Articles | Volume 3, issue 4
https://doi.org/10.5194/esurf-3-501-2015
https://doi.org/10.5194/esurf-3-501-2015
Research article
 | 
20 Oct 2015
Research article |  | 20 Oct 2015

Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand

R. N. Parker, G. T. Hancox, D. N. Petley, C. I. Massey, A. L. Densmore, and N. J. Rosser

Related authors

Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023,https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Earthquake contributions to coastal cliff retreat
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
Earth Surf. Dynam., 11, 757–778, https://doi.org/10.5194/esurf-11-757-2023,https://doi.org/10.5194/esurf-11-757-2023, 2023
Short summary
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022,https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress
Jonathan M. Carey, Chris I. Massey, Barbara Lyndsell, and David N. Petley
Earth Surf. Dynam., 7, 707–722, https://doi.org/10.5194/esurf-7-707-2019,https://doi.org/10.5194/esurf-7-707-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Linear-stability analysis of plane beds under flows with suspended loads
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023,https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023,https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023,https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023,https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary
Download
Short summary
Large earthquakes commonly trigger widespread and destructive landsliding. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake and the legacy of past events. Our findings emphasise that a lack of understanding of the legacy of damage in hillslopes potentially represents an important source of uncertainty when assessing regional landslide susceptibility.