Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-615-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-615-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models
Sam Y. J. Huang
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan
Steven Y. J. Lai
CORRESPONDING AUTHOR
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan
Ajay B. Limaye
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA 22904, USA
Brady Z. Foreman
Department of Geology, Western Washington University, Bellingham, WA 98225, USA
Chris Paola
Department of Earth Sciences, University of Minnesota, Minneapolis,
MN 55455, USA
Related authors
No articles found.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2024-2011, https://doi.org/10.5194/egusphere-2024-2011, 2024
Short summary
Short summary
We propose a new mechanism of widespread surficial co-seismic sediment entrainment by seismic motions in subduction earthquakes. Our physical experiments show that shear from sediment-water relative velocities from long-period earthquake motions can mobilize synthetic fine marine sediment. High frequency vertical shaking can enhance this mobilization. According to our results, the largest tsunamigenic earthquakes that rupture to the trench may be distinguishable in the sedimentary record.
John F. Harrison, Steven Yueh-Jen Lai, and Yu-Hsiang Yeh
Abstr. Int. Cartogr. Assoc., 7, 55, https://doi.org/10.5194/ica-abs-7-55-2024, https://doi.org/10.5194/ica-abs-7-55-2024, 2024
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Gerard Salter, Vaughan R. Voller, and Chris Paola
Earth Surf. Dynam., 7, 911–927, https://doi.org/10.5194/esurf-7-911-2019, https://doi.org/10.5194/esurf-7-911-2019, 2019
Short summary
Short summary
Bifurcations are the switches that steer water and sediment in delta and multithread river networks, playing an important role in shaping the landscape. In lab experiments, we found that when the downstream branches grow through time, frequent switching in the water and sediment partitioning occurs. In contrast, once sediment freely exits the downstream boundary, long periods of time when one branch dominates occur; however, unlike our theoretical prediction, these are not permanent.
Rebecca L. Caldwell, Douglas A. Edmonds, Sarah Baumgardner, Chris Paola, Samapriya Roy, and Jaap H. Nienhuis
Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019, https://doi.org/10.5194/esurf-7-773-2019, 2019
Short summary
Short summary
River deltas are valuable resources that support biodiversity and human habitation. Despite this we do not have a global census of deltas nor do we know the conditions that promote their formation. We surveyed 5399 river mouths greater than 50 m wide and found that 2174 (40 %) create a delta. The conditions that lead to delta formation are high sediment input and low wave and tide conditions. These results can be used to understand how deltas will adapt to environmental changes.
Stephanie S. Day, Karen B. Gran, and Chris Paola
Hydrol. Earth Syst. Sci., 22, 3261–3273, https://doi.org/10.5194/hess-22-3261-2018, https://doi.org/10.5194/hess-22-3261-2018, 2018
Short summary
Short summary
Permanent gullies are deep steep-sided channels that erode as water falls over the upstream end. Erosion of these features is a concern where people and climate change have altered how water moves over the land. This paper analyzes a set of experiments that were used to determine how changing gully flows impact erosion. We found that while increasing the volume of water will increase erosion, changing the flow rate into gullies will not impact the total erosion, but will alter gully shape.
Mark A. Torres, Ajay B. Limaye, Vamsi Ganti, Michael P. Lamb, A. Joshua West, and Woodward W. Fischer
Earth Surf. Dynam., 5, 711–730, https://doi.org/10.5194/esurf-5-711-2017, https://doi.org/10.5194/esurf-5-711-2017, 2017
Short summary
Short summary
In this paper, we describe a new model for the storage times of sediments and organic carbon (OC) in river deposits. Comparisons between our model predictions and field data show good agreement, which suggests that our model accurately captures the relevant time and space scales. An implication of our model is that OC is stored in river deposits over geologic timescales and, as a result, we propose that fluvial storage plays a larger role in the carbon cycle than previously recognized.
