Articles | Volume 5, issue 2
https://doi.org/10.5194/esurf-5-239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Self-similar growth of a bimodal laboratory fan
Pauline Delorme
CORRESPONDING AUTHOR
Institut de Physique du Globe de Paris, Paris – Sorbonne Paris Cité, Université Paris Diderot, Paris, France
Vaughan Voller
Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
Chris Paola
Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
Olivier Devauchelle
Institut de Physique du Globe de Paris, Paris – Sorbonne Paris Cité, Université Paris Diderot, Paris, France
Éric Lajeunesse
Institut de Physique du Globe de Paris, Paris – Sorbonne Paris Cité, Université Paris Diderot, Paris, France
Laurie Barrier
Institut de Physique du Globe de Paris, Paris – Sorbonne Paris Cité, Université Paris Diderot, Paris, France
François Métivier
Institut de Physique du Globe de Paris, Paris – Sorbonne Paris Cité, Université Paris Diderot, Paris, France
Related authors
No articles found.
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Kumar Gaurav, François Métivier, A V Sreejith, Rajiv Sinha, Amit Kumar, and Sampat Kumar Tandon
Earth Surf. Dynam., 9, 47–70, https://doi.org/10.5194/esurf-9-47-2021, https://doi.org/10.5194/esurf-9-47-2021, 2021
Short summary
Short summary
This study demonstrates an innovative methodology to estimate the formative discharge of alluvial rivers from remote sensing images. We have developed an automated algorithm in Python 3 to extract the width of a river channel from satellite images. Finally, this channel width is translated into discharge using a semi-empirical regime equation developed from field measurements and threshold channel theory that explains the first-order geometry of alluvial channels.
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020, https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Short summary
The Patos-Marinza oil field in Central Albania (40.71° N, 19.61° E) is one of the largest onshore oil fields in Europe. More than 7 million oil barrels are extracted per year from sandstone formations in western Albania. The regional seismicity culminated in December 2016, when a seismic sequence developed in the oil field, triggering the opening of a public inquiry. We take advantage of the Sentinel-1 radar images to show that a strong subsidence, probably induced, is taking place in the field.
Gerard Salter, Vaughan R. Voller, and Chris Paola
Earth Surf. Dynam., 7, 911–927, https://doi.org/10.5194/esurf-7-911-2019, https://doi.org/10.5194/esurf-7-911-2019, 2019
Short summary
Short summary
Bifurcations are the switches that steer water and sediment in delta and multithread river networks, playing an important role in shaping the landscape. In lab experiments, we found that when the downstream branches grow through time, frequent switching in the water and sediment partitioning occurs. In contrast, once sediment freely exits the downstream boundary, long periods of time when one branch dominates occur; however, unlike our theoretical prediction, these are not permanent.
Rebecca L. Caldwell, Douglas A. Edmonds, Sarah Baumgardner, Chris Paola, Samapriya Roy, and Jaap H. Nienhuis
Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019, https://doi.org/10.5194/esurf-7-773-2019, 2019
Short summary
Short summary
River deltas are valuable resources that support biodiversity and human habitation. Despite this we do not have a global census of deltas nor do we know the conditions that promote their formation. We surveyed 5399 river mouths greater than 50 m wide and found that 2174 (40 %) create a delta. The conditions that lead to delta formation are high sediment input and low wave and tide conditions. These results can be used to understand how deltas will adapt to environmental changes.
Meng Zhao, Gerard Salter, Vaughan R. Voller, and Shuwang Li
Earth Surf. Dynam., 7, 505–513, https://doi.org/10.5194/esurf-7-505-2019, https://doi.org/10.5194/esurf-7-505-2019, 2019
Short summary
Short summary
Typically, we think of a shoreline growing with a smooth line separating the land and the water. If the growth is unstable, however, the land–water front will exhibit a roughness that grows with time. Here we ask whether the growth of deltaic shorelines cab be unstable. Through mathematical analysis we show that growth is unstable when the shoreline is building onto an adverse slope. The length scale of the unstable signal in such a case, however, might be obscured by other geomorphic processes.
Laure Guerit, Laurie Barrier, Youcun Liu, Clément Narteau, Eric Lajeunesse, Eric Gayer, and François Métivier
Earth Surf. Dynam., 6, 1011–1021, https://doi.org/10.5194/esurf-6-1011-2018, https://doi.org/10.5194/esurf-6-1011-2018, 2018
Short summary
Short summary
The grain-size distribution of ancient alluvial systems is commonly determined from sections of gravel deposits exposed vertically to reconstruct paleo-environments or changes in tectonics and/or climate. To test whether such a grain-size distribution is equivalent to one of the sediments that was in direct contact with the flow at the time of deposition, we dug a large trench in an active gravel-bedded, braided river. We show that the granulometry is uniform at the scale of the active layer.
