Articles | Volume 7, issue 3
https://doi.org/10.5194/esurf-7-663-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-7-663-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and explanation of spatiotemporal patterns in Late Cenozoic palaeoclimate change relevant to Earth surface processes
Sebastian G. Mutz
CORRESPONDING AUTHOR
Department of Geosciences, University Tübingen, 72074
Tübingen, Germany
Todd A. Ehlers
Department of Geosciences, University Tübingen, 72074
Tübingen, Germany
Related authors
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Solmaz Mohadjer, Sebastian G. Mutz, Matthew Kemp, Sophie J. Gill, Anatoly Ischuk, and Todd A. Ehlers
Geosci. Commun., 4, 281–295, https://doi.org/10.5194/gc-4-281-2021, https://doi.org/10.5194/gc-4-281-2021, 2021
Short summary
Short summary
Lack of access to science-based natural hazards information impedes the effectiveness of school-based disaster risk reduction education. To address this challenge, we created and classroom tested a series of earthquake education videos that were co-taught by school teachers and Earth scientists in the UK and Tajikistan. Comparison of the results reveals significant differences between students' views on the Earth's interior and why and where earthquakes occur.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Heiko Paeth, Christian Steger, Jingmin Li, Sebastian G. Mutz, and Todd A. Ehlers
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-111, https://doi.org/10.5194/cp-2017-111, 2017
Manuscript not accepted for further review
Short summary
Short summary
We use a high-resolution regional climate model to investigate various episodes of distinct climate states over the Tibetan Plateau region during the Cenozoic rise of the Plateau and Quaternary glacial/interglacial cycles. The simulated changes are in good agreement with available paleo-climatic reconstructions from proxy data. It is shown that in some regions of the Tibetan Plateau the climate anomalies during the Quaternary have been as strong as the changes occurring during the uplift period.
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024, https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short summary
The (U–Th–Sm) / He dating method helps understand the cooling history of rocks. Synthetic modelling experiments were conducted to explore factors affecting in situ vs. whole-grain (U–Th) / He dates. In situ dates are often 30 % older than whole-grain dates, whereas very rapid cooling makes helium loss negligible, resulting in similar whole-grain and in situ dates. In addition, in situ data can reveal cooling histories even from a single grain by measuring helium distributions.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Hemanti Sharma and Todd A. Ehlers
Earth Surf. Dynam., 11, 1161–1181, https://doi.org/10.5194/esurf-11-1161-2023, https://doi.org/10.5194/esurf-11-1161-2023, 2023
Short summary
Short summary
Seasonality in precipitation (P) and vegetation (V) influences catchment erosion (E), although which factor plays the dominant role is unclear. In this study, we performed a sensitivity analysis of E to P–V seasonality through numerical modeling. Our results suggest that P variations strongly influence seasonal variations in E, while the effect of seasonal V variations is secondary but significant. This is more pronounced in moderate and least pronounced in extreme environmental settings.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Mirjam Schaller and Todd A. Ehlers
Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, https://doi.org/10.5194/esurf-10-131-2022, 2022
Short summary
Short summary
Soil production, chemical weathering, and physical erosion rates from the large climate and vegetation gradient of the Chilean Coastal Cordillera (26 to 38° S) are investigated. Rates are generally lowest in the sparsely vegetated and arid north, increase southward toward the Mediterranean climate, and then decrease slightly, or possible stay the same, further south in the temperate humid zone. This trend is compared with global data from similar soil-mantled hillslopes in granitic lithologies.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Short summary
The cooling climate of the last few million years leading into the ice ages has been linked to increasing erosion rates by glaciers. One of the ways to measure this is through mineral cooling ages. In this paper, we investigate potential bias in these data and the methods used to analyse them. We find that the data are not themselves biased but that appropriate methods must be used. Past studies have used appropriate methods and are sound in methodology.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Solmaz Mohadjer, Sebastian G. Mutz, Matthew Kemp, Sophie J. Gill, Anatoly Ischuk, and Todd A. Ehlers
Geosci. Commun., 4, 281–295, https://doi.org/10.5194/gc-4-281-2021, https://doi.org/10.5194/gc-4-281-2021, 2021
Short summary
Short summary
Lack of access to science-based natural hazards information impedes the effectiveness of school-based disaster risk reduction education. To address this challenge, we created and classroom tested a series of earthquake education videos that were co-taught by school teachers and Earth scientists in the UK and Tajikistan. Comparison of the results reveals significant differences between students' views on the Earth's interior and why and where earthquakes occur.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Lorenz Michel, Christoph Glotzbach, Sarah Falkowski, Byron A. Adams, and Todd A. Ehlers
Earth Surf. Dynam., 7, 275–299, https://doi.org/10.5194/esurf-7-275-2019, https://doi.org/10.5194/esurf-7-275-2019, 2019
Short summary
Short summary
Mountain-building processes are often investigated by assuming a steady state, meaning the balance between opposing forces, like mass influx and mass outflux. This work shows that the Olympic Mountains are in flux steady state on long timescales (i.e., 14 Myr), but the flux steady state could be disturbed on shorter timescales, especially by the Plio–Pleistocene glaciation. The contribution highlights the temporally nonsteady evolution of mountain ranges.
