Articles | Volume 8, issue 3
https://doi.org/10.5194/esurf-8-809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct
Mariela Perignon
Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA
Jordan Adams
Community Surface Dynamics Modeling System (CSDMS), Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, Colorado, USA
Science and Math Division, Delgado Community College, New Orleans, Louisiana, USA
Irina Overeem
Community Surface Dynamics Modeling System (CSDMS), Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, Colorado, USA
Department of Geological Sciences, University of Colorado at Boulder, Boulder, Colorado, USA
Paola Passalacqua
CORRESPONDING AUTHOR
Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA
Related authors
No articles found.
Hailey Webb, Ethan Pierce, Benjamin W. Abbott, William B. Bowden, Yaping Chen, Yating Chen, Thomas A. Douglas, Joel F. Eklof, Eugénie S. Euskirchen, Moritz Langer, Isla H. Myers-Smith, Irina Overeem, Jens Strauss, Katey Walter Anthony, Kang Wang, Matthew A. Whitley, and Merritt R. Turetsky
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-557, https://doi.org/10.5194/essd-2025-557, 2025
Preprint under review for ESSD
Short summary
Short summary
We created a database of 19,540 thawing permafrost sites across Alaska, including both abrupt and non-abrupt thaw features and explored relationships with elevation, slope, and incoming solar radiation. We use the database to show that existing ground ice maps are too coarse to predict abrupt thaw risk. This database can enhance predictions of future thaw, improve greenhouse gas budget calculations, and guide planning and climate adaptation strategies.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Jayaram Hariharan, Kyle Wright, Andrew Moodie, Nelson Tull, and Paola Passalacqua
Earth Surf. Dynam., 11, 405–427, https://doi.org/10.5194/esurf-11-405-2023, https://doi.org/10.5194/esurf-11-405-2023, 2023
Short summary
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022, https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Short summary
There is rising concern in numerous fields regarding the inequitable distribution of human risk to floods. The co-occurrence of river and surface flooding is largely excluded from leading flood hazard mapping services, therefore underestimating hazards. Using high-resolution elevation data and a region-specific social vulnerability index, we developed a method to estimate flood impacts at the household level in near-real time.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Cited articles
Agarwal, P. and Skupin, A.: Self-organising maps: Applications in geographic
information science, John Wiley & Sons Ltd, 2008. a
Alam, M.: Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and
Strategies, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-015-8719-8_9, 1996. a
Allison, M. A.: Historical Changes in the Ganges–Brahmaputra Delta Front, J. Coast. Res., 14, 1269–1275, 1998. a
Allison, M. A.: Geologic framework and environmental status of the
Ganges-Brahmaputra Delta, J. Coast. Res., 14, 827–836, 1998. a
Angamuthu, B., Darby, S. E., and Nicholls, R. J.: Impacts of natural and human drivers on the multi-decadal morphological evolution of tidally-influenced deltas, P. Roy. Soc. A, 474, 20180396,
https://doi.org/10.1098/rspa.2018.0396, 2018. a
Asefa, T., Kemblowski, M., McKee, M., and Khalil, A.: Multi-time scale stream
flow predictions: The support vector machines approach, J. Hydrol., 318, 7–16, 2006. a
Bação, F., Lobo, V., and Painho, M.: Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions, in: Computational Science – ICCS 2005, 5th International Conference, Proceedings, Part III, 22–25 May 2005, Atlanta, GA, USA, 22–37, 2004. a
Bação, F., Caeiro, S., Painho, M., Goovaerts, P., and Costa, M.:
Delineation of estuarine management units: Evaluation of an automatic
procedure, in: Geostatistics for environmental applications, Springer, Berlin, Heidelberg, New York, 429–442, 2005a. a
Bação, F., Lobo, V., and Painho, M.: Self-organizing maps as