Stephanie S. Day, Karen B. Gran, and Chris Paola
Hydrol. Earth Syst. Sci., 22, 3261–3273, https://doi.org/10.5194/hess-22-3261-2018, https://doi.org/10.5194/hess-22-3261-2018, 2018
Short summary
Short summary
Permanent gullies are deep steep-sided channels that erode as water falls over the upstream end. Erosion of these features is a concern where people and climate change have altered how water moves over the land. This paper analyzes a set of experiments that were used to determine how changing gully flows impact erosion. We found that while increasing the volume of water will increase erosion, changing the flow rate into gullies will not impact the total erosion, but will alter gully shape.
Eric Lajeunesse, Olivier Devauchelle, and François James
Earth Surf. Dynam., 6, 389–399, https://doi.org/10.5194/esurf-6-389-2018, https://doi.org/10.5194/esurf-6-389-2018, 2018
Short summary
Short summary
Tracking the position of tracer particles entrained in a river is a popular method to investigate sediment transport. Using numerical simulations, we study the propagation of these tracers and find a transition between two regimes: an early regime in which the tracers are progressively set into motion and a late regime in which the tracers spread linearly. We derive analytical expressions for the behavior of the tracers in each regime. These expressions might help to interpret field data.
François Métivier, Eric Lajeunesse, and Olivier Devauchelle
Earth Surf. Dynam., 5, 187–198, https://doi.org/10.5194/esurf-5-187-2017, https://doi.org/10.5194/esurf-5-187-2017, 2017
Short summary
Short summary
More than a century of experiments have demonstrated that many features of natural rivers can be reproduced in the laboratory. Here, we revisit some of these experiments to show that, regardless of the river's planform (single-thread or braiding), laboratory rivers behave like their natural counterparts. We further suggest that sediment transport could be responsible for the transition into a braided river, which could, in turn, explain the scarcity of laboratory single-thread channels.
François Métivier, Olivier Devauchelle, Hugo Chauvet, Eric Lajeunesse, Patrick Meunier, Koen Blanckaert, Peter Ashmore, Zhi Zhang, Yuting Fan, Youcun Liu, Zhibao Dong, and Baisheng Ye
Earth Surf. Dynam., 4, 273–283, https://doi.org/10.5194/esurf-4-273-2016, https://doi.org/10.5194/esurf-4-273-2016, 2016
Short summary
Short summary
In meandering rivers, flow and sediments are carried in a single thread whereas in braided rivers they are carried through numerous threads. The geometry of single-thread follows scaling relationships with discharge. The most famous of these, "Lacey's law", states that a river's width scales with the square root of its discharge. We here show that threads from braided rivers also accord with Lacey's law, and that the geometry of meandering and braided threads cannot be differenciated.
J.-L. Grimaud, C. Paola, and V. Voller
Earth Surf. Dynam., 4, 11–23, https://doi.org/10.5194/esurf-4-11-2016, https://doi.org/10.5194/esurf-4-11-2016, 2016
Short summary
Short summary
Knickpoints represent localized steps along a river profile (e.g. waterfalls or rapids) that are commonly interpreted as the geomorphic response of river systems to external changes. We used a simple experiment to show that knickpoints may not only respond to external base-level change but are also able to self-organize. We highlight the effect of alluvial cover in delaying knickpoint formation and show that river bed strength controls both retreat velocity and geometry of knickpoints.
K. Gaurav, F. Métivier, O. Devauchelle, R. Sinha, H. Chauvet, M. Houssais, and H. Bouquerel
Earth Surf. Dynam., 3, 321–331, https://doi.org/10.5194/esurf-3-321-2015, https://doi.org/10.5194/esurf-3-321-2015, 2015
Short summary
Short summary
This study mainly focused on the comparison between braided river channels and meandering river channels. We show that the morphology of braided and meandering channels are comparable and their width, depth and slope scale in same way against water discharge. This is the key finding of our study and it has never been tested before.
