Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Department of Earth Sciences, ETH Zürich, 8092 Zurich, Switzerland
Sean D. Willett
Department of Earth Sciences, ETH Zürich, 8092 Zurich, Switzerland
Rong Yang
School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
Related authors
No articles found.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Yanyan Wang and Sean D. Willett
Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, https://doi.org/10.5194/esurf-9-1301-2021, 2021
Short summary
Short summary
Although great escarpment mountain ranges are characterized by high relief, modern erosion rates suggest slow rates of landscape change. We question this interpretation by presenting a new method for interpreting concentrations of cosmogenic isotopes. Our analysis shows that erosion has localized onto an escarpment face, driving retreat of the escarpment at high rates. Our quantification of this retreat rate rationalizes the high-relief, dramatic landscape with the rates of geomorphic change.
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Short summary
The cooling climate of the last few million years leading into the ice ages has been linked to increasing erosion rates by glaciers. One of the ways to measure this is through mineral cooling ages. In this paper, we investigate potential bias in these data and the methods used to analyse them. We find that the data are not themselves biased but that appropriate methods must be used. Past studies have used appropriate methods and are sound in methodology.
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
M. Fox, F. Herman, S. D. Willett, and D. A. May
Earth Surf. Dynam., 2, 47–65, https://doi.org/10.5194/esurf-2-47-2014, https://doi.org/10.5194/esurf-2-47-2014, 2014
Related subject area
Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Evaluating the accuracy of binary classifiers for geomorphic applications
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
Drainage reorganization induces deviations in the scaling between valley width and drainage area
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar)
Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data
Coastal change patterns from time series clustering of permanent laser scan data
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Relationships between regional coastal land cover distributions and elevation reveal data uncertainty in a sea-level rise impacts model
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features
A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms
Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X ( ∼ 2015) in the south-central Andes
Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
Unsupervised detection of salt marsh platforms: a topographic method
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques
Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models
Tree-root control of shallow landslides
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau
3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism
Frontiers in Geomorphometry and Earth Surface Dynamics: possibilities, limitations and perspectives
How does grid-resolution modulate the topographic expression of geomorphic processes?
Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes
Image-based surface reconstruction in geomorphometry – merits, limits and developments
Topography-based flow-directional roughness: potential and challenges
A nondimensional framework for exploring the relief structure of landscapes
Topographic roughness as a signature of the emergence of bedrock in eroding landscapes
Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution
Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics
Extracting topographic swath profiles across curved geomorphic features
Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024, https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Short summary
Accurately identifying the presence and absence of landforms is important to inferring processes and testing numerical models of landscape evolution. Using synthetic scenarios, I show that the Matthews correlation coefficient (MCC) should be favored over the F1 score when comparing accuracy across scenes where landform abundances vary. Despite the resilience of MCC to imbalanced data, strong sensitivity to the size and shape of features can still occur when truth and model data are misaligned.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815, https://doi.org/10.5194/esurf-10-797-2022, https://doi.org/10.5194/esurf-10-797-2022, 2022
Short summary
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021, https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020, https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short summary
This short communication presents an efficient method for analyzing large fault scarp data sets. The programs and workflow required are open-source and the methodology is easy to use; thus the barrier to entry is low. This tool can be applied to a broad range of active tectonic studies. A case study in the Taupo Volcanic Zone, New Zealand, exemplifies the novelty of this tool by generating results that are consistent with extensive field campaigns in only a few hours at a work station.
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Erika E. Lentz, Nathaniel G. Plant, and E. Robert Thieler
Earth Surf. Dynam., 7, 429–438, https://doi.org/10.5194/esurf-7-429-2019, https://doi.org/10.5194/esurf-7-429-2019, 2019
Short summary
Short summary
Our findings examine several data inputs for probabilistic regional sea-level rise (SLR) impact predictions. To predict coastal response to SLR, detailed information on the landscape, including elevation, vegetation, and/or level of development, is needed. However, we find that the inherent relationship between elevation and land cover datasets (e.g., beaches tend to be low lying) is used to reduce error in a coastal response to SLR model, suggesting new applications for areas of limited data.