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018, https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary
Short summary
In this modeling study, we investigate rock uplift at plate corners (syntaxes). These are characterized by a unique bent geometry at subduction zones and exhibit some of the world's highest rock uplift rates. We find that the style of deformation changes above the plate's bent section and that active subduction is necessary to generate an isolated region of rapid uplift. Strong erosion there localizes uplift on even smaller scales, suggesting both tectonic and surface processes are important.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Byron A. Adams and Todd A. Ehlers
Earth Surf. Dynam., 6, 595–610, https://doi.org/10.5194/esurf-6-595-2018, https://doi.org/10.5194/esurf-6-595-2018, 2018
Short summary
Short summary
Where alpine glaciers were active in the past, they have created scenic landscapes that are likely in the process of morphing back into a form that it more stable with today's climate regime and tectonic forces. By looking at older erosion rates from before the time of large alpine glaciers and erosion rates since deglaciation in the Olympic Mountains (USA), we find that the topography and erosion rates have not drastically changed despite the impressive glacial valleys that have been carved.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Heiko Paeth, Christian Steger, Jingmin Li, Sebastian G. Mutz, and Todd A. Ehlers
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-111, https://doi.org/10.5194/cp-2017-111, 2017
Manuscript not accepted for further review
Short summary
Short summary
We use a high-resolution regional climate model to investigate various episodes of distinct climate states over the Tibetan Plateau region during the Cenozoic rise of the Plateau and Quaternary glacial/interglacial cycles. The simulated changes are in good agreement with available paleo-climatic reconstructions from proxy data. It is shown that in some regions of the Tibetan Plateau the climate anomalies during the Quaternary have been as strong as the changes occurring during the uplift period.
Michael Dietze, Solmaz Mohadjer, Jens M. Turowski, Todd A. Ehlers, and Niels Hovius
Earth Surf. Dynam., 5, 653–668, https://doi.org/10.5194/esurf-5-653-2017, https://doi.org/10.5194/esurf-5-653-2017, 2017
Short summary
Short summary
We use a seismometer network to detect and locate rockfalls, a key process shaping steep mountain landscapes. When tested against laser scan surveys, all seismically detected events could be located with an average deviation of 81 m. Seismic monitoring provides insight to the dynamics of individual rockfalls, which can be as small as 0.0053 m3. Thus, seismic methods provide unprecedented temporal, spatial and kinematic details about this important process.
Solmaz Mohadjer, Todd Alan Ehlers, Rebecca Bendick, Konstanze Stübner, and Timo Strube
Nat. Hazards Earth Syst. Sci., 16, 529–542, https://doi.org/10.5194/nhess-16-529-2016, https://doi.org/10.5194/nhess-16-529-2016, 2016
Short summary
Short summary
The Central Asia Fault Database is the first publicly accessible digital repository for active faults in central Asia and the surrounding regions. It includes an interactive map and a search tool that allow users to query and display critical fault information such as slip rates and earthquake history. The map displays over 1196 fault traces and 34 000 earthquake locations. The database contains attributes for 123 faults mentioned in the literature.
R. M. Headley and T. A. Ehlers
Earth Surf. Dynam., 3, 153–170, https://doi.org/10.5194/esurf-3-153-2015, https://doi.org/10.5194/esurf-3-153-2015, 2015
Short summary
Short summary
Within a landscape evolution model operating over geologic timescales, this work evaluates how different assumptions and levels of complexity for modeling glacier flow impact the pattern and amount of glacial erosion. Compared to those in colder climates, modeled glaciers in warmer and wetter climates are more sensitive to the choice of glacier flow model. Differences between landscapes evolved with different glacier flow models are intensified over multiple cycles.
