Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-35-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-35-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Introducing standardized field methods for fracture-focused surface process research
Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Alex Rinehart
Department of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
Jennifer Aldred
Achieving in Research, Math, and Science Center, New Mexico Highlands University, Las Vegas, NM 87701, USA
Samantha Berberich
Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Maxwell P. Dahlquist
Department of Geology, University of the South, Sewanee, TN 37383, USA
Sarah G. Evans
Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28608, USA
Russell Keanini
Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Stephen E. Laubach
Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78714, USA
Faye Moser
Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Mehdi Morovati
Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Steven Porson
Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Monica Rasmussen
Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Uri Shaanan
Geological Survey of Israel, Jerusalem 9692100, Israel
Related authors
No articles found.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Related subject area
Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Inverse modeling of turbidity currents using an artificial neural network approach: verification for field application
Automated quantification of floating wood pieces in rivers from video monitoring: a new software tool and validation
Particle size dynamics in abrading pebble populations
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis
Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct
Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments
Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset
Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks
Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
The R package “eseis” – a software toolbox for environmental seismology
Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)
A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix
Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics
An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics
Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains
Constraining the stream power law: a novel approach combining a landscape evolution model and an inversion method
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613, https://doi.org/10.5194/esurf-11-593-2023, https://doi.org/10.5194/esurf-11-593-2023, 2023
Short summary
Short summary
We present a method to extract surface change information from 4D time series of topographic point clouds recorded with a terrestrial laser scanner. The method uses sensor information to spatially and temporally smooth the data, reducing uncertainties. The Kalman filter used for the temporal smoothing also allows us to interpolate over data gaps or extrapolate into the future. Clustering areas where change histories are similar allows us to identify processes that may have the same causes.
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022, https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Short summary
Erosion is a threat for soils with rainfall as the driving force. The annual rainfall erosivity factor quantifies rainfall impact by analysing high-resolution rainfall time series (~ 5 min). Due to a lack of measuring stations, alternatives for its estimation are analysed in this study. The best results are obtained for regionalisation of the erosivity factor itself. However, the identified minimum of 60-year time series length suggests using rainfall generators as in this study as well.
Hajime Naruse and Kento Nakao
Earth Surf. Dynam., 9, 1091–1109, https://doi.org/10.5194/esurf-9-1091-2021, https://doi.org/10.5194/esurf-9-1091-2021, 2021
Short summary
Short summary
This paper proposes a method to reconstruct the hydraulic conditions of turbidity currents from turbidites. We investigated the validity and problems of this method in application to actual field datasets using artificial data. Once this method is established, it is expected that the method will elucidate the generation process of turbidity currents and will help to predict the geometry of resultant turbidites in deep-sea environments.
Hossein Ghaffarian, Pierre Lemaire, Zhang Zhi, Laure Tougne, Bruce MacVicar, and Hervé Piégay
Earth Surf. Dynam., 9, 519–537, https://doi.org/10.5194/esurf-9-519-2021, https://doi.org/10.5194/esurf-9-519-2021, 2021
Short summary
Short summary
Quantifying wood fluxes in rivers would improve our understanding of the key processes in river ecology and morphology. In this work, we introduce new software for the automatic detection of wood pieces in rivers. The results show 93.5 % and 86.5 % accuracy for piece number and volume, respectively.
András A. Sipos, Gábor Domokos, and János Török
Earth Surf. Dynam., 9, 235–251, https://doi.org/10.5194/esurf-9-235-2021, https://doi.org/10.5194/esurf-9-235-2021, 2021
Short summary
Short summary
Abrasion of sedimentary particles is widely associated with mutual collisions. Utilizing results of individual, geometric abrasion theory and techniques adopted in statistical physics, a new model for predicting the collective mass evolution of large numbers of particles is introduced. Our model uncovers a startling fundamental feature of collective particle dynamics: collisional abrasion may either focus size distributions or it may act in the opposite direction by dispersing the distribution.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021, https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other and, if they become full enough, how they merge into one another.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Mariela Perignon, Jordan Adams, Irina Overeem, and Paola Passalacqua
Earth Surf. Dynam., 8, 809–824, https://doi.org/10.5194/esurf-8-809-2020, https://doi.org/10.5194/esurf-8-809-2020, 2020
Short summary
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Taylor Smith, Aljoscha Rheinwalt, and Bodo Bookhagen
Earth Surf. Dynam., 7, 475–489, https://doi.org/10.5194/esurf-7-475-2019, https://doi.org/10.5194/esurf-7-475-2019, 2019
Short summary
Short summary
Representing the surface of the Earth on an equally spaced grid leads to errors and uncertainties in derived slope and aspect. Using synthetic data, we develop a quality metric that can be used to compare the uncertainties in different datasets. We then apply this method to a real-world lidar dataset, and find that 1 m data have larger error bounds than lower-resolution data. The highest data resolution is not always the best choice – it is important to consider the quality of the data.
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019, https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Short summary
Monitoring rock slopes for a long time helps to understand the impact of climate change on the alpine environment. Measurements of seismic signals are often affected by external influences, e.g., unwanted anthropogenic noise. In the presented work, these influences are automatically identified and removed to enable proper geoscientific analysis. The methods presented are based on machine learning and intentionally kept generic so that they can be equally applied in other (more generic) settings.
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018, https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Short summary
By using a set of evaluation methods involving GPS, ICESat, hydrological modelling and altimetry satellite orbits, we show that the novel radial basis function (RBF) processing technique can be used for processing the Gravity Recovery and Climate Experiment (GRACE) data yielding global gravity field models which fit independent reference values at the same level as commonly accepted global geopotential models based on spherical harmonics.
Michael Dietze
Earth Surf. Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018, https://doi.org/10.5194/esurf-6-669-2018, 2018
Short summary
Short summary
Environmental seismology is the study of the seismic signals emitted by Earth surface processes. This emerging research field is at the intersection of many Earth science disciplines. The overarching scope requires free integrative software that is accepted across scientific disciplines, such as R. The article introduces the R package "eseis" and illustrates its conceptual structure, available functions, and worked examples.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Andrew Valentine and Lara Kalnins
Earth Surf. Dynam., 4, 445–460, https://doi.org/10.5194/esurf-4-445-2016, https://doi.org/10.5194/esurf-4-445-2016, 2016
Short summary
Short summary
Learning algorithms are powerful tools for understanding and working with large data sets, particularly in situations where any underlying physical models may be complex and poorly understood. Such situations are common in geomorphology. We provide an accessible overview of the various approaches that fall under the umbrella of "learning algorithms", discuss some potential applications within geomorphometry and/or geomorphology, and offer advice on practical considerations.