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
Short summary
The shape of landscapes is influenced by climate changes, faulting or the nature of the rocks under the surface. One of the most sensitive parts of the landscape to these changes is the river system that eventually adapts to such changes by adapting its slope, the most extreme example being a waterfall. We here present an algorithm that extracts changes in river slope over large areas from satellite data with the aim of investigating climatic, tectonic or geologic changes in the landscape.
Ankit Kumar Verma and Mary Carol Bourke
Earth Surf. Dynam., 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019, https://doi.org/10.5194/esurf-7-45-2019, 2019
Short summary
Short summary
The article describes the development of a portable triangle control target to register structure-from-motion-derived topographic data. We were able to generate sub-millimetre-resolution 3-D models with sub-millimetre accuracy. We verified the accuracy of our models in an experiment and demonstrated the potential of our method by collecting microtopographic data on weathered Moenkopi sandstone in Arizona. The results from our study confirm the efficacy of our method at sub-millimetre scale.
Niamh Danielle Cullen, Ankit Kumar Verma, and Mary Clare Bourke
Earth Surf. Dynam., 6, 1023–1039, https://doi.org/10.5194/esurf-6-1023-2018, https://doi.org/10.5194/esurf-6-1023-2018, 2018
Short summary
Short summary
This research article provides a comparison between the traditional method of measuring erosion on rock shore platforms using a traversing micro-erosion meter (TMEM) and a new approach using structure from motion (SfM) photogrammetry. Our results indicate that SfM photogrammetry offers several advantages over the TMEM, allowing for erosion measurement at different scales on rock surfaces with low roughness while also providing a means to identify different processes and styles of erosion.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018, https://doi.org/10.5194/esurf-6-971-2018, 2018
Short summary
Short summary
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer TanDEM-X dataset from ~ 2015. We difference the datasets over hillslopes and gravel-bed channels to extract vertical land-level changes. These signals are associated with incision, aggradation, and landsliding. This requires careful correction of the SRTM-C biases using the TanDEM-X and propagation of significant uncertainties. The method can be applied to moderate relief areas with SRTM-C coverage.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Daniel Wujanz, Michael Avian, Daniel Krueger, and Frank Neitzel
Earth Surf. Dynam., 6, 303–317, https://doi.org/10.5194/esurf-6-303-2018, https://doi.org/10.5194/esurf-6-303-2018, 2018
Short summary
Short summary
The importance of increasing the degree of automation in the context of monitoring natural hazards or geological phenomena is apparent. A vital step in the processing chain of monitoring deformations is the transformation of captured epochs into a common reference systems. This led to the motivation to develop an algorithm that realistically carries out this task. The algorithm was tested on three different geomorphic events while the results were quite satisfactory.
Guillaume C. H. Goodwin, Simon M. Mudd, and Fiona J. Clubb
Earth Surf. Dynam., 6, 239–255, https://doi.org/10.5194/esurf-6-239-2018, https://doi.org/10.5194/esurf-6-239-2018, 2018
Short summary
Short summary
Salt marshes are valuable environments that provide multiple services to coastal communities. However, their fast-paced evolution poses a challenge to monitoring campaigns due to time-consuming processing. The Topographic Identification of Platforms (TIP) method uses high-resolution topographic data to automatically detect the limits of salt marsh platforms within a landscape. The TIP method provides sufficient accuracy to monitor salt marsh change over time, facilitating coastal management.
Ellen Schwalbe and Hans-Gerd Maas
Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, https://doi.org/10.5194/esurf-5-861-2017, 2017
Short summary
Short summary
The simple use of time-lapse cameras as a visual observation tool may already be a great help for environmental investigations. However, beyond that, they have the potential to also deliver precise measurements with high temporal and spatial resolution when applying appropriate processing techniques. In this paper we introduce a method for the determination of glacier motion fields from time-lapse images, but it might also be adapted for other environmental motion analysis tasks.