M. Liang, V. R. Voller, and C. Paola
Earth Surf. Dynam., 3, 67–86, https://doi.org/10.5194/esurf-3-67-2015, https://doi.org/10.5194/esurf-3-67-2015, 2015
Short summary
Short summary
In this work we present DeltaRCM, a reduced-complexity model for river delta formation. It is a rule-based cellular morphodynamic model, in contrast to reductionist models based on detailed computational fluid dynamics. DeltaRCM is able to resolve channel dynamics and to produce stratigraphy. We also explain the meaning of complexity reduction, especially the essential processes to be included in modeling deltas.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models
The influence of dune lee side shape on time-averaged velocities and turbulence
Synoptic-scale to mesoscale atmospheric circulation connects fluvial and coastal gravel conveyors and directional deposition of coastal landforms in the Dead Sea basin
Initial shape reconstruction of a volcanic island as a tool for quantifying long-term coastal erosion: the case of Corvo Island (Azores)
Geospatial modelling of large-wood supply to rivers: a state-of-the-art model comparison in Swiss mountain river catchments
Mobile evaporite enhances the cycle of physical–chemical erosion in badlands
Revealing the relation between spatial patterns of rainfall return levels and landslide density
Constraints on long-term cliff retreat and intertidal weathering at weak rock coasts using cosmogenic 10Be, nearshore topography and numerical modelling
Impacts of human modifications on material transport in deltas
Evolution of an Alpine proglacial river during 7 decades of deglaciation
Phenomenological model of suspended sediment transport in a small catchment
Water level fluctuations drive bank instability in a hypertidal estuary
Ice buttressing-controlled rock slope failure on a cirque headwall, English Lake District
The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Pristine levels of suspended sediment in large German river channels during the Anthropocene?
An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures
Development of the morphodynamics on Little Ice Age lateral moraines in 10 glacier forefields of the Eastern Alps since the 1950s
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
Exploring the transition between water- and wind-dominated landscapes in Deep Springs, California, as an analog for transitioning landscapes on Mars
Spatiotemporal Bedload Transport Patterns Over Two-Dimensional Bedforms
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Entrainment and deposition of boulders in a gravel bed river
Coupling between downstream variations of channel width and local pool–riffle bed topography
Morphologic and Morphometric Differences between Gullies Formed in Different Substrates on Mars: New Insights into the Gully Formation Processes
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Shape still matters – rockfall experiments with deadwood reveal a new facet of rock shape relevance
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Response of modern fluvial sediments to regional tectonic activity along the upper Min River, eastern Tibet
Geophysical evidence of massive hyperconcentrated push waves with embedded toma hills caused by the Flims rockslide, Switzerland
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Episodic sediment supply to alluvial fans: implications for fan incision and morphometry
Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China
Exploring exogenous controls on short- versus long-term erosion rates globally
The probabilistic nature of dune collisions in 2D
The effects of late Cenozoic climate change on the global distribution of frost cracking
Transitional rock glaciers at sea level in northern Norway
Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Quantification of post-glacier bedrock surface erosion in the European Alps using 10Be and optically stimulated luminescence exposure dating
A comparison of 1D and 2D bedload transport functions under high excess shear stress conditions in laterally constrained gravel-bed rivers: a laboratory study
Earthquake Contributions to Coastal Cliff Retreat
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
Effect of debris-flow sediment grain-size distribution on fan morphology
Controls on earthflow formation in the Teanaway River basin, central Washington State, USA
Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation
The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers
Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century
Theoretical and numerical considerations of rivers in a tectonically inactive foreland
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
Alice Lefebvre and Julia Cisneros
Earth Surf. Dynam., 11, 575–591, https://doi.org/10.5194/esurf-11-575-2023, https://doi.org/10.5194/esurf-11-575-2023, 2023
Short summary
Short summary
Underwater dunes are found in various environments with strong hydrodynamics and sandy sediment. Using a numerical model, we investigated how the dune shape influences flow velocity and turbulence. We propose a classification with three types of dunes, depending on their mean lee side angles (low-angle dunes, intermediate-angle dunes and high-angle dunes). We discuss the implications of this classification on the interaction between dune morphology, flow and sediment transport.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Slim Mtibaa and Haruka Tsunetaka
Earth Surf. Dynam., 11, 461–474, https://doi.org/10.5194/esurf-11-461-2023, https://doi.org/10.5194/esurf-11-461-2023, 2023
Short summary
Short summary
We explore the relation between the spatial patterns of rainfall return levels for various timespans (1–72 h) and landslide density during a rainfall event that triggered widespread landslides. We found that landslide density increases with increased rainfall return levels for the various examined timespans. Accordingly, we conclude that whether rainfall intensities reached exceptional return levels for a wide time range is a key determinant of the spatial distribution of landslides.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Jayaram Hariharan, Kyle Wright, Andrew Moodie, Nelson Tull, and Paola Passalacqua
Earth Surf. Dynam., 11, 405–427, https://doi.org/10.5194/esurf-11-405-2023, https://doi.org/10.5194/esurf-11-405-2023, 2023
Short summary
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023, https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary
Short summary
In this study the processes leading to bank failures in the hypertidal Severn Estuary are studied employing numerical models and field observations. Results highlight that the periodic fluctuations in water levels drive an imbalance in the resisting (hydrostatic pressure) versus driving (pore water pressure) forces causing a frequent oscillation of bank stability between stable (at high tide) and unstable states (at low tide) both on semidiurnal bases and in the spring–neap transition.