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015, https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary
Short summary
A semi-distributed hydrological model is used to analyse the hydrological cycle of a glaciated high-mountain catchment in the Pamirs.
We overcome data scarcity by utilising various raster data sets as meteorological input. Temperature in combination with the amount of snow provided in winter play the key role in the annual cycle.
This implies that expected Earth surface processes along precipitation and altitude gradients differ substantially.
T. Croissant and J. Braun
Earth Surf. Dynam., 2, 155–166, https://doi.org/10.5194/esurf-2-155-2014, https://doi.org/10.5194/esurf-2-155-2014, 2014
Cited articles
Aich, S. and Gross, M. R.: Geospatial analysis of the association between bedrock fractures and vegetation in an arid environment, Int. J. Remote Sens., 29, 6937–6955, https://doi.org/10.1080/01431160802220185, 2008.
Al-Fahmi, M. M., Hooker, J. N., Al-Mojel, A. S., and Cartwright, J. A.: New scaling of fractures in a giant carbonate platform from outcrops and subsurface, J. Struct. Geol., 140, 104142, https://doi.org/10.1016/j.jsg.2020.104142, 2020.
Aldred, J., Eppes, M. C., Aquino, K., Deal, R., Garbini, J., Swami, S., Tuttle, A., and Xanthos, G.: The influence of solar-induced thermal stresses on the mechanical weathering of rocks in humid mid-latitudes, Earth Surf. Proc. Land., 41, 603–614, 2015.
Alneasan, M. and Behnia, M.: An experimental investigation on tensile fracturing of brittle rocks by considering the effect of grain size and mineralogical composition, Int. J. Rock Mech. Min., 137, 104570, https://doi.org/10.1016/j.ijrmms.2020.104570, 2021.
Anders, M. H., Laubach, S. E., and Scholz, C. H.: Microfractures: a review, J. Struct. Geol., 69, 377–394, https://doi.org/10.1016/j.jsg.2014.05.011, 2014.
Anderson, R. S.: Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46, 35–58, 2002.
Anderson, T. L.: Fracture Mechanics: Fundamentals and Applications, third edn., Taylor & Francis Group, Boca Raton, FL, ISBN10 9781498728133, 2005.
Andresen, C. A., Hansen, A., Le Goc, R., Davy, P., and Hope, S. M.: Topology of fracture networks, AIP Conf. Proc., 1, 7, https://doi.org/10.3389/fphy.2013.00007, 2013.
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019.
Andričević, P., Sellwood, E. L., Freiesleben, T., Hidy, A. J., Kook, M., Eppes, M. C., and Jain, M.: Dating fractures using luminescence, Earth Planet. Sc. Lett., 624, 118461, https://doi.org/10.1016/j.epsl.2023.118461, 2023.
ASTM: D7012-14: Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens Under Varying States of Stress and Temperatures, ASTM D7012-14e1, 2017.
Atkinson, B. K.: Fracture Mechanics of Rock, Academic Press Geology Series, Academic Press Inc., Orlando, Florida, https://doi.org/10.1016/C2009-0-21691-6, 1987.
Ayatollahi, M. R. and Akbardoost, J.: Size and geometry effects on rock fracture toughness: Mode I fracture, Rock Mech. Rock Eng., 47, 677–687, https://doi.org/10.1007/s00603-013-0430-7, 2014.
Aydin, A. and Basu, A.: The Schmidt hammer in rock material characterization, Eng. Geol., 81, 1–14, https://doi.org/10.1016/j.enggeo.2005.06.006, 2005.
Baecher, G. B.: Statistical analysis of rock mass fracturing, J. Int. Ass. Math. Geol., 15, 329–348, https://doi.org/10.1007/BF01036074, 1983.
Balco, G.: Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating, Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, 2020.
Barthélémy, J.-F., Guiton, M. L. E., and Daniel, J.-M.: Estimates of fracture density and uncertainties from well data, Int. J. Rock Mech. Min., 46, 590–603, https://doi.org/10.1016/j.ijrmms.2008.08.003, 2009.
Barton, C. C. and Hsieh, P. A.: Physical and Hydrologic-Flow Properties of Fractures: Las Vegas, Nevada – Zion Canyon, Utah – Grand Canyon, Arizona – Yucca Mountain, Nevada, 20–24 July 1989 (Field Trip Guidebook T385), American Geophysical Union, Washington, D. C., ISBN 9780875906508, 1989.
Barton, C. C., Larsen, E., Page, W. R., and Howard, T. M.: Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada, United States, 74 pp., US Geological Survey, Denver, CO (United States), https://doi.org/10.2172/145208, 1993.
Bell, F. G.: Engineering Geology, 2nd edition, Butterworth-Heinemann Press, Burlington, MA, USA, 581 pp., ISBN 978-0-7506-8077-6, 2007.
Berberich, S.: A chronosequence of cracking in Mill Creek, California, Geography and Earth Sciences, The University of North Carolina Charlotte, ProQuest, 2478766717, 2020.
Berkowitz, B.: Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour., 25, 861–884, https://doi.org/10.1016/S0309-1708(02)00042-8, 2002.
Betlem, P., Birchall, T., Lord, G., Oldfield, S., Nakken, L., Ogata, K., and Senger, K.: High resolution digital outcrop model of faults and fractures in caprock shales, Konusdalen West, central Spitsbergen, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-143, in review, 2022.
Birkeland, P. W.: Soils and Geomorphology, Oxford University Press, New York, New York, ISBN 0195078861, 1999.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, 2001.
Borg, I. and Handin, J.: Experimental deformation of crystalline rocks, Tectonophysics, 3, 249–367, https://doi.org/10.1016/0040-1951(66)90019-9, 1966.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017.