Wolfgang Schwanghart and Dirk Scherler
Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, https://doi.org/10.5194/esurf-5-821-2017, 2017
Short summary
Short summary
River profiles derived from digital elevation models are affected by errors. Here we present two new algorithms – quantile carving and the CRS algorithm – to hydrologically correct river profiles. Both algorithms preserve the downstream decreasing shape of river profiles, while CRS additionally smooths profiles to avoid artificial steps. Our algorithms are able to cope with the problems of overestimation and asymmetric error distributions.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Giulia Sofia, John K. Hillier, and Susan J. Conway
Earth Surf. Dynam., 4, 721–725, https://doi.org/10.5194/esurf-4-721-2016, https://doi.org/10.5194/esurf-4-721-2016, 2016
Short summary
Short summary
The interdisciplinarity of geomorphometry is its greatest strength and one of its major challenges. This special issue showcases exciting developments that are the building blocks for the next step-change in the field. In reading and compiling the contributions we hope that the scientific community will be inspired to seek out collaborations and share ideas across subject-boundaries, between technique-developers and users, enabling us as a community to gather knowledge from our digital landscape
Stuart W. D. Grieve, Simon M. Mudd, David T. Milodowski, Fiona J. Clubb, and David J. Furbish
Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, https://doi.org/10.5194/esurf-4-627-2016, 2016
Short summary
Short summary
High-resolution topographic data are becoming more prevalent, yet many areas of geomorphic interest do not have such data available. We produce topographic data at a range of resolutions to explore the influence of decreasing resolution of data on geomorphic analysis. We test the accuracy of the calculation of curvature, a hillslope sediment transport coefficient, and the identification of channel networks, providing guidelines for future use of these methods on low-resolution topographic data.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Sebastiano Trevisani and Marco Cavalli
Earth Surf. Dynam., 4, 343–358, https://doi.org/10.5194/esurf-4-343-2016, https://doi.org/10.5194/esurf-4-343-2016, 2016
Short summary
Short summary
The generalization of the concept of roughness implies the need to refer to a family of roughness indices capturing specific aspects of surface morphology. We test the application of a flow-oriented directional measure of roughness based on the geostatistical index MAD (median of absolute directional differences), computed considering gravity-driven flow direction. The use of flow-directional roughness improves geomorphometric modeling and the interpretation of landscape morphology.
Stuart W. D. Grieve, Simon M. Mudd, Martin D. Hurst, and David T. Milodowski
Earth Surf. Dynam., 4, 309–325, https://doi.org/10.5194/esurf-4-309-2016, https://doi.org/10.5194/esurf-4-309-2016, 2016
Short summary
Short summary
Relationships between the erosion rate and topographic relief of hillslopes have been demonstrated in a number of diverse settings and such patterns can be used to identify the impact of tectonic plate motion on the Earth's surface. Here we present an open-source software tool which can be used to explore these relationships in any landscape where high-resolution topographic data have been collected.
D. T. Milodowski, S. M. Mudd, and E. T. A. Mitchard
Earth Surf. Dynam., 3, 483–499, https://doi.org/10.5194/esurf-3-483-2015, https://doi.org/10.5194/esurf-3-483-2015, 2015
Short summary
Short summary
Rock is exposed at the Earth surface when erosion rates locally exceed rates of soil production. This transition is marked by a diagnostic increase in topographic roughness, which we demonstrate can be a powerful indicator of the location of rock outcrop in a landscape. Using this to explore how hillslopes in two landscapes respond to increasing erosion rates, we find that the transition from soil-mantled to bedrock hillslopes is patchy and spatially heterogeneous.
