Articles | Volume 8, issue 3
Earth Surf. Dynam., 8, 809–824, 2020
https://doi.org/10.5194/esurf-8-809-2020
Earth Surf. Dynam., 8, 809–824, 2020
https://doi.org/10.5194/esurf-8-809-2020

Research article 25 Sep 2020

Research article | 25 Sep 2020

Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct

Mariela Perignon et al.

Related authors

Short communication: Landlab v2.0: a software package for Earth surface dynamics
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020,https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018,https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
A reduced-complexity model for river delta formation – Part 2: Assessment of the flow routing scheme
M. Liang, N. Geleynse, D. A. Edmonds, and P. Passalacqua
Earth Surf. Dynam., 3, 87–104, https://doi.org/10.5194/esurf-3-87-2015,https://doi.org/10.5194/esurf-3-87-2015, 2015
Short summary

Related subject area

Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020,https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020,https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Computing water flow through complex landscapes, Part 3: Fill-Spill-Merge: Flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-31,https://doi.org/10.5194/esurf-2020-31, 2020
Revised manuscript accepted for ESurf
Short summary
Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset
Taylor Smith, Aljoscha Rheinwalt, and Bodo Bookhagen
Earth Surf. Dynam., 7, 475–489, https://doi.org/10.5194/esurf-7-475-2019,https://doi.org/10.5194/esurf-7-475-2019, 2019
Short summary
Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019,https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary

Cited articles

Agarwal, P. and Skupin, A.: Self-organising maps: Applications in geographic information science, John Wiley & Sons Ltd, 2008. a
Alam, M.: Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-015-8719-8_9, 1996. a
Allison, M. A.: Historical Changes in the Ganges–Brahmaputra Delta Front, J. Coast. Res., 14, 1269–1275, 1998. a
Allison, M. A.: Geologic framework and environmental status of the Ganges-Brahmaputra Delta, J. Coast. Res., 14, 827–836, 1998. a
Allison, M. A., Khan, S., Goodbred, S. L., and Kuehl, S. A.: Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain, Sediment. Geol., 155, 317–342, 2003. a, b
Download
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.