Related subject area
Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Storm frequency, magnitude, and cumulative storm beach impact along the US east coast
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Modeling deadwood for rockfall mitigation assessments in windthrow areas
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry
Erosional response of an actively uplifting mountain belt to cyclic rainfall variations
Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate
Rachele Dominguez, Michael S. Fenster, and John W. McManus
Earth Surf. Dynam., 12, 1145–1163, https://doi.org/10.5194/esurf-12-1145-2024, https://doi.org/10.5194/esurf-12-1145-2024, 2024
Short summary
Short summary
Climate change is a hot topic and changes in storminess can be indicative of climate change impacts. Also, coastal storms can impact ecosystems and the people who live, work, and recreate along our world's coasts. Our findings show that the number of the US east coast storms has not increased since the early 20th century, but storm strength has increased moderately. Finally, beaches can take up to 10 years to recover depending on the number, timing, and strength of previous storms.
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Andrew D. Wickert
Earth Surf. Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, https://doi.org/10.5194/esurf-4-831-2016, 2016
Short summary
Short summary
The ice sheets that once spread across northern North America dramatically changed the drainage basin areas and discharges of rivers across the continent. As these ice sheets retreated, starting around 19 500 years ago, they sent meltwater to the oceans, influencing climate and building a geologic record of deglaciation. This record can be used to evaluate ice-sheet reconstructions and build an improved history and understanding of past ice-sheet collapse across North America.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
J. Braun, C. Voisin, A. T. Gourlan, and C. Chauvel
Earth Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, https://doi.org/10.5194/esurf-3-1-2015, 2015
Short summary
Short summary
We have derived a simple solution to the stream power law equation governing the erosion of rapidly uplifting tectonic areas assuming that rainfall varies as a periodic function of time. We show that the erosional response of this forcing is characterized by an amplification of the resulting erosional flux variations as well as a time lag. We show how this time lag can be important in interpreting several geological observations.
A. Barkwith, C. W. Thomas, P. W. Limber, M. A. Ellis, and A. B. Murray
Earth Surf. Dynam., 2, 295–308, https://doi.org/10.5194/esurf-2-295-2014, https://doi.org/10.5194/esurf-2-295-2014, 2014
Cited articles
Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, 2015.
Andersen, J. L., Egholm, D. L., Knudsen, M. F., Jansen, J. D., and Nielsen, S. B.: The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep, Earth Surf. Dynam., 3, 447–462, https://doi.org/10.5194/esurf-3-447-2015, 2015.
Andersen, K. K., Armengaud, A., and Genthon, C.: Atmospheric dust under
glacial and interglacial conditions, Geophys. Res. Lett., 25, 2281–2284, 1998.
Bahrenberg, G., Giese, E., and Nipper, J.: Multivariate Statistik.
Statistische Methoden in der Geographie 2, Teubner, Stuttgart, Germany, 1992.
Ballantyne, A. P., Greenwood, D. R., Sinninghe Damste, J. S., Csank, A. Z.,
Eberle, J. J., and Rybczynski, N.: Significantly warmer Arctic surface
temperatures during the Pliocene indicated by multiple independent proxies,
Geology, 38, 603–606, 2010.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice,
I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R.,
Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. V.,
McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A.,
Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K.,
Paus, A., Pisaric, M. F. J., and Vokova, V. S.: Climate change and Arctic
ecosystems I. Vegetation changes north of 55∘ N between the last
glacial maximum, mid-Holocene and present, J. Geophys. Res.-Atmos., 108, 8170, https://doi.org/10.1029/2002JD002558, 2003.
Bookhagen, B., Thiede, R. C., and Strecker, M. R.: Late Quarternary
intensified monsoon phases control landscape evolution in the northwest
Himalaya, Geology, 33, 149–152, https://doi.org/10.1130/G20982.1, 2005.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim.
Change, 2, 417–424, 2012.
CLIMAP Project Members: Seasonal Reconstruction of the Earth's Surface at
the Last Glacial Maximum, Map and Chart Series, vol. 36, Geological Society of America, Boulder, Colorado, USA, 18 pp.,
1981.
