research Society INTERPRAEVENT, Klagenfurt, Austria, 242–243, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:20790 (last access: 8 June 2023), 2016.
Rickli, C., Badoux, A., Rickenmann, D., Steeb, N., and Waldner, P.:
Large wood potential, piece characteristics, and flood effects in Swiss mountain streams, Phys. Geogr., 3646, 1–23, https://doi.org/10.1080/02723646.2018.1456310, 2018.
Rigon, E., Comiti, F., and Lenzi, M. A.:
Large wood storage in streams of the Eastern Italian Alps and the relevance of hillslope processes, Water Resour. Res., 48, 1–18, https://doi.org/10.1029/2010WR009854, 2012.
Rimböck, A.: Luftbildbasierte Abschätzung des Schwemmholzpotentials (LASP) in Wildbächen, in: Festschrift aus Anlass des 75-jährigen Bestehens der Versuchsanstalt für Wasserbau und Wasserwirtschaft der Technischen Universität München in Obernach, edited by: Strobl, Th., Eigenverlag, München, Germany, 202–213, 2001.
RStudio Team: RStudio: Integrated Development Environment for R, RStudio, PBC, Boston, MA, USA, http://www.rstudio.com/ (last access: 12 June 2023), 2021.
Ruiz-Villanueva, V. and Steeb, N.: GIS-Fuzzy logic large wood recruitment toolbox, Zenodo [code], https://doi.org/10.5281/zenodo.8037006, 2023.
Ruiz-Villanueva, V. and Stoffel, M.: Application of fuzzy logic to large organic matter recruitment in forested river basins, Proceedings of the 5th IAHREurope Congress – New Challenges in Hydraulic Research and Engineering, 12–14 June 2018, Trento, Italy, 467–468, https://www.researchgate.net/profile/Virginia-Ruiz-Villanueva/publication/325996246_Application_of_fuzzy (last access: 12 June 2023), 2018.
Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, A., Eguibar, M. A., and Pardo-Igúzquiza, E.:
Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin, Hydrol. Process., 27, 3424–3437, https://doi.org/10.1002/hyp.9433, 2013.
Ruiz-Villanueva, V., Bladé Castellet, E., Díez-Herrero, A., Bodoque, J. M., and Sánchez-Juny, M.:
Two-dimensional modelling of large wood transport during flash floods, Earth Surf. Proc. Land., 39, 438–449, https://doi.org/10.1002/esp.3456, 2014a.
Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., and Bodoque, J. M.:
Two-dimensional numerical modeling of wood transport, J. Hydroinform., 16, 1077–1096, https://doi.org/10.2166/hydro.2014.026, 2014b.
Ruiz-Villanueva, V., Díez-Herrero, A., Ballesteros, J. A., and Bodoque, J. M.:
Potential large woody debris recruitment due to landslides, bank erosion and floods in mountain basins: a quantitative estimation approach, River Res. Appl., 30, 81–97, https://doi.org/10.1002/rra.2614, 2014c.
Ruiz-Villanueva, V., Wyzga, B., Zawiejska, J., Hajdukiewicz, M., and Stoffel, M.:
Factors controlling large-wood transport in a mountain river, Geomorphology, 272, 21–31, https://doi.org/10.1016/j.geomorph.2015.04.004, 2015.
Ruiz-Villanueva, V., Piégay, H., Gurnell, A. M., Marston, R. A., and Stoffel, M.:
Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges, Rev. Geophys., 54, 611–652, https://doi.org/10.1002/2015RG000514, 2016.
Ruiz-Villanueva, V., Badoux, A., Rickenmann, D., Böckli, M., Schläfli, S., Steeb, N., Stoffel, M., and Rickli, C.:
Impacts of a large flood along a mountain river basin: the importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland), Earth Surf. Dynam., 6, 1115–1137, https://doi.org/10.5194/esurf-6-1115-2018, 2018.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., and Wohl, E.:
Characterization of wood-laden flows in rivers, Earth Surf. Proc. Land., 44, 1694–1709, https://doi.org/10.1002/esp.4603, 2019.
Ruiz-Villanueva, V., Gamberini, C., Bladé, E., Stoffel, M., and Bertoldi, W.:
Numerical Modeling of Instream Wood Transport, Deposition, and Accumulation in Braided Morphologies Under Unsteady Conditions: Sensitivity and High-Resolution Quantitative Model Validation, Water Resour. Res., 56, 1–22, https://doi.org/10.1029/2019WR026221, 2020.
Ruiz-Villanueva, V., Piégay, H., Scorpio, V., Bachmann, A., Brousse, G., Cavalli, M., Comiti, F., Crema, S., Fernández, E., Furdada, G., Hajdukiewicz, H., Hunzinger, L., Lucía, A., Marchi, L., Moraru, A., Piton, G., Rickenmann, D., Righini, M., Surian, N., Yassine, R., and Wyżga, B.: River Widening in Mountain and Foothills Areas During Floods: Insights from a European Meta-Analysis, SSRN Electron. J., https://doi.org/10.2139/ssrn.4463174, in press, 2023.