Paul Anthony Carling, John Duncan Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-14, https://doi.org/10.5194/esurf-2023-14, 2023
Revised manuscript accepted for ESurf
Short summary
Short summary
Many steep glaciated rock-walls collapsed when the Ice Age ended. How ice supports a steep rock-wall until the ice decays is poorly understood. A collapsed rock-wall was surveyed in the field and numerically modelled. Cosmogenic exposure-dates show the rock-wall collapsed and became ice-free c. 18 ka ago. The model showed that the rock-wall failed very slowly because ice was buttressing the slope. Dating other collapsed rock-walls will improve understanding of how and when the last Ice Age ended.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
Earth Surf. Dynam., 11, 305–324, https://doi.org/10.5194/esurf-11-305-2023, https://doi.org/10.5194/esurf-11-305-2023, 2023
Short summary
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Haojie Huang
Earth Surf. Dynam., 11, 167–181, https://doi.org/10.5194/esurf-11-167-2023, https://doi.org/10.5194/esurf-11-167-2023, 2023
Short summary
Short summary
Straw checkerboard barriers (SCBs) have been widely used in anti-desertification projects. However, research on this mechanism and its laying length are still lacking. The significance of our work is to analyze some results, which seem simple but lack a theoretical basis from the perspective of turbulence through this model. This study may provide theoretical support for the minimum laying length of SCBs in anti-desertification projects.
Taylor Dorn and Mackenzie Day
Earth Surf. Dynam., 11, 149–165, https://doi.org/10.5194/esurf-11-149-2023, https://doi.org/10.5194/esurf-11-149-2023, 2023
Short summary
Short summary
Planetary surfaces are shaped by both wind and water, and their resulting surface features are commonly observed by aerial images. Deep Springs playa, CA, provides a comparable wet-to-dry-transitioning landscape as experienced in Mars' past. Our results, made through collected weather data and drone footage, show that some features, when observed solely by aerial imagery, might be interpreted as being formed by wind when in fact other processes were more influential in their formation.
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-3, https://doi.org/10.5194/esurf-2023-3, 2023
Revised manuscript accepted for ESurf
Short summary
Short summary
Despite the importance of bedforms (e.g. ripples, dunes) to sediment transport, the details of sediment transport on a sub-bedform scale are poorly understood. This paper investigates sediment transport in the downstream and cross-stream directions over bedforms with straight crests. We find that the patterns of bedload transport are highly variable on the sub-bedform scale, which is important for our understanding of the evolution of bedforms with complex crest geometries.
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023, https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Short summary
Scarpland formation produced low-inclined slopes susceptible to deep-seated landsliding on geological scales. These landslide-affected slopes are often used for forestry activities today, and interaction between geology and vegetation controls shallow landsliding. Our data show that Feuerletten clays control deep-seated landsliding processes that can be reactivated. When trees are sufficiently dense to provide lateral root cohesion, trees can prevent the occurrence of shallow landslides.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Rishitosh Kumar Sinha, Dwijesh Ray, Tjalling De Haas, Susan J. Conway, and Axel Noblet
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-64, https://doi.org/10.5194/esurf-2022-64, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Our detailed investigation of Martian gullies formed in different substrates in 29 craters distributed between 30°–75° S latitude suggests that they can be differentiated from one another in terms of (1) morphology and length of alcoves, and (2) mean gradient of the gully-fans. The comparison between the melton ratio, alcove length and fan gradient of Martian and terrestrial gullies suggest the Martian gullies were likely formed by terrestrial debris-flow like processes in the past.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-70, https://doi.org/10.5194/esurf-2022-70, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human-sized in a steep mountain forest. This study focuses mainly on the effects of the rock shape and of lying deadwood. The results show that cubic shape rocks have a longer mean runout distance in forested areas than platy-shaped rocks with the same mass. The findings enrich common practices in modern rockfall hazard zoning assessments and urge strongly to incorporate rock shape effects.
