Articles | Volume 3, issue 3
https://doi.org/10.5194/esurf-3-389-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-3-389-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
Faculty of Geosciences, Universiteit Utrecht, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
S. J. McLelland
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
D. R. Parsons
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
B. J. Murphy
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
E. Hauber
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
M. G. Kleinhans
Faculty of Geosciences, Universiteit Utrecht, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
Related authors
No articles found.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-3001, https://doi.org/10.5194/egusphere-2024-3001, 2024
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2132, https://doi.org/10.5194/egusphere-2024-2132, 2024
Short summary
Short summary
Leaky wooden dams are a type of natural flood management intervention that aim to reduce flood risk downstream by temporarily holding back water during a storm event and releasing it afterwards. These structures alter the river hydrology, and therefore the geomorphology, yet often this is excluded from numerical models. Here we show that by not simulating geomorphology we are currently underestimating the efficacy of these structures to reduce the flood peak and store water.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Elena Bastianon, Julie A. Hope, Robert M. Dorrell, and Daniel R. Parsons
Earth Surf. Dynam., 10, 1115–1140, https://doi.org/10.5194/esurf-10-1115-2022, https://doi.org/10.5194/esurf-10-1115-2022, 2022
Short summary
Short summary
Biological activity in shallow tidal environments significantly influence sediment dynamics and morphology. Here, a bio-morphodynamic model is developed that accounts for hydro-climate variations in biofilm development to estimate the effect of biostabilisation on the bed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm under a range of disturbance periodicities and intensities, shaping the channel equilibrium profile.
Chengbin Zou, Paul Carling, Zetao Feng, Daniel Parsons, and Xuanmei Fan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-119, https://doi.org/10.5194/tc-2022-119, 2022
Manuscript not accepted for further review
Short summary
Short summary
Climate change is causing mountain lakes behind glacier barriers to drain through ice tunnels as catastrophe floods, threatening people and infrastructure downstream. Understanding of how process works can mitigate the impacts by providing advanced warnings. A laboratory study of ice tunnel development improved understanding of how floods evolve. The principles of ice tunnel development were defined numerically and can be used to better model natural floods leading to improved prediction.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021, https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Short summary
Unsustainable sand mining poses a threat to the stability of river channels. We use satellite imagery to estimate volumes of material removed from the Mekong River, Cambodia, over the period 2016–2020. We demonstrate that current rates of extraction now exceed previous estimates for the entire Mekong Basin and significantly exceed the volume of sand naturally transported by the river. Our work highlights the importance of satellite imagery in monitoring sand mining activity over large areas.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
S. Su, L. Fanara, X. Zhang, K. Gwinner, E. Hauber, and J. Oberst
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 673–678, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-673-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-673-2021, 2021
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
Arya P. Iwantoro, Maarten van der Vegt, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 413–429, https://doi.org/10.5194/esurf-8-413-2020, https://doi.org/10.5194/esurf-8-413-2020, 2020
Short summary
Short summary
We investigated the effect of tides on the morphodynamic evolution of bifurcations in tide-influenced deltas. Using results from a numerical morphodynamic model (Delft3D), we found that tides cause less asymmetric bifurcations and thereby keep both downstream channels open. Our results explain why avulsion rarely occurs in tide-influenced deltas, whereas it occurs more often in river-dominated deltas.
Menno W. Straatsma, Jan M. Fliervoet, Johan A. H. Kabout, Fedor Baart, and Maarten G. Kleinhans
Nat. Hazards Earth Syst. Sci., 19, 1167–1187, https://doi.org/10.5194/nhess-19-1167-2019, https://doi.org/10.5194/nhess-19-1167-2019, 2019
Short summary
Short summary
Climate adaptation of deltas is a hot topic given their high population density in many countries. We quantified trade-offs between hydraulics, potential biodiversity, implementation costs, and the number of land owners involved, using a newly developed tool called RiverScape. With our approach, we move towards finding integrated solutions at the scale of a large river in a delta to support the negotiations among stakeholders in the decision-making process.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Ivar R. Lokhorst, Lisanne Braat, Jasper R. F. W. Leuven, Anne W. Baar, Mijke van Oorschot, Sanja Selaković, and Maarten G. Kleinhans
Earth Surf. Dynam., 6, 883–901, https://doi.org/10.5194/esurf-6-883-2018, https://doi.org/10.5194/esurf-6-883-2018, 2018
Short summary
Short summary
In estuaries, mud sedimentation enhances salt marsh accretion. Here we explore system-scale effects of plants and mud on planform shape and size of estuaries. We coupled Delft3D for hydromorphodynamics with our vegetation model and ran controls for comparison. Effects are greatest at the fluvial–tidal transition, where for the first time in a model, a bedload convergence zone formed. Regardless of local vegetation effects, mud and vegetation cause gradual filling of estuaries over time.
Jasper R. F. W. Leuven, Sanja Selaković, and Maarten G. Kleinhans
Earth Surf. Dynam., 6, 763–778, https://doi.org/10.5194/esurf-6-763-2018, https://doi.org/10.5194/esurf-6-763-2018, 2018
Short summary
Short summary
This paper reports the along-channel variability in occurring bed levels as described by hypsometry in natural estuaries. We found a novel relation between the estuary planform shape and the hypsometric function shape, which implies that it is possible to characterise and predict subwater estuarine morphology and bed levels in data-poor environments.