Brantut, N., P. Baud, M. J. Heap, and Meredith, P. G.: Micromechanics of brittle creep in rocks, J. Geophys. Res. 117, B08412, https://doi.org/10.1029/2012JB009299, 2012.
Brantut, N., Heap, M. J., Meredith, P. G., and Baud, P.: Time-dependent cracking and brittle creep in crustal rocks: A review, J. Struct. Geol., 52, 17–43, 2013.
Brilha, J., Gray, M., Pereira, D. I., and Pereira, P.: Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature, Environ. Sci. Policy, 86, 19–28, https://doi.org/10.1016/j.envsci.2018.05.001, 2018.
Buckman, S., Morris, R. H., and Bourman, R. P.: Fire-induced rock spalling as a mechanism of weathering responsible for flared slope and inselberg development, Nat. Commun., 12, 2150, https://doi.org/10.1038/s41467-021-22451-2, 2021.
Burghelea, C., Zaharescu, D. G., Dontsova, K., Maier, R., Huxman, T., and Chorover, J.: Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza, Biogeochemistry, 124, 187–203, https://doi.org/10.1007/s10533-015-0092-5, 2015.
Burke, R. M. and Birkeland, P. W.: Reevaluation of multiparameter relative dating techniques and their application to the glacial sequence along the eastern escarpment of the Sierra Nevada, California, Quaternary Res., 11, 21–51, https://doi.org/10.1016/0033-5894(79)90068-1, 1979.
Burnett, B. N., Meyer, G. A., and McFadden, L. D.: Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona, J. Geophys. Res.-Earth, 113, F03002, https://doi.org/10.1029/2007JF000789, 2008.
Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S. L.: Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing, Geochim. Cosmochim. Ac., 72, 4488–4507, 2008.
Chen, X., Eichhubl, P., and Olson, J. E.: Effect of water on critical and subcritical fracture properties of Woodford shale, J. Geophys. Res.-Sol. Ea., 122, 2736–2750, https://doi.org/10.1002/2016JB013708, 2017.
Chilton, K. D. and Spotila, J. A.: Preservation of Valley and Ridge topography via delivery of resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains, USA, Geomorphology, 365, 107263, https://doi.org/10.1016/j.geomorph.2020.107263, 2020.
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-law distributions in empirical data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009.
Collins, B. D. and Stock, G. M.: Rockfall triggering by cyclic thermal stressing of exfoliation fractures, Nat. Geosci., 9, 395–401, 2016.
Coombes, M. A., Viles, H. A., and Zhang, H.: Thermal blanketing by ivy (Hedera helix L.) can protect building stone from damaging frosts, Nature: Scientific Reports, 8, 1–12, 2018.
Corrêa, R. S. M., Marrett, R., and Laubach, S. E.: Analysis of spatial arrangement of fractures in two dimensions using point process statistics, J. Struct. Geol., 163, 104726, https://doi.org/10.1016/j.jsg.2022.104726, 2022.
Cox, R., Lopes, W. A., and Jahn, K. L.: Quantitative roundness analysis of coastal boulder deposits, Mar. Geol., 396, 114–141, https://doi.org/10.1016/j.margeo.2017.03.003, 2018.
Cuccuru, S., Casini, L., Oggiano, G., and Cherchi, G. P.: Can weathering improve the toughness of a fractured rock? A case study using the San Giacomo granite, Bulletin of Engineering Geology Environments, 71, 557–567, 2012.
D'Arcy, M., Roda Boluda, D. C., Whittaker, A. C., and Carpineti, A.: Dating alluvial fan surfaces in Owens Valley, California, using weathering fractures in boulders, Earth Surf. Proc. Land. 40, 487–501, 2014.
Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J. R., and Munier, R.: A likely universal model of fracture scaling and its consequence for crustal hydromechanics, J. Geophys. Res.-Sol. Ea., 115, https://doi.org/10.1029/2009JB007043, 2010.
Deere, D. U.: Technical descritpion of cores for engineering purposes, Rock Mechanics and Engineering Geology, 1, 18–22, 1964.
Dershowitz, W. S. and Herda, H. H.: Interpretation of fracture spacing and intensity, The 33rd U.S. Symposium on Rock Mechanics (USRMS), edited by: Tillerson & Wawersik, 1992 Balkema, Rotterdam, ISBN 90 5410 045, 1992.
DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain size controls on the relief structure of bedrock landscapes, Geology, 48, 399–402, 2018.
Domokos, G., Jerolmack, D. J., Kun, F., and Torok, J.: Plato's cube and the natural geometry of fragmentation, P. Natl. Acad. Sci. USA, 117, 18178–18185, 2020.
Dove, P. M.: Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses, J. Geophys. Res., 100, 349–359, 1995.
Engelder, T.: Stress Regimes in the Lithosphere, Princeton University Press, ISBN 9780691636474, 1993.
Engelder, T.: Tectonic implications drawn from differences in the surface morphology on two joint sets in the Appalachian Valley and Ridge, Virginia, Geology, 32, 413–416, 2004.
English, J. M. and Laubach, S. E.: Opening-mode fracture systems: insights from recent fluid inclusion microthermometry studies of crack-seal fracture cements, Geological Society of London Special Publications, 458, 257–272, https://doi.org/10.1144/SP458.1, 2017.
Eppes, M.-C.: Mechanical Weathering: A Conceptual Overview, in: Treatise on Geomorphology, edited by: Shroder, J. J. F., vol. 3, Elsevier, Academic Press, 30–45, https://doi.org/10.1016/B978-0-12-818234-5.00200-5, 2022.
Eppes, M. C. and Griffing, D.: Granular disintegration of marble in nature: A thermal-mechanical origin for a grus and corestone landscape, Geomorphology, 117, 170–180, 2010.
Eppes, M. C. and Keanini, R.: Mechanical weathering and rock erosion by climate-dependent subcritical cracking, Rev. Geophys., 55, 470–508, 2017.
Eppes, M. C., McFadden, L. D., Wegmann, K. W., and Scuderi, L. A.: Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation, Geomorphology, 123, 97–108, 2010.