Deal, E., Braun, J., and Botter, G.: Understanding the Role of Rainfall
Hydrology in Determining Fluvial Erosion Efficiency, J. Geophys. Res.-Earth,
123, 744–778, https://doi.org/10.1002/2017JF004393, 2018.
de Lima, J. L. M. P., van Dijk, P. M., and Spaan, W. P.: Splash-saltation transport under wind-driven rain, Soil Technol., 5, 151–166, https://doi.org/10.1016/0933-3630(92)90016-T, 1992.
Dowsett, H. J., Robinson, M., Haywood, A., Salzmann, U., Hill, D., Sohl, L.,
Chandler, M., Williams, M., Foley, K., and Stoll, D.: The PRISM3D
paleoenvironmental reconstruction, Stratigraphy, 7, 123–139, 2010.
Egholm, D. L., Nielsen, S. B., Pedersen, V. K., and Lesemann, J.: Glacial efects limiting moutain height, Nature, 460, 884–887, 2009.
Ehlers, T. A. and Poulsen, C. J.: Influence of Andean uplift on climate and
paleoaltimetry estimates, Earth Planet. Sc. Lett., 281, 238–248, 2009.
Gong, X., Knorr, G., Lohmann, G., and Zhang, X.: Dependence of abrupt
Atlantic meridional ocean circulation changes on climate background states,
Geophys. Res. Lett., 40, 3698–3704, https://doi.org/10.1002/grl.50701, 2013.
Gyssels, G., Poesen, J., Bochet, E., and Li, Y.: Impact of plant roots on
the resistance of soils to erosion by water: a review, Prog. Phys. Geog., 29,
189–217, https://doi.org/10.1191/0309133305pp443ra, 2005.
Hales, T.-C. and Roering, J. J.: Climatic controls on frost cracking and
implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, F02033,
https://doi.org/10.1029/2006JF000616, 2007.
Harrison, S. P., Yu, G., Takahara, H., and Prentice, I. C.: Palaeovegetation
– Diversity of temperate plants in east Asia, Nature, 413, 129–130, 2001.
Haywood, A. M., Dowsett, H. J., Otto-Bliesner, B., Chandler, M. A., Dolan, A. M., Hill, D. J., Lunt, D. J., Robinson, M. M., Rosenbloom, N., Salzmann, U., and Sohl, L. E.: Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1), Geosci. Model Dev., 3, 227–242, https://doi.org/10.5194/gmd-3-227-2010, 2010.
Haywood, A. M., Hill, D. J., Dolan, A. M., Otto-Bliesner, B. L., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Dowsett, H. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Abe-Ouchi, A., Pickering, S. J., Ramstein, G., Rosenbloom, N. A., Salzmann, U., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang, Z.: Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project, Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, 2013.
Haywood, A. M., Dowsett, H. J., Dolan, A. M., Rowley, D., Abe-Ouchi, A., Otto-Bliesner, B., Chandler, M. A., Hunter, S. J., Lunt, D. J., Pound, M., and Salzmann, U.: The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design, Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, 2016.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willet, S. D., and
Ehlers, T. A.: Worldwide acceletation of mountain erosion under a cooling
climate, Nature, 504, 423–426, 2013.
Hobley, D. E., Sinclair, H. D., and Cowie, P. A.: Processes, rates, and time
scales of fluvial response in an ancient postglacial landscape of the
northwest Indian Himalaya, Geol. Soc. Am. Bull., 122, 1569–1584, 2010.
Insel, N., Ehlers, T. A., Schaller, M., Barnes, J. B., Tawacoli, S., and
Poulsen, C. J.: Spatial and Temporal Variability in Denudation across the
Bolivian Andes from Multiple Geochronometers, Geomorphology, 122, 65–77, https://doi.org/10.1016/j.geomorph.2010.05.014, 2010.
Jeffery, M. L., Ehlers, T. A., Yanites, B. J., and Poulsen, C. J.: Quantifying
the role of paleoclimate and Andean Plateau uplift on river incision:
PALEOCLIMATE ROLE IN RIVER INCISION, J. Geophys. Res.-Earth, 118, 852–871,
https://doi.org/10.1002/jgrf.20055, 2013.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Knorr, G., Butzin, M., Micheels, A., and Lohmann, G.: A Warm Miocene Climate
at Low Atmospheric CO2 levels, Geophys. Res. Lett., 38, L20701,
https://doi.org/10.1029/2011GL048873, 2011.