Fiona J. Clubb, Simon M. Mudd, David T. Milodowski, Declan A. Valters, Louise J. Slater, Martin D. Hurst, and Ajay B. Limaye
Earth Surf. Dynam., 5, 369–385, https://doi.org/10.5194/esurf-5-369-2017, https://doi.org/10.5194/esurf-5-369-2017, 2017
Short summary
Short summary
Floodplains and fluvial terraces can provide information about current and past river systems, helping to reveal how channels respond to changes in both climate and tectonics. We present a new method of identifying these features objectively from digital elevation models by analysing their slope and elevation compared to the modern river. We test our method in eight field sites, and find that it provides rapid and reliable extraction of floodplains and terraces across a range of landscapes.
Pauline Delorme, Vaughan Voller, Chris Paola, Olivier Devauchelle, Éric Lajeunesse, Laurie Barrier, and François Métivier
Earth Surf. Dynam., 5, 239–252, https://doi.org/10.5194/esurf-5-239-2017, https://doi.org/10.5194/esurf-5-239-2017, 2017
Short summary
Short summary
Alluvial fans are sedimentary deposits that take place at the outlet of mountain range. This location makes them the first sedimentary archive where sediments, eroded from mountains, are deposed. Their morphology is controlled by the water and sediment discharges and sediment characteristics. By using controlled laboratory experiments, we show that an alluvial fan composed of two distinct sediments has a characteristic shape; it can be decomposed into two fans made up of one sediment.
J.-L. Grimaud, C. Paola, and V. Voller
Earth Surf. Dynam., 4, 11–23, https://doi.org/10.5194/esurf-4-11-2016, https://doi.org/10.5194/esurf-4-11-2016, 2016
Short summary
Short summary
Knickpoints represent localized steps along a river profile (e.g. waterfalls or rapids) that are commonly interpreted as the geomorphic response of river systems to external changes. We used a simple experiment to show that knickpoints may not only respond to external base-level change but are also able to self-organize. We highlight the effect of alluvial cover in delaying knickpoint formation and show that river bed strength controls both retreat velocity and geometry of knickpoints.
M. Liang, V. R. Voller, and C. Paola
Earth Surf. Dynam., 3, 67–86, https://doi.org/10.5194/esurf-3-67-2015, https://doi.org/10.5194/esurf-3-67-2015, 2015
Short summary
Short summary
In this work we present DeltaRCM, a reduced-complexity model for river delta formation. It is a rule-based cellular morphodynamic model, in contrast to reductionist models based on detailed computational fluid dynamics. DeltaRCM is able to resolve channel dynamics and to produce stratigraphy. We also explain the meaning of complexity reduction, especially the essential processes to be included in modeling deltas.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Overdeepening or tunnel valley of the Aare glacier on the northern margin of the European Alps: Basins, riegels, and slot canyons
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Downstream rounding rate of pebbles in the Himalaya
Post-fire Variability in Sediment Transport by Ravel in the Diablo Range
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern Central Andes
Examination of Analytical Shear Stress Predictions for Coastal Dune Evolution
A physics-based model for fluvial valley width
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Validating floc settling velocity models in rivers and freshwater wetlands
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
A simple model for faceted topographies at normal faults based on an extended stream-power law
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
River suspended-sand flux computation with uncertainty estimation, using water samples and high-resolution ADCP measurements
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Analysis of autogenic bifurcation processes resulting in river avulsion
Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium
Bedload transport fluctuations, flow conditions, and disequilibrium ratio at the Swiss Erlenbach stream: results from 27 years of high-resolution temporal measurements
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Coexistence of two dune scales in a lowland river
Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor
Numerical modelling of the evolution of a river reach with a complex morphology to help define future sustainable restoration decisions
Method to evaluate large-wood behavior in terms of the convection equation associated with sediment erosion and deposition
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk
EGUsphere, https://doi.org/10.5194/egusphere-2024-683, https://doi.org/10.5194/egusphere-2024-683, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2694, https://doi.org/10.5194/egusphere-2023-2694, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth Orr, Taylor Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo Alonso
EGUsphere, https://doi.org/10.5194/egusphere-2024-784, https://doi.org/10.5194/egusphere-2024-784, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100-kyr) preserved downstream and higher-frequency cycles (21/40-kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
EGUsphere, https://doi.org/10.5194/egusphere-2024-855, https://doi.org/10.5194/egusphere-2024-855, 2024