Eppes, M. C., Magi, B., Hallet, B., Delmelle, E., Mackenzie-Helnwein, P., Warren, K., and Swami, S.: Deciphering the role of solar-induced thermal stresses in rock weathering, GSA Bulletin, 128, 1315–1338, 2016.
Eppes, M. C., Hancock, G. S., Chen, X., Arey, J., Dewers, T., Huettenmoser, J., Kiessling, S., Moser, F., Tannu, N., Weiserbs, B., and Whitten, J.: Rates of subcritical cracking and long-term rock erosion, Geology, 46, 951–954, 2018.
Eppes, M. C., Magi, B., Scheff, J., Warren, K., Ching, S., and Feng, T.: Warmer, wetter climates accelerate mechanical weathering in field data, independent of stress-loading, Geophys. Res. Lett., 47, 1–11, 2020.
Fisher, N. I.: Statistical Analysis of Circular Data, Cambridge University Press, Cambridge, England, https://doi.org/10.1017/CBO9780511564345, 1993.
Forstner, S. R. and Laubach, S. E.: Scale-dependent fracture networks, J. Struct. Geol., 165, 104748, https://doi.org/10.1016/j.jsg.2022.104748, 2022.
Girard, L., Gruber, S., Weber, S., and Beutel, J.: Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock, Geophys. Res. Lett., 40, 1748–1753, https://doi.org/10.1002/grl.50384, 2013.
Gischig, V. S., Moore, J. R., Evans, K. F., Amann, F., and Loew, S.: Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope, J. Geophys. Res., 116, F04010, https://doi.org/10.1029/2011JF002006, 2011.
Glade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E.: Canyon shape and erosion dynamics governed by channel-hillslope feedbacks, Geology, 47, 650–654, https://doi.org/10.1130/G46219.1, 2019.
Gomez, L. A. and Laubach, S. E.: Rapid digital quantification of microfracture populations, J. Struct. Geol., 28, 408–420, 2006.
Gomez-Heras, M., Smith, B. J., and Fort, R.: Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue, Geomorphology, 78, 236–249, 2006.
Gómez-Pujol, L., Fornós, J. J., and Swantesson, J. O. H.: Rock surface millimetre-scale roughness and weathering of supratidal Mallorcan carbonate coasts (Balearic Islands), Earth Surf. Proc. Land., 31, 1792–1801, https://doi.org/10.1002/esp.1379, 2006.
Griffiths, L., Heap, M. J., Baud, P., and Schmittbuhl, J.: Quantification of microcrack characteristics and implications for stiffness and strength of granite, Int. J. Rock Mech. Min., 100, 138–150, https://doi.org/10.1016/j.ijrmms.2017.10.013, 2017.
Hancock, G. S. and Kirwan, M.: Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians, Geology, 35, 89–92, https://doi.org/10.1130/g23147a.1, 2007.
Hancock, P. L.: Brittle microtectonics: Principles and practice, J. Struct. Geol., 7, 437–457, https://doi.org/10.1016/0191-8141(85)90048-3, 1985.
Handin, J. and Hager Jr., R. V.: Experimental deformation of sedimentary rocks under confining pressure: Tests at room temperature on dry samples, AAPG Bull., 41, 1–50, https://doi.org/10.1306/5ceae5fb-16bb-11d7-8645000102c1865d, 1957.
Handin, J. and Hager Jr., R. V.: Experimental deformation of sedimentary rocks under confining pressure: Tests at high temperature, AAPG Bull., 42, 2892–2934, https://doi.org/10.1306/0bda5c27-16bd-11d7-8645000102c1865d, 1958.
Handin, J., Hager Jr., R. V., Friedman, M., and Feather, J. N.: Experimental deformation of sedimentary rocks under confining pressure: Pore pressure tests, AAPG Bull., 47, 717–755, 1963.
Hasenmueller, E. A., Gu, X., Weitzman, J. N., Adams, T. S., Stinchcomb, G. E., Eissenstat, D. M., Drohan, P. J., Brantley, S. L., and Kaye, J. P.: Weathering of rock to regolith: The activity of deep roots in bedrock fractures, Geoderma, 300, 11–31, https://doi.org/10.1016/j.geoderma.2017.03.020, 2017.
Hatır, M. E.: Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system, J. Cult. Herit., 44, 120–134, https://doi.org/10.1016/j.culher.2020.02.011, 2020.
He, M., Xia, H., Jia, X., Gong, W., Zhao, F., and Liang, K.: Studies on classification, criteria, and control of rockbursts, Journal of Rock Mechanics and Geotechnical Engineering, 4, 97–114, https://doi.org/10.3724/SP.J.1235.2012.00097, 2012.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J. C., Watkins, H., Timms, N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns, J. Struct. Geol., 95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003, 2017.
Heard, H. C.: Effect of large changes in strain rate in the experimental deformation of Yule Marble, J. Geol., 71, 162–195, 1963.
Hencher, S.: Practical Engineering Geology, Spon Press, New York, NY, USA, 450 pp., ISBN 97800-203-89482-8. 2015.
Hencher, S.: Practical Rock Mechanics, Spon Press, New York, NY, USA, 356 pp., ISBN 978-1-4822-1726-1. 2019.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Holder, J., Olson, J. E., and Philip, Z.: Experimental determination of subcritical crack growth parameters in sedimentary rock, Geophys. Res. Lett., 28, 599–602, https://doi.org/10.1029/2000GL011918, 2001.
Hooke, R.: Geomorphic evidence for Late-Wisconsin and Holocene tectonic deformation, Death Valley, California, GSA Bulletin, 83, 2073–2098, https://doi.org/10.1130/0016-7606(1972)83[2073:Geflah]2.0.Co;2, 1972.
Hooker, J. N., Gale, J. F. W., Gomez, L. A., Laubach, S. E., Marrett, R., and Reed, R. M.: Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado, J. Struct. Geol., 31, 707–718, https://doi.org/10.1016/j.jsg.2009.04.001, 2009.
Hooker, J. N., Laubach, S. E., and Marrett, R.,: Fracture-aperture size–frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina, J. Struct. Geol., 54, 54–71, doi.org/10.1016/j.jsg.2013.06.011, 2013.