M. T. Melis, F. Mundula, F. DessÌ, R. Cioni, and A. Funedda
Earth Surf. Dynam., 2, 481–492, https://doi.org/10.5194/esurf-2-481-2014, https://doi.org/10.5194/esurf-2-481-2014, 2014
S. Zhao and W. Cheng
Earth Surf. Dynam., 2, 433–441, https://doi.org/10.5194/esurf-2-433-2014, https://doi.org/10.5194/esurf-2-433-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
W. Schwanghart and D. Scherler
Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, https://doi.org/10.5194/esurf-2-1-2014, 2014
Cited articles
Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V.: Climate controls on erosion in tectonically active landscapes, Sci. Adv., 6, eaaz3166, https://doi.org/10.1126/sciadv.aaz3166, 2020.
Beeson, H. W., McCoy, S. W., and Keen-Zebert, A.: Geometric disequilibrium of river basins produces long-lived transient landscapes, Earth Planet. Sc. Lett., 475, 34–43, https://doi.org/10.1016/j.epsl.2017.07.010, 2017.
Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B. N., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Mee, A. L. H., Lüdmann, T., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Yao, Z., and Young, J. R.: The abrupt onset of the modern South Asian Monsoon winds, Sci. Rep', 6, 29838, https://doi.org/10.1038/srep29838, 2016.
Bian, S., Tan, X., Liu, Y., Fan, S., Gong, J., Zhou, C., Shi, F., and Murphy, M. A.: Orographic rainfall drives the Himalaya drainage divide to move north, Geomorphology, 444, 108952, https://doi.org/10.1016/j.geomorph.2023.108952, 2024.
Bishop, P.: Drainage rearrangement by river capture, beheading and diversion, Prog. Phys. Geogr.t, 19, 449–473, https://doi.org/10.1177/030913339501900402, 1995.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res.-Earth, 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379, 505–510, https://doi.org/10.1038/379505a0, 1996.
Chen, C.-Y., Willett, S. D., Christl, M., and Shyu, J. B. H.: Drainage basin dynamics during the transition from early to mature orogeny in Southern Taiwan, Earth Planet. Sc. Lett., 562, 116874, https://doi.org/10.1016/j.epsl.2021.116874, 2021.
China Geological Survey Bureau: Geological map of the Qinghai-Tibet Plateau and adjacent areas, National Tibetan Plateau Data Center, https://data.tpdc.ac.cn/en/data/2d511943-3bcc-43b9-baf2-540d9dbef508 (last access: 21 May 2024), 2019.
Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., and Chen, L.: Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns, Tectonics, 23, TC1006, https://doi.org/10.1029/2002TC001402, 2004.
Clark, M. K., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W.: Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau, J. Geophys. Res.-Earth, 111, F03002, https://doi.org/10.1029/2005JF000294, 2006.
Crameri, F.: Scientific colour maps, Zenodo [data set], https://doi.org/10.5281/zenodo.8035877, 2023.
Dahlquist, M. P., West, A. J., and Li, G.: Landslide-driven drainage divide migration, Geology, 46, 403–406, https://doi.org/10.1130/G39916.1, 2018.
Dal Pai, M. O., Salgado, A. A. R., de Sordi, M. V., de Carvalho Junior, O. A., and de Paula, E. V.: Comparing morphological investigation with χ index and gilbert metrics for analysis of drainage rearrangement and divide migration in inland plateaus, Geomorphology, 423, 108554, https://doi.org/10.1016/j.geomorph.2022.108554, 2023.
England, P. and Houseman, G.: Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone, J. Geophys. Res.-Solid, 91, 3664–3676, https://doi.org/10.1029/JB091iB03p03664, 1986.
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974.
Forte, A. M. and Whipple, K. X.: Criteria and tools for determining drainage divide stability, Earth Planet. Sc. Lett., 493, 102–117, https://doi.org/10.1016/j.epsl.2018.04.026, 2018.
Fox, M., Carter, A., and Dai, J.-G.: How Continuous Are the “Relict” Landscapes of Southeastern Tibet?, Front. Earth Sci., 8, 587597, https://doi.org/10.3389/feart.2020.587597, 2020.