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes which are an important line of defense against storm related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
EGUsphere, https://doi.org/10.5194/egusphere-2024-524, https://doi.org/10.5194/egusphere-2024-524, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster settling particles called flocs, but floc settling velocity theory has not been fully validated. Data from the Wax Lake Delta verify a semi-empirical model relying on turbulence and geochemical factors. We showed that the representative grain diameter within flocs relies on floc structure and that floc internal flow follows a model in which flocs consist of permeable grain clusters, thus improving a physics-based settling velocity model.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-336, https://doi.org/10.5194/egusphere-2024-336, 2024
Short summary
Short summary
Faceted topographies are impressing footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and its interaction with the river network theoretically and numerically. As a main result beyond several relations for the the geometry of facets, the horizontal displacement associated to normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Jessica Laible, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2348, https://doi.org/10.5194/egusphere-2023-2348, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross section. It merges water samples taken at various positions throughout the cross section with high-resolution acoustic velocity and discharge measurements. The method also determines the sand flux uncertainty and can be easily applied to other sites using the available open-source code.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024, https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Short summary
River bifurcations often show the closure of one branch (avulsion), whose causes are still poorly understood. Our model shows that when one branch stops transporting sediments, the other considerably erodes and captures much more flow, resulting in a self-sustaining process. This phenomenon intensifies when increasing the length of the branches, eventually leading to branch closure. This work may help to understand when avulsions occur and thus to design sustainable river restoration projects.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024, https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary
Short summary
Coastal flooding can cause significant damage to coastal ecosystems, infrastructure, and communities and is expected to increase in frequency with the acceleration of sea level rise. In order to respond to it, it is crucial to measure and model their frequency and intensity. Here, we show deep-learning techniques can be successfully used to automatically detect flooding events from complex coastal imagery, opening the way to real-time monitoring and data acquisition for model development.
Judith Y. Zomer, Bart Vermeulen, and Antonius J. F. Hoitink
Earth Surf. Dynam., 11, 1283–1298, https://doi.org/10.5194/esurf-11-1283-2023, https://doi.org/10.5194/esurf-11-1283-2023, 2023
Short summary
Short summary
Secondary bedforms that are superimposed on large, primary dunes likely play a large role in fluvial systems. This study demonstrates that they can be omnipresent. Especially during peak flows, they grow large and can have steep slopes, likely affecting flood risk and sediment transport dynamics. Primary dune morphology determines whether they continuously or intermittently migrate. During discharge peaks, the secondary bedforms can become the dominant dune scale.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Christopher Tomsett and Julian Leyland
Earth Surf. Dynam., 11, 1223–1249, https://doi.org/10.5194/esurf-11-1223-2023, https://doi.org/10.5194/esurf-11-1223-2023, 2023
Short summary
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Rabab Yassine, Ludovic Cassan, Hélène Roux, Olivier Frysou, and François Pérès
Earth Surf. Dynam., 11, 1199–1221, https://doi.org/10.5194/esurf-11-1199-2023, https://doi.org/10.5194/esurf-11-1199-2023, 2023
Short summary
Short summary
Predicting river morphology evolution is very complicated, especially for mountain rivers with complex morphologies such as the Lac des Gaves reach in France. A 2D hydromorphological model was developed to reproduce the channel's evolution and provide reliable volumetric predictions while revealing the challenge of choosing adapted sediment transport and friction laws. Our model can provide decision-makers with reliable predictions to design suitable restoration measures for this reach.
Daisuke Harada and Shinji Egashira
Earth Surf. Dynam., 11, 1183–1197, https://doi.org/10.5194/esurf-11-1183-2023, https://doi.org/10.5194/esurf-11-1183-2023, 2023
Short summary
Short summary
This paper proposes a method for describing large-wood behavior in terms of the convection equation and the storage equation, which are associated with active sediment erosion and deposition. Compared to the existing Lagrangian method, the proposed method can easily simulate the behavior of large wood in the flow field with active sediment transport. The method is applied to the flood disaster in the Akatani River in 2017, and the 2-D flood flow computations are successfully performed.