Hooker, J. N., Laubach, S. E., and Marrett, R.: A universal power-law scaling exponent for fracture apertures in sandstones, GSA Bulletin, 126, 1340–1362, https://doi.org/10.1130/b30945.1, 2014.
Isherwood, D. and Street, A.: Biotite-induced grussification of the Boulder Creek Granodiorite, Boulder County, Colorado, GSA Bulletin, 87, 366–370, https://doi.org/10.1130/0016-7606(1976)87<366:Bgotbc>2.0.Co;2, 1976.
Janio de Castro Lima, J. and Paraguassú, A. B.: Linear thermal expansion of granitic rocks: influence of apparent porosity, grain size and quartz content, Bulletin of Engineering Geology and the Environment, 63, 215–220, https://doi.org/10.1007/s10064-004-0233-x, 2004.
Jenny, H.: Factors of Soil Formation: A System of Quantitative Pedology, McGraw-Hill, New York, New York, ISBN 0598537856, 1941.
Kobayashi, A. S. and Enetanya, A. N.: Stress intensity factor of a corner crack, Mechanics of Crack Growth, ASTM STP, 590, 477–495, 1976.
Kranz, R. L.: Microcrack in rocks: A review, Tectonophysics, 100, 449–480, 1983.
Krumbein, W. C.: Fundamental attributes of sedimentary particles, University of Iowa Student Engineering Bulletin, 27, 318–331, 1943.
Krumbein, W. C. and Sloss, L. L.: Stratigraphy and Sedimentation, W. H. Freeman and Company, San Francisco, California, ISBN-10 0716702193, 1951.
Lander, R. H. and Laubach, S. E.: Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones, GSA Bulletin, 127, 516–538, https://doi.org/10.1130/B31092.1, 2015.
Lamp, J. L., Marchant, D. R., Mackay, S. L., and Head, J. W.: Thermal stress weathering and the spalling of Antarctic rocks, J. Geophys. Res.-Earth, 122, 3–24, https://doi.org/10.1002/2016JF003992, 2017.
Laubach, S. E., Olson, J. E., and Gross, M. R.: Mechanical and fracture stratigraphy, AAPG Bull., 93, 1413–1426, https://doi.org/10.1306/07270909094, 2009.
Laubach, S. E., Lamarche, J., Gauthier, B. D. M., Dunne, W. M., and Sanderson, D. J.: Spatial arrangement of faults and opening-mode fractures, J. Struct. Geol., 108, 2–15, https://doi.org/10.1016/j.jsg.2017.08.008, 2018.
Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J. L., Pollyea, R. M., Hooker, J. N., Narr, W., Evans, M. A., Kerisit, S. N., Olson, J. E., Dewers, T., Fisher, D., Bodnar, R., Evans, B., Dove, P., Bonnell, L. M., Marder, M. P., and Pyrak-Nolte, L.: The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials, Rev. Geophys., 57, 1065–1111, https://doi.org/10.1029/2019RG000671, 2019.
Leith, K., Moore, J. R., Amann, F., and Loew, S.: In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock, J. Geophys. Res., 119, 1–22, 2014.
Leone, J. D., Holbrook, W. S., Reibe, C. S., Chorover, J., Ferre, T. P. A., Carr, B. J., and Callahan, R. P.: Strong slope-aspect control of regolith thickness by bedrock foliation, Earth Surf. Proc. Land., 45, 2998–3010, 2020.
Long, J., Jones, R., Daniels, S., Gilment, S., Oxlade, D., and Wilkinson, M.: Reducing uncertainty in fracture modelling: Assessing user bias in interpretations from satellite imagery, AAPG 2019 Annual Convention & Exhibition, San Antonio, TX, USA, https://doi.org/10.1306/42427Long2019, 26 August 2019.
Long, J. C. S. and Witherspoon, P. A.: The relationship of the degree of interconnection to permeability in fracture networks, J. Geophys. Res.-Sol. Ea., 90, 3087–3098, https://doi.org/10.1029/JB090iB04p03087, 1985.
Ma, J., Li, D., Du, S., Han, Z., Luo, P., and Zhao, J.: Comparison of subcritical crack growth and dynamic fracture propagation in rocks under double-torsion tests, Int. J. Rock Mech. Min., 170, 105481, https://doi.org/10.1016/j.ijrmms.2023.105481, 2023.
Macholdt, D. S., Al-Amri, A. M., Tuffaha, H. T., Jochum, K. P., and Andreae, M. O.: Growth of desert varnish on petroglyphs from Jubbah and Shuwaymis, Ha'il region, Saudi Arabia, The Holocene, 28, 1495–1511, https://doi.org/10.1177/0959683618777075, 2018.
Maffucci, R., Bigi, S., Corrado, S., Chiodi, A., Di Paolo, L., Giordano, G., and Invernizzi, C.: Quality assessment of reservoirs by means of outcrop data and “discrete fracture network” models: The case history of Rosario de La Frontera (NW Argentina) geothermal system, Tectonophysics, 647–648, 112–131, https://doi.org/10.1016/j.tecto.2015.02.016, 2015.
Manzocchi, T.: The connectivity of two-dimensional networks of spatially correlated fractures, Water Resour. Res., 38, 1-1–1-20, https://doi.org/10.1029/2000WR000180, 2002.
Mardia, K. V. and Jupp, P. E.: Directional Statistics, Academic Press Inc., London, England, ISBN 9780470316979, 1972.
Marrett, R., Gale, J. F. W., Gómez, L. A., and Laubach, S. E.: Correlation analysis of fracture arrangement in space, J. Struct. Geol., 108, 16–33, https://doi.org/10.1016/j.jsg.2017.06.012, 2018.
Marshall, J., Clyne, J., Eppes, M. C., and Dawson, T.: Barking up the wrong tree? Tree root tapping, subcrtitical cracking, and potential influence on bedrock porosity, AGU 2021 Fall Abstracts, 2021AGUFMEP55G1186M, 2021a.
Marshall, J. A., Roering, J. J., Rempel, A. W., Shafer, S. L., and Bartlein, P. J.: Extensive frost weathering across unglaciated North America during the Last Glacial Maximum, Geophys. Res. Lett., 48, e2020GL090305, https://doi.org/10.1029/2020GL090305, 2021b.