Fu, P., Harbor, J. M., Stroeven, A. P., Hättestrand, C., Heyman, J., and Zhou, L.: Glacial geomorphology and paleoglaciation patterns in Shaluli Shan, the southeastern Tibetan Plateau – Evidence for polythermal ice cap glaciation, Geomorphology, 182, 66–78, https://doi.org/10.1016/j.geomorph.2012.10.030, 2013.
Gallen, S. F.: Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains, Earth Planet. Sc. Lett., 493, 150–160, https://doi.org/10.1016/j.epsl.2018.04.029, 2018.
Gelwick, K. D. and Ott, R. F.: Catchment-restricted Relief (CRR) Map, Zenodo [code], https://doi.org/10.5281/zenodo.8363610, 2023a.
Gelwick, K. D. and Ott, R. F.: Drainage divide asymmetry script to calculate DAI using multiple geomorphic metrics, Zenodo [code], https://doi.org/10.5281/zenodo.8416263, 2023b.
Gourbet, L., Leloup, P. H., Paquette, J.-L., Sorrel, P., Maheo, G., Wang, G., Yadong, X., Cao, K., Antoine, P.-O., Eymard, I., Liu, W., Lu, H., Replumaz, A., Chevalier, M.-L., Kexin, Z., Jing, W., and Shen, T.: Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution, Tectonophysics, 700–701, 162–179, https://doi.org/10.1016/j.tecto.2017.02.007, 2017.
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland, US Government Printing Office, https://pubs.usgs.gov/pp/0294b/report.pdf (last access: 21 May 2024), 1957.
Harel, E., Goren, L., Crouvi, O., Ginat, H., and Shelef, E.: Drainage reorganization induces deviations in the scaling between valley width and drainage area, Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, 2022.
Hartmann, J. and Moosdorf, N.: Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.788537, 2012a.
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, 1–37, https://doi.org/10.1029/2012GC004370, 2012b.
He, C., Yang, C.-J., Turowski, J. M., Rao, G., Roda-Boluda, D. C., and Yuan, X.-P.: Constraining tectonic uplift and advection from the main drainage divide of a mountain belt, Nat. Commun., 12, 544, https://doi.org/10.1038/s41467-020-20748-2, 2021.
Hilley, G. E., Porder, S., Aron, F., Baden, C. W., Johnstone, S. A., Liu, F., Sare, R., Steelquist, A., and Young, H. H.: Earth's topographic relief potentially limited by an upper bound on channel steepness, Nat. Geosci., 12, 828–832, https://doi.org/10.1038/s41561-019-0442-3, 2019.
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994.
Hurst, M. D., Mudd, S. M., Attal, M., and Hilley, G.: Hillslopes Record the Growth and Decay of Landscapes, Science, 341, 868–871, https://doi.org/10.1126/science.1241791, 2013.
Ji, L., Wang, Q., Xu, J., and Feng, J.: The 1996 Mw 6.6 Lijiang earthquake: Application of JERS-1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China, J. Asian Earth Sci., 146, 221–232, https://doi.org/10.1016/j.jseaes.2017.05.029, 2017.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Sci. Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Data from: Climatologies at high resolution for the earth's land surface areas, DRYAD [data set], https://doi.org/10.5061/DRYAD.KD1D4, 2018.
Kirby, E. and Ouimet, W.: Tectonic geomorphology along the eastern margin of Tibet: insights into the pattern and processes of active deformation adjacent to the Sichuan Basin, Geol. Soc. Lond. Spec. Publ., 353, 165–188, https://doi.org/10.1144/SP353.9, 2011.
Kong, P., Zheng, Y., and Caffee, M. W.: Provenance and time constraints on the formation of the first bend of the Yangtze River, Geochem. Geophy. Geosy., 13, Q06017, https://doi.org/10.1029/2012GC004140, 2012.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Lai, J. and Huppert, K.: Asymmetric glaciation, divide migration, and postglacial fluvial response times in the Qilian Shan, Geology, 51, 860–864, https://doi.org/10.1130/G51086.1, 2023.
Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D., Liu, X., Zhang, L., Ji, S., and Trinh, P. T.: The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina, Tectonophysics, 251, 3–84, https://doi.org/10.1016/0040-1951(95)00070-4, 1995.
Li, C., Jiang, X., Gong, W., Li, D., and Li, C.: Surface uplift of the Central Yunnan Plateau since the Pliocene, Geol. J., 53, 386–396, https://doi.org/10.1002/gj.2904, 2018.
Liu, K., Ke, L., Wang, J., Jiang, L., Richards, K. S., Sheng, Y., Zhu, Y., Fan, C., Zhan, P., Luo, S., Cheng, J., Chen, T., Ma, R., Liang, Q., Madson, A., and Song, C.: Ongoing Drainage Reorganization Driven by Rapid Lake Growths on the Tibetan Plateau, Geophys. Res. Lett., 48, e2021GL095795, https://doi.org/10.1029/2021GL095795, 2021.
Liu, W., Zhou, Z., Zhou, L., Chen, X., Yanites, B., Zhou, Y., Li, X., and Zhang, X.: Analysis of Hillslope Erosion Based on Excess Topography in Southeastern Tibet, Front. Earth Sci., 9, 684365, https://doi.org/10.3389/feart.2021.684365, 2021.
Liu, Y., Tan, X., Ye, Y., Zhou, C., Lu, R., Murphy, M. A., Xu, X., and Suppe, J.: Role of erosion in creating thrust recesses in a critical-taper wedge: An example from Eastern Tibet, Earth Planet. Sc. Lett., 540, 116270, https://doi.org/10.1016/j.epsl.2020.116270, 2020.
Mitchell, N. and Forte, A.: Tectonic advection of contacts enhances landscape transience, Earth Surf. Proc. Land., 48, 1450–1469, https://doi.org/10.1002/esp.5559, 2023.
Montgomery, D. R.: Slope Distributions, Threshold Hillslopes, and Steady-state Topography, Am. J. Sci., 301, 432–454, https://doi.org/10.2475/ajs.301.4-5.432, 2001.
Ott, R. F., Pérez-Consuegra, N., Scherler, D., Mora, A., Huppert, K. L., Braun, J., Hoke, G. D., and Sandoval Ruiz, J. R.: Erosion rate maps highlight spatio-temporal patterns of uplift and quantify sediment export of the Northern Andes, Earth Planet. Sc. Lett., 621, 118354, https://doi.org/10.1016/j.epsl.2023.118354, 2023.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Prince, P. S., Spotila, J. A., and Henika, W. S.: New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians, Geomorphology, 123, 305–319, https://doi.org/10.1016/j.geomorph.2010.07.023, 2010.
Prince, P. S., Spotila, J. A., and Henika, W. S.: Stream capture as driver of transient landscape evolution in a tectonically quiescent setting, Geology, 39, 823–826, https://doi.org/10.1130/G32008.1, 2011.
Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and Liu, Y.: Surface Deformation and Lower Crustal Flow in Eastern Tibet, Science, 276, 788–790, https://doi.org/10.1126/science.276.5313.788, 1997.
Sassolas-Serrayet, T., Cattin, R., Ferry, M., Godard, V., and Simoes, M.: Estimating the disequilibrium in denudation rates due to divide migration at the scale of river basins, Earth Surf. Dynam., 7, 1041–1057, https://doi.org/10.5194/esurf-7-1041-2019, 2019.
Scheingross, J. S., Limaye, A. B., McCoy, S. W., and Whittaker, A. C.: The shaping of erosional landscapes by internal dynamics, Nat. Rev. Earth Environ., 1, 661–676, https://doi.org/10.1038/s43017-020-0096-0, 2020.