Schalko, I.:
Laboratory Flume Experiments on the Formation of Spanwise Large Wood Accumulations: I. Effect on Backwater Rise, Water Resour. Res., 55, 4854–4870, https://doi.org/10.1029/2018WR024649, 2019.
Schalko, I., Schmocker, L., Weitbrecht, V., and Boes, R. M.:
Backwater Rise due to Large Wood Accumulations, J. Hydraul. Eng., 144, 04018056, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001501, 2018.
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., and Crowley, J.: GGally: Extension to `ggplot2', R package version 2.1.2, https://CRAN.R-project.org/package=GGally (last access: 12 June 2023), 2021.
Schmocker, L. and Weitbrecht, V.:
Driftwood: Risk Analysis and Engineering Measures, J. Hydraul. Eng., 139, 683–695, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000728, 2013.
Seo, J., Nakamura, F., and Chun, K. W.:
Dynamics of large wood at the watershed scale: A perspective on current research limits and future directions, Landsc. Ecol. Eng., 6, 271–287, https://doi.org/10.1007/s11355-010-0106-3, 2010.
Simon, A.: Shear-strength determination and stream-bank instability in loess-derived alluvium, West Tennessee, USA, in: Applied Quaternary Research, edited by: DeMulder, E. J. and Hageman, B. P., A. A. Balkema Publications, Rotterdam, Netherlands, 129–146, ISBN 9781003079309, 1989.
Spreitzer, G., Tunnicliffe, J., Friedrich, H.:
Porosity and volume assessments of large wood (LW) accumulations, Geomorphology, 358, 107122, https://doi.org/10.1016/j.geomorph.2020.107122, 2020.
Steeb, N.: Empirical prediction of large wood transport during flood events, Proceedings of the 5th IHAR Europe Congress – New challenges in Hydraulic Research and Engineering, 12–14 June 2018, Trento, Italy, https://event.unitn.it/iahr2018/ (last access: 12 June 2023), 2018.
Steeb, N., Kuratli, B., Rickli, C., Badoux, A., and Rickenmann, D.:
GIS-Modellierung des Schwemmholzpotentials in alpinen Einzugsgebieten, FAN Agenda 2/2017, FAN Fachleute Naturgefahren Schweiz, 9–12, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:15822 (last access 8 June 2023), 2017a.
Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., Waldner, P.:
Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005, Geomorphology, 279, 112–127, https://doi.org/10.1016/j.geomorph.2016.10.011, 2017b.
Steeb, N., Badoux, A., Rickli, C., and Rickenmann, D.: Detailbericht zum Forschungsprojekt WoodFlow: Empirische Schätzformeln, Eidg. Forschungsanstalt WSL, Birmensdorf, Switzerland, 60 pp., https://woodflow.wsl.ch/fileadmin/user_upload/WSL/Microsite/Woodflow/Detailbericht_Empirische_Schaetzformeln.pdf (last access: 8 June 2023), 2019a.
Steeb, N., Badoux, A., Rickli, C., and Rickenmann, D.: Detailbericht zum Forschungsprojekt WoodFlow: Empirischer GIS-Ansatz, Eidg. Forschungsanstalt WSL, Birmensdorf, Switzerland, 45 pp., https://woodflow.wsl.ch/fileadmin/user_upload/WSL/Microsite/Woodflow/Detailbericht_EGA.pdf (last access: 12 June 2023), 2019b.
Steeb, N., Rickenmann, D., Rickli, C., and Badoux, A.: Large wood event database, EnviDat [data set], https://www.envidat.ch/dataset/large-wood-event-database (last access: 12 June 2023), 2021.
Steeb, N., Badoux, A., Rickli, C., and Rickenmann, D.: Empirical prediction of large wood transport during flood events, Proceedings of the 11th IHAR International Conference on Fluvial Hydraulics, River Flow 2022, 8–10 November 2022, Kingston and Ottawa, https://www.rf2022.com/ (last access: 12 June 2023), 2022.
Steeb, N., Kuratli, B., and Rickenmann, D.: GIS-Empirical large wood recruitment toolbox (EGA), Zenodo [code], https://doi.org/10.5281/zenodo.8037075, 2023.
Steel, E. A., Richards, W. H., and Kelsley, K. A.: Wood and wildlife: Benefits of river wood to terrestrial and aquatic vertebrates, in: The ecology and Management of Wood in World Rivers, edited by: Gregory, S., Boyer, K., and Gurnell, A., American Fisheries Society and their issues are called Symposium, 37, Bethesda, Maryland, USA, 235–247, https://doi.org/10.47886/9781888569568, 2003.