substitutes for k-means clustering, in: Computational Science – ICCS 2005, 5th International Conference, Proceedings, Part III, 22–25 May 2005, Atlanta, GA, USA, 476–483, 2005b. a
Bação, F., Lobo, V., and Painho, M.: Applications of different
self-organizing map variants to geographical information science problems,
in: Self-Organising Maps: applications in geographic information science,
John Wiley & Sons Ltd, 21–44, 2008. a
Baker, V. and Kochel, R.: Martian channel morphology- Maja and Kasei Valles,
J. Geophys. Res., 84, 7961–7983, 1979. a
Bhattacharya, B., Price, R., and Solomatine, D.: Machine learning approach to
modeling sediment transport, J. Hydraul. Eng., 133, 440–450, 2007. a
Caldwell, R. L. and Edmonds, D. A.: The effects of sediment properties on
deltaic processes and morphologies: A numerical modeling study, J. Geophys. Res.-Earth, 119, 961–982, 2014. a
Cazanacli, D., Paola, C., and Parker, G.: Experimental steep, braided flow:
application to flooding risk on fans, J. Hydrau. Eng., 128, 322–330, 2002. a
Céréghino, R. and Park, Y.-S.: Review of the self-organizing map (SOM) approach in water resources: commentary, Environ. Model. Softw., 24, 945–947, 2009. a
Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., and Kløve, B.:
River suspended sediment modelling using the CART model: A comparative study
of machine learning techniques, Sci. Total Environ., 615, 272–281, 2018. a
Correggiari, A., Cattaneo, A., and Trincardi, F.: Depositional Patterns in the Late Holocene Po Delta System, in: River Deltas – Concepts, Models, and Examples, edited by: Giosan, L. and Bhattacharya, J. P., Society for Sedimentary Geology, https://doi.org/10.2110/pec.05.83.0365, 2005. a
Dalrymple, R. W., Zaitlin, B. A., and Boyd, R.: Estuarine facies models;
conceptual basis and stratigraphic implications, J. Sediment. Res., 62, 1130–1146, 1992. a
Dibike, Y. B. and Solomatine, D. P.: River flow forecasting using artificial
neural networks, Phys. Chem. Earth Pt. B, 26, 1–7, 2001. a
Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., and van de Giesen, N.: Earth’s surface water change over the past 30 years, Nat. Clim. Change, 6, 810–813, https://doi.org/10.1038/nclimate3111, 2016. a
Dryden, I., Mardia, K., and Walder, A.: Review of the use of context in
statistical image analysis, J. Appl. Stat., 24, 513–538, 1997. a
Duque, J. C., Dev, B., Betancourt, A., and Franco, J. L.: ClusterPy: Library
of spatially constrained clustering algorithms, Version 0.9.9., RiSE-group
(Research in Spatial Economics), EAFIT University, Colombia, available at:
http://www.rise-group.org (last access: July 2019), 2011. a
Duque, J. C., Anselin, L., and Rey, S. J.: The max-p-regions problem, J. Reg. Sci., 52, 397–419, 2012a. a
Duque, J. C., Royuela, V., and Noreña, M.: A stepwise procedure to
determinate a suitable scale for the spatial delimitation of urban slums, in:
Defining the Spatial Scale in Modern Regional Analysis, Springer, Heidelberg, 237–254, 2012b. a
Fagherazzi, S., Bortoluzzi, A., Dietrich, W. E., Adami, A., Lanzoni, S.,
Marani, M., and Rinaldo, A.: Tidal networks: 1. Automatic network extraction
and preliminary scaling features from digital terrain maps, Water Resour. Res., 35, 3891–3904, 1999. a
Feng, C.-C., Wang, Y.-C., and Chen, C.-Y.: Combining Geo-SOM and hierarchical
clustering to explore geospatial data, T. GIS, 18, 125–146, 2014. a
Fisher, D. H.: Knowledge acquisition via incremental conceptual clustering,
Mach. Learn., 2, 139–172, 1987. a
Fleming, K., Heermann, D., and Westfall, D.: Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone
delineation, Agron. J., 96, 1581–1587, 2004. a
Frohn, R. C., Hinkel, K. M., and Eisner, W. R.: Satellite remote sensing
classification of thaw lakes and drained thaw lake basins on the North Slope
of Alaska, Remote Sens. Environ., 97, 116–126, 2005. a
Gehlke, C. E. and Biehl, K.: Certain effects of grouping upon the size of the
correlation coefficient in census tract material, J. Am. Stat. Assoc., 29, 169–170, 1934. a
Goldstein, E. B., Coco, G., and Plant, N. G.: A review of machine learning
applications to coastal sediment transport and morphodynamics, Earth-Sci.