Cited articles
Ashmore, P.: How do gravel-bed rivers braid, Can. J. Earth. Sci, 28,
326–341, https://doi.org/10.1139/e91-030, 1991.
Ashmore, P.: Intensity and characteristic length of braided channel
patterns, Can. J. Earth. Sci, 36, 1656–1666,
https://doi.org/10.1139/L09-088, 2009.
Ashmore, P., Bertoldi, W., and Gardner, J. T.: Active width of gravel-bed
braided rivers, Earth Surf. Proc. Land, 36, 1510–1521,
https://doi.org/10.1002/esp.2182, 2011.
Babonneau, N., Savoye, B., Cremer, M., and Bez, M.: Sedimentary architecture
in meanders of a submarine channel: Detailed study of the present Congo
turbidite channel (Zaiango project), J. Sediment. Res., 80, 852–866,
https://doi.org/10.2110/jsr.2010.078, 2010.
Belderson, R., Kenyon, N., Stride, A., and Pelton, C.: A `braided'
distributary system on the Orinoco deep-sea fan, Mar. Geol., 56, 195–206,
https://doi.org/10.1016/0025-3227(84)90013-6, 1984.
Bertoldi, W., Zanoni, L., and Tubino, M.: Planform dynamics of braided
streams, Earth Surf. Proc. Land, 34, 547–557,
https://doi.org/10.1002/esp.1755, 2009.
Bradley, D. and Roth, G.: Adaptive thresholding using the integral image, J.
Graphics Tools, 12, 13–21, https://doi.org/10.1080/2151237X.2007.10129236,
2007.
Callec, Y., Deville, E., Desaubliaux, G., Griboulard, R., Huyghe, P.,
Mascle, A., Mascle, G., Noble, M., de Carillo, C. P., and Schmitz, J.: The
Orinoco turbidite system: Tectonic controls on sea-floor morphology and
sedimentation, AAPG Bull., 94, 869–887, https://doi.org/10.1306/11020909021,
2010.
Carbonari, C., Recking, A., and Solari, L.: Morphology, bedload, and sorting
process variability in response to lateral confinement: Results from
physical models of gravel-bed rivers, J. Geophys. Res.-Earth, 125, e2020JF005773,
https://doi.org/10.1029/2020JF005773, 2020.
Casalbore, D., Clare, M. A., Pope, E. L., Quartau, R., Bosman, A., Chiocci,
F. L., Romagnoli, C., and Santos, R.: Bedforms on the submarine flanks of
insular volcanoes: New insights gained from high resolution seafloor
surveys, Sedimentology, 68, 1400–1438, https://doi.org/10.1111/sed.12725,
2021.
Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A.,
and Hancock, G. R.: Integrating the LISFLOOD-FP 2D hydrodynamic model with
the CAESAR model: implications for modelling landscape evolution, Earth
Surf. Proc. Land, 38, 1897–1906, https://doi.org/10.1002/esp.3478, 2013.
Deptuck, M. E., Sylvester, Z., Pirmez, C., and O'Byrne, C.:
Migration-aggradation history and 3-D seismic geomorphology of submarine
channels in the Pleistocene Benin-major Canyon, western Niger Delta slope,
Mar. Petrol. Geol., 24, 406–433,
https://doi.org/10.1016/j.marpetgeo.2007.01.005, 2007.
Egozi, R. and Ashmore, P.: Defining and measuring braiding intensity, Earth
Surf. Proc. Land, 33, 2121–2138, https://doi.org/10.1002/esp.1658, 2008.
Egozi, R. and Ashmore, P.: Experimental analysis of braided channel pattern
response to increased discharge, J. Geophys. Res.-Earth, 114, F02012,
https://doi.org/10.1029/2008JF001099, 2009.