Martel, S. J.: Effect of topographic curvature on near-surface stresses and application to sheeting joints, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL024710, 2006.
Martel, S. J.: Mechanics of curved surfaces, with application to surface-parallel cracks, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL049354, 2011.
Martel, S. J.: Progress in understanding sheeting joints over the past two centuries, J. Struct. Geol., 94, 68–86, 2017.
Matsuoka, N. and Murton, J.: Frost weathering: Recent advances and future directions, Permafrost Periglac., 19, 195–210, https://doi.org/10.1002/ppp.620, 2008.
Matthews, J. A. and Winkler, S.: Schmidt-hammer exposure-age dating: A review of principles and practice, Earth-Sci. Rev., 230, 104038, https://doi.org/10.1016/j.earscirev.2022.104038, 2022.
McAuliffe, J. R., McFadden, L. D., Persico, L. P., and Rittenour, T. M.: Climate and vegetation change, hillslope soil erosion, and the complex nature of Late Quaternary environmental transitions, Eastern Mojave Desert, USA, Quaternary, 5, 43, https://doi.org/10.3390/quat5040043, 2022.
McCarroll, D.: The Schmidt hammer, weathering, and rock surface roughness, Earth Surf. Proc. Land., 16, 477–480, https://doi.org/10.1002/esp.3290160510, 1991.
McFadden, L. D. and Hendricks, D. M.: Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California, Quaternary Res., 23, 189–204, https://doi.org/10.1016/0033-5894(85)90028-6, 1985.
McFadden, L. D., Eppes, M. C., Gillespie, A. R., and Hallet, B.: Physical weathering in arid landscpaes due to diurnal variation in the direction of solar heating, GSA Bulletin, 117, 161–173, 2005.
Mogi, K.: Effect of the intermediate principal stress on rock failure, J. Geophys. Res., 72, 5117–5131, https://doi.org/10.1029/JZ072i020p05117, 1967.
Mogi, K.: Fracture and flow of rocks under high triaxial compression, J. Geophys. Res., 76, 1255–1269, https://doi.org/10.1029/JB076i005p01255, 1971.
Molaro, J. L., Byrne, S., and Le, J.-L.: Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown, Icarus, 294, 247–261, 2017.
Molaro, J. L., Hergenrother, C. W., Chesley, S. R., Walsh, K. J., Hanna, R. D., Haberle, C. W., Schwartz, S. R., Ballouz, R.-L., Bottke, W. F., Campins, H. J., and Lauretta, D. S.: Thermal fatigue as a driving mechanism for activity on asteroid Bennu, J. Geophys. Res., 125, 1–24, https://doi.org/10.1029/2019JE006325, 2020.
Molnar, P.: Interactions among topographically induced elastic stress, static fatigue, and valley incision, J. Geophys. Res., 109, 1–9, https://doi.org/10.1029/2003JF000097, 2004.
Moon, S., Perron, J. T., Martel, S. J., Goodfellow, B. W., Ivars, D. M., Hall, A., Heyman, J., Munier, R., Naslund, J., Simeonov, A., and Stroeven, A. P.: Present-day stress field influences bedrock fracture openness deep into the subsurface, Geophys. Res. Lett., 47, 1–10, 2020.
Moon, S., Perron, J. T., Martel, S. J., Goodfellow, B. W., Mas Ivars, D., Simeonov, A., Munier, R., Naslund, J.-O., Hall, A., Stroeven, A. P., Ebert, K., and Heyman, J.: Landscape features influence bedrock fracture openness in the deep subsurface, Geological Society of American Annual Meeting, Phoenix, AZ, USA, https://doi.org/10.1130/abs/2019AM-336309, 2019.
Moser, F.: Spatial and temporal variance in rock dome exfoliation and weathering near Twain Harte, California, USA, Geography and Earth Sciences, The University of North Carolina Charlotte, ProQuest, 10263805, 2017.
Mushkin, A., Sagy, A., Trabelci, E., Amit, R., and Porat, N.: Measure the time and scale-dependency of subaerial rock weathering rates over geologic time scales with ground-based lidar, Geology, 42, 1063–1066, 2014.
Narr, W. and Lerche, I.: A method for estimating subsurface fracture density in core, AAPG Bull., 68, 637–648, https://doi.org/10.1306/ad461354-16f7-11d7-8645000102c1865d, 1984.
Nara, Y. and Kaneko, K.: Sub-critical crack growth in anisotropic rock, Int. J. Rock Mech. Min., 43, 437–453, https://doi.org/10.1016/j.ijrmms.2005.07.008, 2006.
Nara, Y., Kashiwaya, K., Nishida, Y., and Ii, T.: Influence of surrounding environment on subcritical crack growth in marble, Tectonophysics, 706–707, 116–128, 2017.
Nara, Y., Morimoto, K., Hiroyoshi, N., Yoneda, T., Kaneko, K., and Benson, P. M.: Influence of relative humidity on fracture toughness of rock: Implications for subcritical crack growth, Int. J. Solids Struct., 49, 2471–2481, https://doi.org/10.1016/j.ijsolstr.2012.05.009, 2012.
Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and Caffee, M. W.: Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA, Earth Planet. Sc. Lett., 522, 186–197, https://doi.org/10.1016/j.epsl.2019.06.011, 2019.
Ollier, C. D.: Weathering, 2nd, Longman, London, England, ISBN-10 0050017950, 1984.
Olson, J. E.: Predicting fracture swarms - the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock, Geological Society of London Special Publications, 231, 73–87, 2004.
Olsen, T., Borella, J., and Stahl, T.: Clast transport history influences Schmidt hammer rebound values, Earth Surf. Proc. Land., 45, 1392–1400, https://doi.org/10.1002/esp.4809, 2020.
Ortega, O. and Marrett, R.: Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico, J. Struct. Geol., 22, 571–588, https://doi.org/10.1016/S0191-8141(99)00186-8, 2000.
Ortega, O. J., Marrett, R. A., and Laubach, S. E.: A scale-independent approach to fracture intensity and average spacing measurement, AAPG Bull., 90, 193–208, https://doi.org/10.1306/08250505059, 2006.
