Articles | Volume 7, issue 3
https://doi.org/10.5194/esurf-7-737-2019
https://doi.org/10.5194/esurf-7-737-2019
Research article
 | 
22 Aug 2019
Research article |  | 22 Aug 2019

Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill

Kerry L. Callaghan and Andrew D. Wickert

Related authors

The Water Table Model (WTM) v2.0.1: Coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-131,https://doi.org/10.5194/gmd-2024-131, 2024
Revised manuscript under review for GMD
Short summary
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021,https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020,https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024,https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Evaluating the accuracy of binary classifiers for geomorphic applications
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024,https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024,https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023,https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary

Cited articles

Abdullah, A. F., Vojinovic, Z., Price, R. K., and Aziz, N. A. A.: Improved methodology for processing raw LiDAR data to support urban flood modelling – accounting for elevated roads and bridges, J. Hydroinform., 14, 253–269, https://doi.org/10.2166/hydro.2011.009, 2012. a
Abedini, M. J., Dickinson, W. T., and Rudra, R. P.: On depressional storages: The effect of DEM spatial resolution, J. Hydrol., 318, 138–150, https://doi.org/10.1016/j.jhydrol.2005.06.010, 2006. a, b
Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017. a
Appels, W. M., Bogaart, P. W., and van der Zee, S. E.: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity, Adv. Water Resour., 34, 303–313, https://doi.org/10.1016/j.advwatres.2010.12.003, 2011. a
Arnold, N.: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values, Prog. Phys. Geog., 34, 781–809, https://doi.org/10.1177/0309133310384542, 2010. a, b
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.