Jasper H. J. Candel, Maarten G. Kleinhans, Bart Makaske, Wim Z. Hoek, Cindy Quik, and Jakob Wallinga
Earth Surf. Dynam., 6, 723–741, https://doi.org/10.5194/esurf-6-723-2018, https://doi.org/10.5194/esurf-6-723-2018, 2018
Short summary
Short summary
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a meandering river ca. 500 years ago. We developed a methodology to reconstruct the historical discharge and found that the change in river style was caused by an increase in peak discharges. This increase was likely caused by the Little Ice Age and land use changes in the catchment (peat reclamation and exploitation). This study shows how river style changes as a result of discharge regime changes.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
Maarten G. Kleinhans, Maarten van der Vegt, Jasper Leuven, Lisanne Braat, Henk Markies, Arjan Simmelink, Chris Roosendaal, Arjan van Eijk, Paul Vrijbergen, and Marcel van Maarseveen
Earth Surf. Dynam., 5, 731–756, https://doi.org/10.5194/esurf-5-731-2017, https://doi.org/10.5194/esurf-5-731-2017, 2017
Short summary
Short summary
Creating estuaries in the laboratory has been challenging. When the ebb and flood currents are driven by ebb and flood in the sea, they are too weak to move sand. Here we describe how the periodic tilting of an entire experimental set-up leads to ebb and flood currents with similar behaviour as in nature and with enough strength to move sand. This means that this novel set-up now allows for the creation of estuarine landscapes in experiments.
Lisanne Braat, Thijs van Kessel, Jasper R. F. W. Leuven, and Maarten G. Kleinhans
Earth Surf. Dynam., 5, 617–652, https://doi.org/10.5194/esurf-5-617-2017, https://doi.org/10.5194/esurf-5-617-2017, 2017
Short summary
Short summary
Mud raises concern in the short-term management of estuaries, but it is not known whether cohesive mud affects the long-term development of estuaries. We discovered that a small supply of mud from the river confines the estuary by forming stable mudflats on the sides in centuries, whereas estuaries with only sand continue to grow. Mudflats also reduce the shifting of channels and bars. This implies that changes in mud supply in estuaries may have led to changes in shape and dynamics in the past.
F. Schuurman, M. G. Kleinhans, and H. Middelkoop
Earth Surf. Dynam., 4, 25–45, https://doi.org/10.5194/esurf-4-25-2016, https://doi.org/10.5194/esurf-4-25-2016, 2016
Short summary
Short summary
We studied the propagation of natural and human-induced perturbations in large braided sand-bed rivers using a physics-based 3-D model. The results show that the perturbations not only affect the local morphology but their effects amplify while propagating through the braided network. This occurs by destabilization of bifurcations in combination with reshaping of bars and branches. These results could have a major impact on the assessment of engineering measures in large braided sand-bed rivers.
M. G. Kleinhans, T.M. van Rosmalen, C. Roosendaal, and M. van der Vegt
Adv. Geosci., 39, 21–26, https://doi.org/10.5194/adgeo-39-21-2014, https://doi.org/10.5194/adgeo-39-21-2014, 2014
Related subject area
Physical: Planetary Geomorphology
Long-runout landslides with associated longitudinal ridges in Iceland as analogues of Martian landslide deposits
An overview of sedimentary volcanism on Mars
Long-term erosion rates as a function of climate derived from the impact crater inventory
Deep-seated gravitational slope deformation scaling on Mars and Earth: same fate for different initial conditions and structural evolutions
Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates
Giulia Magnarini, Anya Champagne, Costanza Morino, Calvin Beck, Meven Philippe, Armelle Decaulne, and Susan J. Conway
Earth Surf. Dynam., 12, 657–678, https://doi.org/10.5194/esurf-12-657-2024, https://doi.org/10.5194/esurf-12-657-2024, 2024
Short summary
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Stefan Hergarten and Thomas Kenkmann
Earth Surf. Dynam., 7, 459–473, https://doi.org/10.5194/esurf-7-459-2019, https://doi.org/10.5194/esurf-7-459-2019, 2019
Short summary
Short summary
Our study reveals that worldwide mean erosion rates on the million-year timescale are very similar to present-day erosion rates in contrast to the majority of the previously published results. Concerning the dependence of erosion on climate, we found that the long-term erosion efficacy of the tropical zone has been about 5 times higher than that of the cold zones, while the erosional efficacy of the present-day arid zone has been as high as that of the temperate zone.
Olga Kromuszczyńska, Daniel Mège, Krzysztof Dębniak, Joanna Gurgurewicz, Magdalena Makowska, and Antoine Lucas
Earth Surf. Dynam., 7, 361–376, https://doi.org/10.5194/esurf-7-361-2019, https://doi.org/10.5194/esurf-7-361-2019, 2019
Short summary
Short summary
Deep-seated gravitational spreading features are spectacular on Mars on the hillslopes of Valles Marineris, both in terms of landform freshness and size. This paper compares their dimensions and those in terrestrial analogue sites in the Tatra Mountains. Gravitational spreading is thought to be inactive in both locations. We find that the height-to-width ratio, ~0.24, is similar in spite of much larger strain in Valles Marineris. We explore the implications.
David L. Dunkerley
Earth Surf. Dynam., 7, 345–360, https://doi.org/10.5194/esurf-7-345-2019, https://doi.org/10.5194/esurf-7-345-2019, 2019
Short summary
Short summary
Soil erosion, especially in vulnerable conditions such as post-fire landscapes or tilled agricultural soils, is greatly affected by the occurrence of bursts of intense rainfall. These are often set within longer periods of less intense rain. This paper documents the nature of the intensity bursts at two Australian locations and shows that high-resolution rainfall records are required in order to make estimates of the intensity. Hourly rainfall data are not suitable for this task.
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on...