Yan Yan, Yifei Cui, Xinghui Huang, Jiaojiao Zhou, Wengang Zhang, Shuyao Yin, Jian Guo, and Sheng Hu
Earth Surf. Dynam., 10, 1233–1252, https://doi.org/10.5194/esurf-10-1233-2022, https://doi.org/10.5194/esurf-10-1233-2022, 2022
Short summary
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Wei Shi, Hanchao Jiang, Hongyan Xu, Siyuan Ma, Jiawei Fan, Siqi Zhang, Qiaoqiao Guo, and Xiaotong Wei
Earth Surf. Dynam., 10, 1195–1209, https://doi.org/10.5194/esurf-10-1195-2022, https://doi.org/10.5194/esurf-10-1195-2022, 2022
Short summary
Short summary
Alpine valleys reduce the preservation potential of Quaternary sediment in bedrock valley regions, which seriously hinders the study of modern tectonic activity. We report a new method to reveal regional tectonic activity by analyzing fluvial sediments in tectonically active regions. Our analyses identify three segments of different tectonic activities along the upper Min River, eastern Tibet. This method provides a key framework to reveal tectonic activity in other regions of the world.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Emmanuel Malet, Johan Berthet, Josué Bock, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-58, https://doi.org/10.5194/esurf-2022-58, 2022
Preprint under review for ESurf
Short summary
Short summary
Water in fractures drive many processes that destabilize steep permafrost-affected rock walls. However, quantitative knowledge on water availability for infiltration is limited. Here we use a numerical model and field measurements to estimate the water balance in a steep rock walls site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. Below 3600 m, surface water availability is increased rapidly due to rainfall.
Anya S. Leenman and Brett C. Eaton
Earth Surf. Dynam., 10, 1097–1114, https://doi.org/10.5194/esurf-10-1097-2022, https://doi.org/10.5194/esurf-10-1097-2022, 2022
Short summary
Short summary
The supply of sediment (sand and gravel) carried by a stream out of a steep mountain valley is widely thought to control the gradient of the fan-shaped landforms that streams often build where they leave their valley. We tested this idea in a set of
sandboxexperiments with oscillating high and low sediment supply. Even though the average sediment supply never changed, longer oscillations built flatter fans, indicating how wetter climates might affect these mountain landforms.
Shanbai Wu, Ruihua Zhao, Liping Liao, Yunchuan Yang, Yao Wei, and Wenzhi Wei
Earth Surf. Dynam., 10, 1079–1096, https://doi.org/10.5194/esurf-10-1079-2022, https://doi.org/10.5194/esurf-10-1079-2022, 2022
Short summary
Short summary
Granite residual soil landslides are widely distributed in southeastern Guangxi Province, China. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The research provides valuable references for the prevention and early warning of granite residual soil landslide in the southeast of Guangxi.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Paul A. Jarvis, Clement Narteau, Olivier Rozier, and Nathalie M. Vriend
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-55, https://doi.org/10.5194/esurf-2022-55, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Sand dune migration velocity is inversely proportional to dune size. Consequently, smaller, faster dunes can collide with larger, slower, downstream dunes. Such collisions can result in either coalescence or ejection, whereby the dunes exchange mass but remain separate. Our numerical simulations show that the outcome depends probabilistically on the dune size ratio, which we describe through an empirical function. Our numerical predictions compare favourably against experimental observations.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
David L. Adams and Brett C. Eaton
Earth Surf. Dynam., 10, 895–907, https://doi.org/10.5194/esurf-10-895-2022, https://doi.org/10.5194/esurf-10-895-2022, 2022
Short summary
Short summary
Channel processes under flood conditions are important for river science and management as they involve high volumes of sediment transport and erosion. However, these processes remain poorly understood as the data are difficult to collect. Using a physical model of a river, we found that simple equations based on the mean shear stress and median grain size predicted sediment transport as accurately as ones that accounted for the full range of shear stresses.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
EGUsphere, https://doi.org/10.5194/egusphere-2022-643, https://doi.org/10.5194/egusphere-2022-643, 2022
Short summary
Short summary
Earthquakes can cause damaging coastal cliff retreat but we have a limited understanding of how these infrequent events influence long-term retreat. This makes planning for this hazard a challenge. In this study, we use historic aerial images to measure coastal cliff-top retreat at a site in New Zealand. We find that earthquakes account for close to half of long-term retreat at this site and our results have helped us to develop tools for estimating the influence of earthquakes at other sites.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022, https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022, https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water with probability arguments. Our major conclusions are that (1) sediment transport can be phrased in terms of the movements of individual sediment grains, (2) transport rates in river channels are inherently uncertain, and (3) sediment transport in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in air.