Kutzbach, J. E., Prell, W. L., and Ruddiman, W.F .: Sensitivity of Eurasian
Climate to Surface Uplift of the Tibetan Plateau, J. Geol., 101, 177–190, 1993.
Li, J., Ehlers, T. A., Werner, M., Mutz, S. G., Steger, C., and Paeth, H.: Late
quarternary climate, precipitation δ18O, and Indian monsoon
variations over the Tibetan Plateau, Earth Planet. Sc. Lett., 457, 412–422, 2017.
Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G., and Kim, J.-H.: A model–data comparison of the Holocene global sea surface temperature evolution, Clim. Past, 9, 1807–1839, https://doi.org/10.5194/cp-9-1807-2013, 2013.
Maroon, E. A., Frierson, D. M. W., and Battisti, D. S.: The tropical
precipitation response to Andes topography and ocean heat fluxes in an
aquaplanet model, J. Climate, 28, 381–398, https://doi.org/10.1175/JCLI-D-14-00188.1,
2015.
Maroon, E. A., Frierson, D. M. W., Kang, S. M., and Scheff, J.: The
precipitation response to an idealized subtropical continent, J. Climate,
29, 4543–4564, https://doi.org/10.1175/JCLI-D-15-0616.1, 2016.
Marshall, J. A., Roering, J. J., Bartlein, P. J., Gavin, D. G., Granger, D. E.,
Rempel, A. W., Praskievicz, S. J., and Hales, T. C.: Frost for the trees: Did
climate increase erosion in unglaciated landscapes during the late
Pleistocene?, Sci. Adv., 1, 1–10, 2015.
Matsuoka, N.: Solifluction rates, processes and landforms: A global review, Earth-Sci. Rev., 55, 107–134, 2001.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multi-model dataset: A new era in climate change research, B. Am. Meterol. Soc., 88, 1383–1394, 2007.
Montgomery, D. R., Balco, G., and Willett, S.D.: Climate, tectonics, and the morphology of the Andes, Geology, 29, 579–582, 2001.
Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, N., Rood, D. H., and Hilley,
G. E.: Climatic control of denudation in the deglaciated landscape of the
Washington Cascades, Nat. Geosci., 4, 469–473, 2011.
Mutz, S. G., Ehlers, T. A., Li, J., Steger, C., Peath, H., Werner, M., and
Poulsen, C. J.: Precipitation δ18O over the South Asia Orogen
from ECHAM5-wiso Simulation: Statistical Analysis of Temperature, Topography
and Precipitation, J. Geophys. Res.-Atmos., 121, 9278–9300, https://doi.org/10.1002/2016JD024856, 2016.
Mutz, S. G., Ehlers, T. A., Werner, M., Lohmann, G., Stepanek, C., and Li, J.: Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens, Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, 2018.
Otto-Bliesner, B. L., Brady, C. B., Clauzet, G., Tomas, R., Levis, S., and
Kothavala, Z.: Last Glacial Maximum and Holocene Climate in CCSM3, J. Climate, 19, 2526–2544, 2006.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Paeth, H.: Key Factors in African Climate Change Evaluated by a Regional
Climate Model, Erdkunde, 58, 290–315, 2004.
Pfeiffer, M. and Lohmann, G.: Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model, Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, 2016.
Pickett, E. J., Harrison, S. P., Flenley, J., Grindrod, J., Haberle, S.,
Hassell, C., Kenyon, C., MacPhail, M., Martin, H., Martin, A. H., McKenzie,
M., Newsome, J. C., Penny, D., Powell, J., Raine, J. I., Southern, W.,
Stevenson, J., Sutra, J.-P., Thomas, I., van der Kaars, S., and Ward, J.:
Pollen-based reconstructions of biome distributions for Australia,
South-East Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C
years B.P., J. Biogeogr., 31, 1381–1444, https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Prentice, I. C., Jolly, D., and BIOME 6000 Participants:
Mid-Holocene and glacial-maximum vegetation geography of the northern
continents and Africa, J. Biogeogr., 27, 507–519, 2000.
Ran, Q., Su, D., Li, P., and He, Z.: Experimental study of the impact of
rainfall characteristics on runoff generation and soil erosion, J. Hydrol., 424–425,
99–111, 2012.
Salzmann, U., Williams, M., Haywood, A. M., Johnson, A. L. A., Kender, S., and
Zalasiewicz, J.: Climate and environment of a Pliocene warm world, Palaeogeogr. Palaeocl., 309, 1–8, https://doi.org/10.1016/j.palaeo.2011.05.044, 2011.