Ercilla, G., Alonso, B., Baraza, J., Casas, D., Chiocci, F., Estrada, F.,
Farran, M., Gonthier, E., Perez-Belzuz, F., and Pirmez, C.: New
high-resolution acoustic data from the “braided system” of the Orinoco
deep-sea fan, Mar. Geol., 146, 243–250,
https://doi.org/10.1016/S0025-3227(97)00134-5, 1998.
Ferguson, R. I. and Church, M.: A simple universal equation for grain settling velocity, J. Sediment. Res., 74, 933–937, https://doi.org/10.1306/051204740933, 2004.
Foreman, B. Z., Lai, S. Y. J., Komatsu, Y., and Paola, C.: Braiding of
submarine channels controlled by aspect ratio similar to rivers, Nat.
Geosci., 8, 700–703, https://doi.org/10.1038/ngeo2505, 2015.
Gamberi, F. and Marani, M.: Geomorphology and sedimentary processes of a
modern confined braided submarine channel belt (Stromboli slope valley,
southeastern Tyrrhenian sea), J. Sediment. Res., 81, 686–701,
https://doi.org/10.2110/jsr.2011.56, 2011.
García, M.: Discussion of “The Legend of AF Shields”, J. Hydraul.
Eng., 126, 718–720, 2000.
Garcia Lugo, G., Bertoldi, W., Henshaw, A., and Gurnell, A.: The effect of
lateral confinement on gravel bed river morphology, Water Resour. Res., 51,
7145–7158, https://doi.org/10.1002/2015WR017081, 2015.
Hesse, R., Klaucke, I., Khodabakhsh, S., Piper, D. J., Ryan, W. B., and
Group, N. S.: Sandy submarine braid plains: potential deep-water reservoirs,
AAPG Bull., 85, 1499–1521,
https://doi.org/10.1306/8626CAEB-173B-11D7-8645000102C1865D, 2001.
Huang, S. Y. J., Lai, S. Y. J., Limaye, A. B., Foreman, B. Z., and Paola, C.: Confinement effects of experimental submarine braided channels, Zenodo [data set], https://doi.org/10.5281/zenodo.7601496, 2023.
Imran, J., Parker, G., and Pirmez, C.: A nonlinear model of flow in
meandering submarine and subaerial channels, J. Fluid Mech., 400, 295–331,
https://doi.org/10.1017/S0022112099006515, 1999.
Ippen, A. T. and Harleman, D. R.: Steady-state characteristics of subsurface
flow, in: Proceedings of NBS Semicentennial Symposium on Gravity Waves, NBS,
USA, 18–20 June 1952, 79–93, ISBN 0598544860, 1952.
Janocko, M., Nemec, W., Henriksen, S., and Warchoł, M.: The diversity of
deep-water sinuous channel belts and slope valley-fill complexes, Mar.
Petrol. Geol., 41, 7–34, https://doi.org/10.1016/j.marpetgeo.2012.06.012,
2013.
Jobe, Z. R., Howes, N. C., and Auchter, N. C.: Comparing submarine and
fluvial channel kinematics: Implications for stratigraphic architecture,
Geology, 44, 931–934, https://doi.org/10.1130/G38158.1, 2016.
Keevil, G. M., Peakall, J., Best, J. L., and Amos, K. J.: Flow structure in
sinuous submarine channels: Velocity and turbulence structure of an
experimental submarine channel, Mar. Geol., 229, 241–257,
https://doi.org/10.1016/j.margeo.2006.03.010, 2006.
Lai, S. Y. J., Gerber, T. P., and Amblas, D.: An experimental approach to
submarine canyon evolution, Geophys. Res. Lett., 43, 2741–2747,
https://doi.org/10.1002/2015GL067376, 2016.
Lai, S. Y. J., Hung, S. S. C., Foreman, B. Z., Limaye, A. B., Grimaud, J.
L., and Paola, C.: Stream power controls the braiding intensity of submarine
channels similarly to rivers, Geophys. Res. Lett., 44, 5062–5070,
https://doi.org/10.1002/2017GL072964, 2017.