Paris, P. and Erdogan, F.: A critical analysis of crack propagation laws, J. Basic Eng.-T ASME, 85, 528–533, https://doi.org/10.1115/1.3656900, 1963.
Phillips, J. D.: An evaluation of the factors determining the effectiveness of water quality buffer zones, J. Hydrol., 107, 133–145, https://doi.org/10.1016/0022-1694(89)90054-1, 1989.
Ponti, S., Pezza, M., and Guglielmin, M.: The development of Antarctic tafoni: Relations between differential weathering rates and spatial distribution of thermal events, salts concentration, and mineralogy, Geomorphology, 373, 107475, https://doi.org/10.1016/j.geomorph.2020.107475, 2021.
Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., and Thompson, J.: Soil property and class maps of the conterminous United States at 100-meter spatial resolution, Soil. Sci. Soc. Am. J., 82, 186–201, https://doi.org/10.2136/sssaj2017.04.0122, 2018.
Ramulu, M., Chakraborty, A. K., and Sitharam, T. G.: Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project – A case study, Tunn. Undergr. Sp. Tech., 24, 208–221, https://doi.org/10.1016/j.tust.2008.08.002, 2009.
Rasmussen, M., Eppes, M. C., and Berberich, S.: Untangling the impacts of climate, lithology, and time on rock cracking rates and morphology in arid and semi-arid Eastern California, AGU Fall Meeting, New Orleans, LA, 2021AGUFMEP41C..05R, December 2021.
Ravaji, B., Ali-Lagoa, V., Delbo, M., and Wilkerson, J. W.: Unraveling the mechanics of thermal stress weathering rate-effects, size-effects, and scaling laws., J. Geophys. Res., 121, 3304–3328, https://doi.org/10.1029/2019JE006019, 2019.
Riebe, C. S., Callahan, R. P., Granke, S. B.-M., Carr, B. J., Hayes, J. L., Schell, M. S., and Sklar, L. S.: Anisovolumetric weathering in granitic saprolite controlled by climate and erosion rate, Geology, 49, 1–5, https://doi.org/10.1130/G48191.1, 2021.
Rossen, W. R., Gu, Y., and Lake, L. W.: Connectivity and permeability in fracture networks obeying power-law statistics, SPE Permian Basin Oil and Gas Recovery Conference, https://doi.org/10.2118/59720-ms, Midland, Texas, March 2000.
Røyne, A., Jamtveit, B., Mathiesen, J., and Malthe-Sørenssen, A.: Controls on rock weathering rates by reaction-induced hierarchical fracturing, Earth Planet. Sc. Lett., 275, 364–369, https://doi.org/10.1016/j.epsl.2008.08.035, 2008.
Rysak, B., Gale, J. F., Laubach, S. E., and Ferrill, D. A.: Mechanisms for the generation of complex fracture networks: Observations from slant core, analog models, and outcrop, Front. Earth Sci., 10, 848012, https://doi.org/10.3389/feart.2022.848012, 2022.
Sanderson, D. J.: Field-based structural studies as analogues to sub-surface reservoirs, Geological Society of London Special Publications, 436, 207–217, https://doi.org/10.1144/SP436.5, 2016.
Sanderson, D. J. and Nixon, C. W.: Topology, connectivity and percolation in fracture networks, J. Struct. Geol., 115, 167–177, https://doi.org/10.1016/j.jsg.2018.07.011, 2018.
Scarciglia, F., Saporito, N., La Russa, M. F., Le Pera, E., Macchione, M., Puntillo, D., Crisci, G. M., and Pezzino, A.: Role of lichens in weathering of granodiroite in the Sila uplands (Calabria, Southern Italy), Sediment. Geol., 280, 119–134, 2012.
Schoeneberger, P. J., Wysocki, D. A., and Benham, E. C.: Field Book for Describing and Sampling Soils: Version 3.0, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska, https://www.nrcs.usda.gov/sites/default/files/2022-09/field-book.pdf (last access: 3 January 2024), 2012.
Schultz, R. A.: Geologic Fracture Mechanics, Cambridge University Press, Cambridge, England, https://doi.org/10.1017/9781316996737, 2019.
Shakiba, M., Lake, L. W., Gale, J. F. W., Laubach, S. E., and Pyrcz, M. J.: Multiscale spatial analysis of fracture nodes in two dimensions, Mar. Petrol. Geol., 149, 106093, https://doi.org/10.1016/j.marpetgeo.2022.106093, 2023.
Shaanan, U., Mushkin, A., Rasmussen, M., Sagy, A., Meredith, P., Nara, Y., Keanini, R., and Eppes, M.-C.: Progressive fracturing in alluvial clasts. GSA Bulletin, https://doi.org/10.1130/B36670.1, 2023.
Sharifigaliuk, H., Mahmood, S. M., Ahmad, M., and Rezaee, R.: Use of outcrop as substitute for subsurface shale: Current understanding of similarities, discrepancies, and associated challenges, Energ. Fuel., 35, 9151–9164, https://doi.org/10.1021/acs.energyfuels.1c00598, 2021.
Shobe, C. M., Hancock, G. S., Eppes, M. C., and Small, E. E.: Field evidence for the influence of weathering on rock erodibility and channel form in bedrock rivers, Earth Surf. Proc. Land., 42, 1997–2012, 2017.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., and Merces, V.: The problem of predicting the size distribution of sediment supplied by hillslopes to rivers, Geomorphology, 277, 31–49, 2017.
Snowdon, A. P., Normani, S. D., and Sykes, J. F.: Analysis of crystalline rock permeability versus depth in a Canadian Precambrian rock setting, J. Geophys. Res.-Sol. Ea., 126, e2020JB020998, https://doi.org/10.1029/2020JB020998, 2021.
Sousa, L. M. O.: Evaluation of joints in granitic outcrops for dimension stone exploitation, Q. J. Eng. Geol. Hydroge., 43, 85–94, https://doi.org/10.1144/1470-9236/08-076, 2010.
St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K., and Richter, D. D.: Geophysical imaging reveals topographic stress control of bedrock weathering, Geomorphology, 350, 534–538, 2015.