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam., 10, 775–796, https://doi.org/10.5194/esurf-10-775-2022, https://doi.org/10.5194/esurf-10-775-2022, 2022
Short summary
Short summary
To assess the effects of differences in grain-size distribution within debris flows on the morphology of debris-flow fans, fan morphologies were modeled experimentally. Even if debris flows exhibited similar flow properties, their runout distance differed in response to differences in their grain-size distribution. Differences in runout distance were responsible for variations in the direction of the descending flow that resulted in different debris-flow fan morphology.
Sarah A. Schanz and A. Peyton Colee
Earth Surf. Dynam., 10, 761–774, https://doi.org/10.5194/esurf-10-761-2022, https://doi.org/10.5194/esurf-10-761-2022, 2022
Short summary
Short summary
We mapped and dated 187 earthflows to determine controls on earthflow formation and resulting topographic changes in the Teanaway basin, central Washington State, USA. Using a new relative dating technique and absolute dating, we find that 25 % of earthflows were active in the last ~500 years. Earthflows are lithologically controlled, actively narrow valleys, and increase sediment loads.
Jeongyeon Han and Wonsuck Kim
Earth Surf. Dynam., 10, 743–759, https://doi.org/10.5194/esurf-10-743-2022, https://doi.org/10.5194/esurf-10-743-2022, 2022
Short summary
Short summary
A levee-building model is presented to investigate the effects of flood on levee slope and river behaviors. Coarser grains that cause steep levee slopes lead to frequent switchings of river paths, but higher overflow velocity has an opposite effect. High levee slopes lead to more reoccupations of abandoned old river paths than low levee slopes when rivers switch their locations. The study helps us to assess flood hazards with river-path switching.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Cited articles
Andreotti, B., Forterre, Y., and Pouliquen, O.: Les milieux granulaires, Entre fluide et solide, EDP Sciences, Collection Savoirs Actuels, Les Ulis, France, 2012.
Ashworth, P. J., Best, J. L., and Jones, M.: Relationship between sediment supply and avulsion frequency in braided rivers, Geology, 32, 21–24, 2004.
Blair, T. C.: Sedimentary processes, vertical stratification sequences, and geomorphology of the Roaring River alluvial fan, Rocky Mountain National Park, Colorado, J. Sediment. Res., 57, 1–18, 1987.
Blair, T. C. and McPherson, J. G.: Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages, J. Sediment. Res., 64, 450–489, 1994.
Blair, T. C. and McPherson, J. G.: Processes and forms of alluvial fans, in: Geomorphology of Desert Environments, Springer, Dordrech, the Netherlands, 413–467, 2009.
Blissenbach, E.: Relation of surface angle distribution to particle size distribution on alluvial fans, J. Sediment. Res., 22, 25–28, 1952.
Bryant, M., Falk, P., and Paola, C.: Experimental study of avulsion frequency and rate of deposition, Geology, 23, 365–368, 1995.
Bull, W. B.: Geomorphology of segmented alluvial fans in western Fresno County, California, US Government Printing Office, Washington, USA, 1964.
Bull, W. B.: The alluvial-fan environment, Prog. Phys. Geog., 1, 222–270, 1977.
Charreau, J., Gumiaux, C., Avouac, J.-P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N., and Wang, Q.: The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: Climatic and tectonic implications, Earth Planet. Sci. Lett., 287, 298–310, 2009.
Chow, V. T.: Open channel hydraulics, Civil Engineering Series, McGraw-Hill International editions, Singapore, 1959.
Clarke, L., Quine, T. A., and Nicholas, A.: An experimental investigation of autogenic behaviour during alluvial fan evolution, Geomorphology, 115, 278–285, 2010.
Clarke, L. E.: Experimental alluvial fans: Advances in understanding of fan dynamics and processes, Geomorphology, 244, 135–145, 2015.
Clevis, Q., de Boer, P., and Wachter, M.: Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy, Sediment. Geol., 163, 85–110, 2003.
de Haas, T., Ventra, D., Carbonneau, P. E., and Kleinhans, M. G.: Debris-flow dominance of alluvial fans masked by runoff reworking and weathering, Geomorphology, 217, 165–181, 2014.
Devauchelle, O., Petroff, A., Lobkovsky, A., and Rothman, D. H.: Longitudinal profile of channels cut by springs, J. Fluid Mech., 667, 38–47, 2011.
Drew, F.: Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin, Q. J. Geol. Soc., 29, 441–471, 1873.