Lajeunesse, E., Malverti, L., Lancien, P., Armstrong, L., Metivier, F.,
Coleman, S., Smith, C. E., Davies, T., Cantelli, A., and Parker, G.: Fluvial
and submarine morphodynamics of laminar and near-laminar flows: A synthesis,
Sedimentology, 57, 1–26, https://doi.org/10.1111/j.1365-3091.2009.01109.x,
2010.
Limaye, A. B., Grimaud, J L., Lai, S. Y. J., Foreman, B. Z., Komatsu, Y.,
Paola, C., and Baas, J.: Geometry and dynamics of braided channels and bars
under experimental density currents, Sedimentology, 65, 1947–1972,
https://doi.org/10.1111/sed.12453, 2018.
Lofquist, K.: Flow and stress near an interface between stratified liquids,
Phys. Fluids, 3, 158–175, https://doi.org/10.1063/1.1706013, 1960.
Métivier, F., Lajeunesse, E., and Cacas, M. C.: Submarine canyons in the
bathtub, J. Sediment. Res., 75, 6–11, https://doi.org/10.2110/jsr.2005.002,
2005.
Murray, A. B. and Paola, C.: A cellular-model of braided rivers, Nature,
371, 54–57, https://doi.org/10.1038/371054a0, 1994.
Murray, A. B. and Paola, C.: Properties of a cellular braided-stream model,
Earth Surf. Proc. Land, 22, 1001–1025,
https://doi.org/10.1002/(SICI)1096-9837(199711)22:11<1001::AID-ESP798>3.0.CO;2-O, 1997.
Nicholas, A.: Reduced-complexity flow routing models for sinuous
single-thread channels: Intercomparison with a physically-based
shallow-water equation model, Earth Surf. Proc. Land, 34, 641–653,
https://doi.org/10.1002/esp.1761, 2009.
Paola, C.: Modelling stream braiding over a range of scales, in: Gravel Bed Rivers V, edited by: Mosley, M. P., New Zealand Hydrological Society, 11–46, https://hdl.handle.net/11299/164368 (last access: 22 March 2022), 2001.
Parker, G.: On the cause and characteristic scales of meandering and
braiding in rivers, J. Fluid Mech., 76, 457–480,
https://doi.org/10.1017/S0022112076000748, 1976.
Peakall, J. and Sumner, E. J.: Submarine channel flow processes and
deposits: A process-product perspective, Geomorphology, 244, 95–120,
https://doi.org/10.1016/j.geomorph.2015.03.005, 2015.
Peakall, J., McCaffrey, B., and Kneller, B.: A process model for the
evolution, morphology, and architecture of sinuous submarine channels, J.
Sediment. Res., 70, 434–448,
https://doi.org/10.1306/2DC4091C-0E47-11D7-8643000102C1865D, 2000.
Peakall, J., Amos, K. J., Keevil, G. M., Bradbury, P. W., and Gupta, S.:
Flow processes and sedimentation in submarine channel bends, Mar. Petrol.
Geol., 24, 470–486, https://doi.org/10.1016/j.marpetgeo.2007.01.008, 2007.
Peirce, S., Ashmore, P., and Leduc, P.: The variability in the morphological
active width: Results from physical models of gravel-bed braided rivers,
Earth Surf. Proc. Land, 43, 2371–2383, https://doi.org/10.1002/esp.4400,
2018.
Romagnoli, C., Casalbore, D., and Chiocci, F.: La Fossa Caldera breaching
and submarine erosion (Vulcano island, Italy), Mar. Geol., 303, 87–98,
https://doi.org/10.1016/j.margeo.2012.02.004, 2012.
Saint-Ange, F., Savoye, B., Michon, L., Bachelery, P., Deplus, C., De Voogd,
B., Dyment, J., Le Drezen, E., Voisset, M., and Le Friant, A.: A
volcaniclastic deep-sea fan off La Réunion Island (Indian Ocean):
Gradualism versus catastrophism, Geology, 39, 271–274,
https://doi.org/10.1130/G31478.1, 2011.