Strahler, A. N.:
Quantitative analysis of watershed geomorphology, Eos T. Am. Geophys. Un., 38, 913–920, https://doi.org/10.1029/TR038i006p00913, 1957.
Thevenet, A., Citterio, A., and Piegay, H.:
A new methodology for the assessment of large woody debris accumulations on highly modified rivers (example of two French Piedmont rivers), Regul. River., 14, 467–483, https://doi.org/10.1002/(SICI)1099-1646(1998110)14:6<467::AID-RRR514>.0.CO;2-X, 1998.
Uchiogi, T., Shima, J., Tajima, H., and Ishikawa, Y.: Design Methods for Wood-Debris Entrapment, Proceedings of the 5th International Symposium Interpraevent 1996, 24–28 June 1996, Garmisch-Partenkirchen, Germany, 279–288, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/1996_5_279.pdf (last access: 12 June 2023)1996.
van Sickle, J. and Gregory, S. V.: Modeling inputs of large woody debris to streams from falling trees, Can. J. Forest Res., 20, 1593–1601, https://doi.org/10.1139/x90-211, 1990.
von Glutz, M.: Verfahren zur Abschätzung des Schwemmholzpotentials von Wildbächen, Bachelor thesis, Schweizerische Hochschule für Landwirtschaft (SHL), Zollikofen, Switzerland, 116 pp., 2011.
Waldner, P., Köchli, D., Usbeck, T., Schmocker, L., Sutter, F., Rickli, C., Rickenmann, D., Lange, D., Hilker, N., Wirsch, A., Siegrist, R., Hug, C, and Kaennel, M.: Schwemmholz des Hochwassers 2005: Schlussbericht des WSL-Teilprojekts Schwemmholz der Ereignisanalyse BAFU/WSL des Hochwassers 2005, Eidg. Forschungsanstalt WSL, Swiss Federal Office for Environment, Birmensdorf, Switzerland, 70 pp., 2009.
Welty, J. J., Beechie, T., Sullivan, K., Hyink, D. M., Bilby, R. E., Andrus, C., and Pess, G.: Riparian aquatic interaction simulator (RAIS): A model of riparian forest dynamics for the generation of large woody debris and shade, Forest Ecol. Manag., 162, 299–318, https://doi.org/10.1016/S0378-1127(01)00524-2, 2002.
Wohl, E.: Bridging the gaps: An overview of wood across time and space in diverse rivers, Geomorphology, 279, 3–26, https://doi.org/10.1016/j.geomorph.2016.04.014, 2017.
Wohl, E. and Scott, D. N.: Wood and sediment storage and dynamics in river corridors, Earth Surf. Proc. Land., 42, 5–23, https://doi.org/10.1002/esp.3909, 2016.
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N., Comiti, F., Gurnell, A. M., Piegay, H., Lininger, K. B., Jaeger, K. L., Walters, D. M., and Fausch, K. D.: The Natural Wood Regime in Rivers, BioScience, 69, 259–273, https://doi.org/10.1093/biosci/biz013, 2019.
Wondzell, S. M. and Bisson, P. A.: Influence of wood on aquatic biodiversity, in: The ecology and Management of Wood in World Rivers, edited by: Gregory, S., Boyer, K., and Gurnell, A., American Fisheries Society Symposium, 37, Bethesda, Maryland, USA, 249–263, https://doi.org/10.47886/9781888569568, 2003.
WSL: Swiss National Forest Inventory NFI: Data from the surveys 2004/06 (LFI3) and 2009/13 (LFI4), provided by Markus Huber, 6 June 2016, https://www.lfi.ch/index-en.php (last access: 8 June 2023), 2016.
WSL: WoodFlow – Schwemmholzmanagement an Fliessgewässern, https://woodflow.wsl.ch (last access: 19 June 2023), 2023.
Zeh Weissmann, H., Könitzer, C., and Bertiller, A.:
Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie) – Ergebnisse der ökomorphologischen Kartierung, Umwelt-Zustand, Nr. 0926, FOEN – Federal Office for the Environment, Bern, Switzerland, 100 pp., https://www.bafu.admin.ch/bafu/de/home/themen/wasser/publikationen-studien/publikationen-wasser/strukturen-fliessgewaesser-schweiz.html (last access: 12 June 2023), 2009.
Zischg, A. P., Galatioto, N., Deplazes, S., Weingartner, R., and Mazzorana, B.: Modelling spatiotemporal dynamics of large wood recruitment, transport, and deposition at the river reach scale during extreme floods, Water, 10, 1134, https://doi.org/10.3390/w10091134, 2018.
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Various models have been used in science and practice to estimate how much large wood (LW) can...