Scherler, D. and Schwanghart, W.: Drainage divide networks – Part 1: Identification and ordering in digital elevation models, Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, 2020.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Seidl, M., Dietrich, W., Schmidt, K., and De Ploey, J.: The problem of channel erosion into bedrock, Funct. Geomorphol., 23, 101–124, 1992.
Su, T., Spicer, R. A., Li, S.-H., Xu, H., Huang, J., Sherlock, S., Huang, Y.-J., Li, S.-F., Wang, L., Jia, L.-B., Deng, W.-Y.-D., Liu, J., Deng, C.-L., Zhang, S.-T., Valdes, P. J., and Zhou, Z.-K.: Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet, Nat. Sci. Rev., 6, 495–504, https://doi.org/10.1093/nsr/nwy062, 2019.
Sun, X., Kuiper, K. F., Tian, Y., Li, C., Zhang, Z., Gemignani, L., Guo, R., de Breij, V., H. L., and Wijbrans, J. R.: 40Ar/39Ar mica dating of late Cenozoic sediments in SE Tibet: implications for sediment recycling and drainage evolution, J. Geol. Soc., 177, 843–854, https://doi.org/10.1144/jgs2019-099, 2020.
Tada, R., Zheng, H., and Clift, P. D.: Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau, Prog. Earth Planet. Sci., 3, 4, https://doi.org/10.1186/s40645-016-0080-y, 2016.
Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P.: Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, 10, 611–616, https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2, 1982.
The European Space Agency: Copernicus Digital Elevation Model, Copernicus Online Collections, https://doi.org/10.5270/ESA-c5d3d65, 2021.
Tian, Y., Kohn, B. P., Gleadow, A. J. W., and Hu, S.: A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau, J. Geophys. Res.-Solid, 119, 676–698, https://doi.org/10.1002/2013JB010429, 2014.
Wang, W., Qiao, X., Yang, S., and Wang, D.: Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements, Geophys. J. Int., 208, 1088–1102, https://doi.org/10.1093/gji/ggw445, 2017.
Wang, X., Chai, K., Liu, S., Wei, J., Jiang, Z., and Liu, Q.: Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan Plateau, J. Glaciol., 63, 535–542, https://doi.org/10.1017/jog.2017.14, 2017.
Wang, Y., Liu, X., and Herzschuh, U.: Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia, Earth-Sci. Rev., 103, 135–153, https://doi.org/10.1016/j.earscirev.2010.09.004, 2010.
Wang, Y., Willett, S. D., and Wu, D.: The Role of Weathering on Morphology and Rates of Escarpment Retreat of the Rift Margin of Madagascar, J. Geophys. Res.-Earth, 128, e2022JF007001, https://doi.org/10.1029/2022JF007001, 2023.
Weissel, J. K. and Seidl, M. A.: Inland Propagation of Erosional Escarpments and River Profile Evolution Across the Southeast Australian Passive Continental Margin, in: Rivers Over Rock: Fluvial Processes in Bedrock Channels, vol. 107, edited by: Tinkler, K. J. and Wohl, E. E., American Geophysical Union, 189–206, ISBN 978-0-875-90090-2, 1998.
Westerweel, J., Roperch, P., Licht, A., Dupont-Nivet, G., Win, Z., Poblete, F., Ruffet, G., Swe, H. H., Thi, M. K., and Aung, D. W.: Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data, Nat. Geosci., 12, 863–868, https://doi.org/10.1038/s41561-019-0443-2, 2019.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Solid, 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Whipple, K. X., DiBiase, R. A., Ouimet, W. B., and Forte, A. M.: Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms, Geology, 45, 91–94, https://doi.org/10.1130/G38490.1, 2017a.
Whipple, K. X., DiBiase, R. A., Ouimet, W. B., and Forte, A. M.: Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms: REPLY, Geology, 45, e422, https://doi.org/10.1130/G39252Y.1, 2017b.
Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet, W. B.: Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution, J. Geophys. Res.-Earth, 122, 248–273, https://doi.org/10.1002/2016JF003973, 2017c.