Dubille, M. and Lavé, J.: Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits, Basin Res., 27, 26–42, 2015.
Einstein, H. A.: The bed-load function for sediment transportation in open channel flows, 1026, US Department of Agriculture, Washington, USA, 1950.
Field, J.: Channel avulsion on alluvial fans in southern Arizona, Geomorphology, 37, 93–104, 2001.
Gaurav, K., Métivier, F., Devauchelle, O., Sinha, R., Chauvet, H., Houssais, M., and Bouquerel, H.: Morphology of the Kosi megafan channels, Earth Surf. Dynam., 3, 321–331, https://doi.org/10.5194/esurf-3-321-2015, 2015.
Glover, R. E. and Florey, Q.: Stable channel profiles, US Department of the Interior, Bureau of Reclamation, Hydr. Lab. Report, Denver, Colorado, USA, 1951.
Guerit, L., Métivier, F., Devauchelle, O., Lajeunesse, E., and Barrier, L.: Laboratory alluvial fans in one dimension, Phys. Rev. E, 90, 022203, https://doi.org/10.1103/PhysRevE.90.022203, 2014.
Guerit, L., Barrier, L., Jolivet, M., Fu, B., and Métivier, F.: Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems, Earth Surf. Proc. Land., 41, 1088–1106, 2016.
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L.: Large distributive fluvial systems: characteristics, distribution, and controls on development, J. Sediment. Res., 80, 167–183, 2010.
Harvey, A. M., Mather, A. E., and Stokes, M.: Alluvial fans: geomorphology, sedimentology, dynamics – introduction. A review of alluvial-fan research, Geological Society, London, Special Publications, 251, 1–7, 2005.
Henderson, F. M.: Stability of alluvial channels, J. Hydr. Div., 87, 109–138, 1961.
Hinderer, M.: From gullies to mountain belts: a review of sediment budgets at various scales, Sediment. Geol., 280, 21–59, 2012.
Houssais, M. and Lajeunesse, E.: Bedload transport of a bimodal sediment bed, J. Geophys. Res.-Earth, 117, F04015, https://doi.org/10.1029/2012JF002490, 2012.
Jayko, A.: Late Quaternary denudation, Death and Panamint valleys, eastern California, Earth-Sci. Rev., 73, 271–289, 2005.
Jolivet, M., Barrier, L., Dominguez, S., Guerit, L., Heilbronn, G., and Fu, B.: Unbalanced sediment budgets in the catchment–alluvial fan system of the Kuitun River (northern Tian Shan, China): Implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems, Geomorphology, 214, 168–182, 2014.
Kiefer, E., Dorr, M. J., Ibbeken, H., and Gotze, H.-J.: Gravity-based mass balance of an alluvial fan giant: the Arcas Fan, Pampa del Tamarugal, Northern Chile, Andean Geol., 24, 165–185, 1997.
Le Hooke, R. B. and Rohrer, W. L.: Geometry of alluvial fans: Effect of discharge and sediment size, Earth Surf. Processes, 4, 147–166, 1979.
Makse, H. A., Cizeau, P., and Stanley, H. E.: Possible stratification mechanism in granular mixtures, Phys. Rev. Lett., 78, 3298–3301, 1997a.
Makse, H. A., Havlin, S., King, P. R., and Stanley, H. E.: Spontaneous stratification in granular mixtures, Nature, 386, 379–382, 1997b.
Métivier, F., Lajeunesse, E., and Devauchelle, O.: Laboratory rivers: Lacey's law, threshold theory, and channel stability, Earth Surf. Dynam., 5, 187–198, https://doi.org/10.5194/esurf-5-187-2017, 2017.
Miller, K. L., Reitz, M. D., and Jerolmack, D. J.: Generalized sorting profile of alluvial fans, Geophys. Res. Lett., 41, 7191–7199, 2014.
Moody, L. F.: Friction factors for pipe flow, Trans. Asme, 66, 671–684, 1944.
Muto, T. and Steel, R. J.: Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments, Geology, 32, 401–404, 2004.
Paola, C., Heller, P. L., and Angevine, C. L.: The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory, Basin Res., 4, 73–90, 1992a.
Paola, C., Parker, G., Seal, R., Sinha, S. K., Southard, J. B., and Wilcock, P. R.: Downstream fining by selective deposition in a laboratory flume, Science, 258, 1757–1757, 1992b.
Paola, C., Straub, K., Mohrig, D., and Reinhardt, L.: The “unreasonable effectiveness” of stratigraphic and geomorphic experiments, Earth-Sci. Rev., 97, 1–43, 2009.