Sarnthein, M., Gersonde, R., Niebler, S., Pflaumann, U., Spielhagen, R.,
Thiede, J., Wefer, G., and Weinelt, M.: Overview of Glacial Atlantic Ocean
Mapping (GLAMAP 2000), Paleoceanography, 18, 1030, https://doi.org/10.1029/2002PA000769, 2003.
Schaller, M., von Blanckenburg, F., Veldkamp, A., Tebbens, L. A., Hovius, N.,
and Kubik, P. W.: A 30 000 yr record of erosion rates from cosmogenic 10 Be
in Middle European river terraces, Earth Planet. Sc. Lett., 204, 307–320, 2002.
Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-Espoz, J.-P.: Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales, Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, 2018.
Siegert, M. J. and Dowdeswell, J. A.: Numerical reconstruction of the
Eurasian Ice Sheet and climate during the Late Weichselian, Quaternary Sci. Rev., 23, 1273–1283,
2004.
Sohl, L. E., Chandler, M. A., Schmunk, R. B., Mankoff, K., Jonas, J. A., Foley,
K. M., and Dowsett, H. J.: PRISM3/GISS topographic reconstruction, U.S. Geological Survey Data Series, 419, 6 pp., available at: https://pubs.usgs.gov/ds/419/DS419.pdf (last access: 19 July 2019),
2009.
Starke, J., Ehlers, T. A., and Schaller, M.: Tectonic and Climatic Controls
on the Spatial Distribution of Denudation Rates in Northern Chile
(18∘ S–23∘ S) Determined From Cosmogenic Nuclides, J. Geophys. Res.-Earth, 122, 1949–1971, https://doi.org/10.1002/2016JF004153, 2017.
Stepanek, C. and Lohmann, G.: Modelling mid-Pliocene climate with COSMOS, Geosci. Model Dev., 5, 1221–1243, https://doi.org/10.5194/gmd-5-1221-2012, 2012.
Stock, G. M., Frankel K. L., Ehlers, T. A., Schaller, M., Briggs, S. M., and Finkel
R. C.: Spatial and temporal variations in denudation of the Wasatch
Mountains, Utah, USA, Lithosphere GSA, vol. 1, 34–40, https://doi.org/10.1130/L15.1,
2009.
Takahashi, K. and Battisti, D.: Processes controlling the mean tropical
pacific precipitation pattern. Part I: The Andes and the eastern Pacific
ITCZ, J. Climate, 20, 3434–3451, 2007.
Wei, W. and Lohmann, G.: Simulated Atlantic Multidecadal Oscillation during
the Holocene, J. Climate, 25, 6989–7002, https://doi.org/10.1175/JCLI-D-11-00667.1, 2012.
Weiland, F. C. S., van Beek, L. P. H., Kwadjik, J. C. J., and Bierkens, M. F. P.: On
the Suitability of GCM Runoff Fields for River Discharge Modelling: A Case
Study Using Model Output from HadGEM2 and ECHAM5, J. Hydrometeorol., 13, 140–154, 2011.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 97–104, https://doi.org/10.1038/ngeo413, 2009.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, 1999.
Wickert, A. D.: Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum, Earth Surf. Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, 2016.
Wilks, D. S.: Statistical methods in the atmospheric sciences, 3rd ed.,
Academic Press, Oxford, UK, 2011.
Willett, S. D., Schlunegger, F., and Picotti, V.: Messinian climate change
and erosional destruction of the central European Alps, Geology, 34, 613–616,
2006.
Zhang, Q., Singh, V. P., Li, J., and Chen, X.: Analysis of periods of
maximum consecutive wet days in China, J. Geophys. Res., 116, D23106, https://doi.org/10.1029/2011JD016088, 2011.
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294,
https://doi.org/10.1038/nature13592, 2014.
Zin, W. Z. W. and Jemain, A. A.: Statistical distributions of extreme dry
spell in Peninsular Malaysia, Theor. Appl. Climatol., 102, 253–264, 2010.
Zolina, O., Simmer, C., Gulev, S. K., and Kollet, S.: Changing structure of
European precipitation: Longer wet periods leading to more abundant
rainfall, Geophys. Res. Lett., 37, L06704, https://doi.org/10.1029/2010GL042468, 2010.
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
We apply machine learning techniques to quantify and explain differences between recent...