Soil Survey Staff: Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys, ISBN-13 978-0160608292, 1999.
Terzaghi, R. D.: Sources of error in joint surveys, Geotechnique, 15, 287–304, 1965.
Terry, R. D. and Chilingar, G. V.: Summary of “Concerning some additional aids in studying sedimentary formations”, by M. S. Shvetsov, J. Sediment. Res., 25, 229–234, https://doi.org/10.1306/74d70466-2b21-11d7-8648000102c1865d, 1955.
Turner, F. J., Griggs, D. T., and Heard, H. C.: Experimental deformation of calcite crystals, GSA Bulletin, 65, 883–934, https://doi.org/10.1130/0016-7606(1954)65[883:Edocc]2.0.Co;2, 1954.
Ukar, E., Laubach, S. E., and Hooker, J. N.: Outcrops as guides to subsurface natural fractures: Example from the Nikanassin Formation tight-gas sandstone, Grande Cache, Alberta foothills, Canada, Mar. Petrol. Geol., 103, 255–275, https://doi.org/10.1016/j.marpetgeo.2019.01.039, 2019.
Ulusay, R. and Hudson, J. A.: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006, Commission on Testing Methods, International Society of Rock Mechanics, Ankara, Turkey, 2007.
Ulusay, R. (Ed.): The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014, Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-007713-0, 2015.
Vazquez, P., Shushakova, V., and Gomez-Heras, M.: Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation, Eng. Geol., 189, 58–67, 2015.
Viswanathan, H. S., Ajo-Franklin, J., Birkholzer, J. T., Carey, J. W., Guglielmi, Y., Hyman, J. D., Karra, S., Pyrak-Nolte, L. J., Rajaram, H., Srinivasan, G., and Tartakovsky, D. M.: From fluid flow to coupled processes in fractured rock: recent advances and new frontiers, Rev. Geophys., 60, e2021RG000744, https://doi.org/10.1029/2021RG000744, 2022.
Wang, H. F., Bonner, B. P., Carlson, S. R., Kowallis, B. J., and Heard, H. C.: Thermal stress cracking in granite, J. Geophys. Res.-Sol. Ea., 94, 1745–1758, https://doi.org/10.1029/JB094iB02p01745, 1989.
Wang, Q., Narr, W., and Laubach, S. E.: Quantitative characterization of fracture spatial arrangement and intensity in a reservoir anticline using horizontal wellbore image logs and an outcrop analog, Mar. Petrol. Geol., 152, 106238, https://doi.org/10.1016/j.marpetgeo.2023.106238, 2023.
Watkins, H., Bond, C. E., Healy, D., and Butler, R. W. H.: Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop, J. Struct. Geol., 72, 67–82, https://doi.org/10.1016/j.jsg.2015.02.001, 2015.
Weiserbs, B. I.: The morphology and history of exfoliation on rock domes in the Southeastern United States, Geography and Earth Sciences, The University of North Carolina Charlotte, ProQuest, 10601336, 2017.
Weiss, M.: Techniques for estimating fracture size: A comparison of methods, Int. J. Rock Mech. Min., 45, 460–466, https://doi.org/10.1016/j.ijrmms.2007.07.010, 2008.
Wenk, H.-R.: Some roots of experimental rock deformation, B. Mineral., 102, 195–202, https://doi.org/10.3406/bulmi.1979.7277, 1979.
West, N., Kirby, E., Bierman, P. R., and Clarke, B. A.: Aspect-dependent variations in regolith creep revealed by meteoric 10Be, Geology, 42, 507–510, https://doi.org/10.1130/g35357.1, 2014.
Whitmeyer, S., Pyle, E., Pavlis, T., Swanger, W., and Roberts, L.: Modern approaches to field data collection and mapping: Digital methods, crowdsourcing, and the future of statistical analyses, J. Struct. Geol., 125, 29–40, 2019.
Wohl, E. E.: The effect of bedrock jointing on the formation of straths in the Cache la Poudre River drainage, Colorado Front Range, J. Geophys. Res.-Earth, 113, F01007, https://doi.org/10.1029/2007JF000817, 2008.
Wolman, M. G.: A method of sampling coarse river-bed material, Eos, Transactions American Geophysical Union, 35, 951–956, https://doi.org/10.1029/TR035i006p00951, 1954.
Wu, H. and Pollard, D. D.: An experimental study of the relationship between joint spacing and layer thickness, J. Struct. Geol., 17, 887–905, https://doi.org/10.1016/0191-8141(94)00099-L, 1995.
Zeeb, C., Gomez-Rivas, E., Bons, P. D., and Blum, P.: Evaluation of sampling methods for fracture network characterization using outcrops, AAPG Bull., 97, 1545–1566, https://doi.org/10.1306/02131312042, 2013.
Zeng, F., Biao, S., and Qiwu, S.: A combination of Light Detection and Ranging with Digital Panoramic Borehole Camera System in fracture mapping to characterize discrete fracture networks, B. Eng. Geol. Environ. 82, 249, https://doi.org/10.1007/s10064-023-03274-5, 2023.
Zhang, C., Hu, X., Wu, Z., and Li, Q.: Influence of grain size on granite strength and toughness with reliability specified by normal distribution, Theor. Appl. Fract. Mec., 96, 534–544, https://doi.org/10.1016/j.tafmec.2018.07.001, 2018.
Zhang, L.: Determination and applications of rock quality designation (RQD), Journal of Rock Mechanics and Geotechnical Engineering, 8, 389–397, https://doi.org/10.1016/j.jrmge.2015.11.008, 2016.
Zhou, W., Shi, G., Wang, J., Liu, J., Xu, N., and Liu, P.: The influence of bedding planes on tensile fracture propagation in shale and tight sandstone, Rock Mech. Rock Eng., 55, 1111–1124, https://doi.org/10.1007/s00603-021-02742-2, 2022.
Short summary
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's surface where humans live. Yet, scientists have not standardized their methods for collecting fracture data. Here we draw on past work across geo-disciplines and propose a list of baseline data for fracture-focused surface process research. We detail the rationale and methods for collecting them. We hope their wide adoption will improve future methods and knowledge of rock fracture overall.
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's...