Articles | Volume 12, issue 6
https://doi.org/10.5194/esurf-12-1315-2024
https://doi.org/10.5194/esurf-12-1315-2024
Research article
 | 
27 Nov 2024
Research article |  | 27 Nov 2024

A simple model for faceted topographies at normal faults based on an extended stream-power law

Stefan Hergarten

Related authors

Old orogen–young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
Earth Surf. Dynam., 13, 745–770, https://doi.org/10.5194/esurf-13-745-2025,https://doi.org/10.5194/esurf-13-745-2025, 2025
Short summary
MinSIA v1: a lightweight and efficient implementation of the shallow ice approximation
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2025-2242,https://doi.org/10.5194/egusphere-2025-2242, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024,https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024,https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary

Cited articles

Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, M., and Hodges, K. V.: Climate controls on erosion in tectonically active landscapes, Sci. Adv., 6, eaaz3166, https://doi.org/10.1126/sciadv.aaz3166, 2020. . a
Castelltort, S. and Simpson, G.: River spacing and drainage network growth in widening mountain ranges, Basin Res., 18, 267–276, https://doi.org/10.1111/j.1365-2117.2006.00293.x, 2006. a
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, J. Geophys. Res.-Earth, 114, F03007, https://doi.org/10.1029/2008JF001146, 2009. a
Densmore, A. L., Ellis, M. A., and Anderson, R. S.: Landsliding and the evolution of normal-fault-bounded mountains, J. Geophys. Res., 103, 15203–15219, https://doi.org/10.1029/98JB00510, 1998. a, b
Ellis, M. A., Densmore, A. L., and Anderson, R. S.: Development of mountainous topography in the Basin Ranges, USA, Basin Res., 11, 21–41, https://doi.org/10.1046/j.1365-2117.1999.00087.x, 1999. a, b
Download
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Share