Articles | Volume 12, issue 1
Research article
05 Jan 2024
Research article |  | 05 Jan 2024

Introducing standardized field methods for fracture-focused surface process research

Martha Cary Eppes, Alex Rinehart, Jennifer Aldred, Samantha Berberich, Maxwell P. Dahlquist, Sarah G. Evans, Russell Keanini, Stephen E. Laubach, Faye Moser, Mehdi Morovati, Steven Porson, Monica Rasmussen, and Uri Shaanan

Related authors

The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722,,, 2022
Short summary

Related subject area

Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613,,, 2023
Short summary
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863,,, 2022
Short summary
Inverse modeling of turbidity currents using an artificial neural network approach: verification for field application
Hajime Naruse and Kento Nakao
Earth Surf. Dynam., 9, 1091–1109,,, 2021
Short summary
Automated quantification of floating wood pieces in rivers from video monitoring: a new software tool and validation
Hossein Ghaffarian, Pierre Lemaire, Zhang Zhi, Laure Tougne, Bruce MacVicar, and Hervé Piégay
Earth Surf. Dynam., 9, 519–537,,, 2021
Short summary
Particle size dynamics in abrading pebble populations
András A. Sipos, Gábor Domokos, and János Török
Earth Surf. Dynam., 9, 235–251,,, 2021
Short summary

Cited articles

Aich, S. and Gross, M. R.: Geospatial analysis of the association between bedrock fractures and vegetation in an arid environment, Int. J. Remote Sens., 29, 6937–6955,, 2008. 
Al-Fahmi, M. M., Hooker, J. N., Al-Mojel, A. S., and Cartwright, J. A.: New scaling of fractures in a giant carbonate platform from outcrops and subsurface, J. Struct. Geol., 140, 104142,, 2020. 
Aldred, J., Eppes, M. C., Aquino, K., Deal, R., Garbini, J., Swami, S., Tuttle, A., and Xanthos, G.: The influence of solar-induced thermal stresses on the mechanical weathering of rocks in humid mid-latitudes, Earth Surf. Proc. Land., 41, 603–614, 2015. 
Alneasan, M. and Behnia, M.: An experimental investigation on tensile fracturing of brittle rocks by considering the effect of grain size and mineralogical composition, Int. J. Rock Mech. Min., 137, 104570,, 2021. 
Anders, M. H., Laubach, S. E., and Scholz, C. H.: Microfractures: a review, J. Struct. Geol., 69, 377–394,, 2014. 
Short summary
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's surface where humans live. Yet, scientists have not standardized their methods for collecting fracture data. Here we draw on past work across geo-disciplines and propose a list of baseline data for fracture-focused surface process research. We detail the rationale and methods for collecting them. We hope their wide adoption will improve future methods and knowledge of rock fracture overall.