Parker, G.: Progress in the modeling of alluvial fans, J. Hydraul. Res., 37, 805–825, 1999.
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D.: Alluvial fans formed by channelized fluvial and sheet flow. I: Theory, J. Hydraul. Eng., 124, 985–995, 1998a.
Parker, G., Paola, C., Whipple, K. X., Mohrig, D., Toro-Escobar, C. M., Halverson, M., and Skoglund, T. W.: Alluvial fans formed by channelized fluvial and sheet flow. II: Application, J. Hydraul. Eng., 124, 996–1004, 1998b.
Powell, E. J., Kim, W., and Muto, T.: Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments: Tank experiments, J. Geophys. Res.-Earth, 117, F02011, https://doi.org/10.1029/2011JF002097, 2012.
Rachocki, A. and Church, M. A.: Alluvial fans: a field approach, John Wiley & Sons, Chichester, UK, 1990.
Reitz, M. D. and Jerolmack, D. J.: Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res.-Earth, 117, F02021, https://doi.org/10.1029/2011JF002261, 2012.
Reitz, M. D., Jerolmack, D. J., Lajeunesse, E., Limare, A., Devauchelle, O., and Métivier, F.: Diffusive evolution of experimental braided rivers, Phys. Rev. E, 89, 052809, https://doi.org/10.1103/PhysRevE.89.052809, 2014.
Rice, S.: The nature and controls on downstream fining within sedimentary links, J. Sediment. Res., 69, 32–39, 1999.
Schumm, S. A., Mosley, M. P., and Weaver, W.: Experimental fluvial geomorphology, John Wiley and Sons Inc., New York, NY, USA, 1987.
Seizilles, G., Devauchelle, O., Lajeunesse, E., and Métivier, F.: Width of laminar laboratory rivers, Phys. Rev. E, 87, 052204, https://doi.org/10.1103/PhysRevE.87.052204, 2013.
Seizilles, G., Lajeunesse, E., Devauchelle, O., and Bak, M.: Cross-stream diffusion in bedload transport, Phys. Fluids, 26, 013302, https://doi.org/10.1063/1.4861001, 2014.
Shields, A.: Anwendung der Ahnlichkeits Mechanik und der Turbulenz-forschung auf die Geschiebebewegung, Preussische Versuchsanstalt für Wasserbau und Schiffbau, 26, 524–526, 1936.
Sinha, R.: The Great avulsion of Kosi on 18 August 2008, Current Science, 97, 429–433, 2009.
Slingerland, R. and Smith, N. D.: River avulsions and their deposits, Annu. Rev. Earth Planet. Sci., 32, 257–285, 2004.
Smith, G. H. S. and Ferguson, R. I.: The gravel-sand transition: flume study of channel response to reduced slope, Geomorphology, 16, 147–159, 1996.
Stock, J. D., Schmidt, K. M., and Miller, D. M.: Controls on alluvial fan long-profiles, Geol. Soc. Am. Bull., 120, 619–640, 2008.
Van Dijk, M., Postma, G., and Kleinhans, M. G.: Autocyclic behaviour of fan deltas: an analogue experimental study, Sedimentology, 56, 1569–1589, 2009.
Viparelli, E., Solari, L., and Hill, K.: Downstream lightening and upward heavying: Experiments with sediments differing in density, Sedimentology, 62, 1384–1407, 2015.
Weissmann, G. S., Mount, J. F., and Fogg, G. E.: Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, USA, J. Sediment. Res., 72, 240–251, 2002.
Whipple, K. X., Parker, G., Paola, C., and Mohrig, D.: Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study, J. Geol., 106, 677–694, 1998.
Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., and Allen, P. A.: Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply, Geol. Soc. Am. Bull., 123, 1363–1382, 2011.
Wilcock, P. R. and Crowe, J. C.: Surface-based transport model for mixed-size sediment, J. Hydraul. Eng., 129, 120–128, 2003.
Williams, R. M., Zimbelman, J. R., and Johnston, A. K.: Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars, Geophys. Res. Lett., 33, L10201, https://doi.org/10.1029/2005GL025618, 2006.
Short summary
Alluvial fans are sedimentary deposits that take place at the outlet of mountain range. This location makes them the first sedimentary archive where sediments, eroded from mountains, are deposed. Their morphology is controlled by the water and sediment discharges and sediment characteristics. By using controlled laboratory experiments, we show that an alluvial fan composed of two distinct sediments has a characteristic shape; it can be decomposed into two fans made up of one sediment.
Alluvial fans are sedimentary deposits that take place at the outlet of mountain range. This...