Willett, S.: Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms: COMMENT, Geology, 45, e421, https://doi.org/10.1130/G38929C.1, 2017.
Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., and Chen, C.-Y.: Dynamic Reorganization of River Basins, Science, 343, 1248765, https://doi.org/10.1126/science.1248765, 2014.
Winterberg, S. and Willett, S. D.: Greater Alpine river network evolution, interpretations based on novel drainage analysis, Swiss J. Geosci., 112, 3–22, https://doi.org/10.1007/s00015-018-0332-5, 2019.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics, Climate, and Landscape Evolution, in: Tectonics from topography: Procedures, promise, and pitfalls, Vol. 398, edited by: Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D. M., Geological Society of America Special Papers, 55–74, ISBN 978-0-8137-2398-3, https://doi.org/10.1130/2006.2398(04), 2006.
Wu, Y., Yang, R., He, C., and He, J.: Caution on determining divide migration from cross-divide contrast in χ, Geol. J., 57, 4090–4098, https://doi.org/10.1002/gj.4530, 2022.
Yang, R., Willett, S. D., and Goren, L.: In situ low-relief landscape formation as a result of river network disruption, Nature, 520, 526–529, https://doi.org/10.1038/nature14354, 2015.
Yang, R., Suhail, H. A., Gourbet, L., Willett, S. D., Fellin, M. G., Lin, X., Gong, J., Wei, X., Maden, C., Jiao, R., and Chen, H.: Early Pleistocene drainage pattern changes in Eastern Tibet: Constraints from provenance analysis, thermochronometry, and numerical modeling, Earth Planet. Sc. Lett., 531, 115955, https://doi.org/10.1016/j.epsl.2019.115955, 2020.
Ye, Y., Tan, X., and Zhou, C.: Initial topography matters in drainage divide migration analysis: Insights from numerical simulations and natural examples, Geomorphology, 409, 108266, https://doi.org/10.1016/j.geomorph.2022.108266, 2022.
Yuan, X. P., Huppert, K. L., Braun, J., Shen, X., Liu-Zeng, J., Guerit, L., Wolf, S. G., Zhang, J. F., and Jolivet, M.: Propagating uplift controls on high-elevation, low-relief landscape formation in the southeast Tibetan Plateau, Geology, 50, 60–65, https://doi.org/10.1130/G49022.1, 2021.
Zhang, H., Oskin, M. E., Liu-Zeng, J., Zhang, P., Reiners, P. W., and Xiao, P.: Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces, Earth Planet. Sc. Lett., 449, 176–185, https://doi.org/10.1016/j.epsl.2016.05.048, 2016.
Zheng, H., Clift, P. D., He, M., Bian, Z., Liu, G., Liu, X., Xia, L., Yang, Q., and Jourdan, F.: Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China, Geology, 49, 35–39, https://doi.org/10.1130/G48149.1, 2021.
Zhou, C., Tan, X., Liu, Y., and Shi, F.: A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt, Geomorphology, 398, 108071, https://doi.org/10.1016/j.geomorph.2021.108071, 2022a.
Zhou, C., Tan, X., Liu, Y., Lu, R., Murphy, M. A., He, H., Han, Z., and Xu, X.: Ongoing westward migration of drainage divides in eastern Tibet, quantified from topographic analysis, Geomorphology, 402, 108123, https://doi.org/10.1016/j.geomorph.2022.108123, 2022b.
Short summary
We evaluated the intensity and spatial extent of landscape change in the Hengduan Mountains by identifying areas where river network reorganization is occurring or expected in the future. We combine four metrics that measure topographic imbalances at different spatial and temporal scales. Our study provides a deeper understanding of the dynamic nature of the Hengduan Mountains landscape and associated drivers, such as tectonic uplift, and insights for applying similar methods elsewhere.
We evaluated the intensity and spatial extent of landscape change in the Hengduan Mountains by...