Schoklitsch, A.: Handbuch des Wasserbaues I, Springer-Verlag, New York, ISBN 3709180880,
1950.
Sequeiros, O. E.: Estimating turbidity current conditions from channel
morphology: A Froude number approach, J. Geophys. Res.-Oceans, 117, C04003,
https://doi.org/10.1029/2011JC007201, 2012.
Sequeiros, O. E., Spinewine, B., Beaubouef, R. T., Sun, T. A. O., Garcia, M.
H., and Parker, G.: Bedload transport and bed resistance associated with
density and turbidity currents, Sedimentology, 57, 1463–1490,
https://doi.org/10.1111/j.1365-3091.2010.01152.x, 2010.
Sisavath, E., Babonneau, N., Saint-Ange, F., Bachèlery, P., Jorry, S.
J., Deplus, C., De Voogd, B., and Savoye, B.: Morphology and sedimentary
architecture of a modern volcaniclastic turbidite system: The Cilaos fan,
offshore La Réunion Island, Mar. Geol., 288, 1–17,
https://doi.org/10.1016/j.margeo.2011.06.011, 2011.
Spinewine, B., Sequeiros, O. E., Garcia, M. H., Beaubouef, R. T., Sun, T.,
Savoye, B., and Parker, G.: Experiments on wedge-shaped deep sea sedimentary
deposits in minibasins and/or on channel levees emplaced by turbidity
currents. Part II. Morphodynamic evolution of the wedge and of the
associated bedforms, J. Sediment. Res., 79, 608–628,
https://doi.org/10.2110/jsr.2009.065, 2009.
Straub, K. M., Mohrig, D., McElroy, B., Buttles, J., and Pirmez, C.:
Interactions between turbidity currents and topography in aggrading sinuous
submarine channels: A laboratory study, Geol. Soc. Am. Bull., 120, 368–385,
https://doi.org/10.1130/B25983.1, 2008.
Sylvester, Z., Pirmez, C., and Cantelli, A.: A model of submarine
channel-levee evolution based on channel trajectories: Implications for
stratigraphic architecture, Mar. Petrol. Geol., 28, 716–727,
https://doi.org/10.1016/j.marpetgeo.2010.05.012, 2011.
Thomas, R. and Nicholas, A.: Simulation of braided river flow using a new
cellular routing scheme, Geomorphology, 43, 179–195,
https://doi.org/10.1016/S0169-555X(01)00128-3, 2002.
Thomas, R., Nicholas, A. P., and Quine, T. A.: Cellular modelling as a tool
for interpreting historic braided river evolution, Geomorphology, 90,
302–317, https://doi.org/10.1016/j.geomorph.2006.10.025, 2007.
Tejedor, A., Schwenk, J., Kleinhans, M., Limaye, A. B., Vulis, L., Carling,
P., Kantz, H., and Foufoula-Georgiou, E.: The entropic braiding index (eBI):
A robust metric to account for the diversity of channel scales in
multi-thread rivers, Geophys. Res. Lett., 49, e2022GL099681,
https://doi.org/10.1029/2022GL099681, 2022.
Weill, P., Lajeunesse, E., Devauchelle, O., Metiver, F., Limare, A.,
Chauveau, B., and Mouaze, D.: Experimental investigation on self-channelized
erosive gravity currents, J. Sediment. Res., 84, 487–498,
https://doi.org/10.2110/jsr.2014.41, 2014.
Williams, R. D., Brasington, J., and Hicks, D. M.: Numerical modelling of
braided river morphodynamics: Review and future challenges, Geography
Compass, 10, 102–127, https://doi.org/10.1111/gec3.12260, 2016.
Zanoni, L., Bertoldi, W., and Tubino, M.: Spatial scales in braided
networks: Experimental observations, River, Coastal and Estuarine
Morphodynamics, in: Proceedings of the 5th IAHR Symposium, Coastal and
Estuarine Morphodynamics, Enschede, Netherlands, 17–21 September 2007,
201–207, ISBN 0415453631, 2007.
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
We use experiments and a model to study the effects of confinement width and the...