Rev., 194, 97–108, https://doi.org/10.1016/j.earscirev.2019.04.022, 2019. a, b
Goodbred, S. L., Kuehl, S. A., Steckler, M. S., and Sarker, M. H.: Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence, Sediment. Geol., 155, 301–316, 2003. a
Gudmundsson, L. and Seneviratne, S. I.: Towards observation-based gridded runoff estimates for Europe, Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, 2015. a
Haykin, S. and Principe, J.: Making sense of a complex world [chaotic events
modeling], IEEE Sig. Process. Mag., 15, 66–81, 1998. a
Hiatt, M. and Passalacqua, P.: Hydrological connectivity in river deltas: The
first-order importance of channel-island exchange, Water Resour. Res., 51, 2264–2282, 2015. a
Hirst, Frederick, C.: A report of the Nadia Rivers, The Bengal Secretariat Book Depot, Calcutta, 1916. a
Hoitink, A. J. F., Nittrouer, J. A., Passalacqua, P., Shaw, J. B., Langendoen, E. J., Huismans, Y., and van Maren, D. S.: Resilience of river deltas in the Athropocene, J. Geophys. Res.-Earth, 125, e2019JF005201, https://doi.org/10.1029/2019JF005201, 2020. a
Isikdogan, F., Bovik, A. C., and Passalacqua, P.: Surface Water Mapping by
Deep Learning, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 10, 4909–4918, https://doi.org/10.1109/JSTARS.2017.2735443, 2017a. a
Isikdogan, F., Bovik, A. C., and Passalacqua, P.: RivaMap: An Automated River
Analysis and Mapping Engine, Remote Sens. Environ., 202, 88–97,
https://doi.org/10.1016/j.rse.2017.03.044, 2017b. a
Isikdogan, F., Bovik, A. C., and Passalacqua, P.: Learning a river network
extractor using an adaptive loss function, IEEE Geosci. Remote Sens. Lett., 15, 813–817, https://doi.org/10.1109/LGRS.2018.2811754, 2018. a, b
Isikdogan, F., Bovik, A. C., and Passalacqua, P.: Seeing Through the Clouds
with DeepWaterMap, IEEE Geosci. Remote Sens. Lett.,
https://doi.org/10.1109/LGRS.2019.2953261, in press, 2019. a
Islam, M. R., Begum, S. F., Yamaguchi, Y., and Ogawa, K.: The Ganges and
Brahmaputra rivers in Bangladesh: basin denudation and sedimentation, Hydrol. Process., 13, 2907–2923, 1999. a
Jaffe, B. E. and Rubin, D. M.: Using nonlinear forecasting to learn the
magnitude and phasing of time-varying sediment suspension in the surf zone,
J. Geophys. Res.-Oceans, 101, 14283–14296, 1996. a
Jain, A. K., Murty, M. N., and Flynn, P. J.: Data clustering: a review, ACM
computing surveys (CSUR), ACM Comput. Surv., 31, 264–323, 1999. a
Jarriel, T., Isikdogan, F., Bovik, A. C., and Passalacqua, P.: Characterization of deltaic channel morphodynamics from imagery time series using the Channelized Response Variance, J. Geophys. Res.-Earth, 124, 3022–3042, https://doi.org/10.1029/2019JF005118, 2019. a, b
Jarriel, T., Isikdogan, F., Bovik, A., and Passalacqua, P.: System wide channel network analysis reveals hot-spots of morphological change in
anthropogenically modified regions of the Ganges Brahmaputra Meghna Delta,
Scient. Rep., 10, 12823, https://doi.org/10.1038/s41598-020-69688-3, 2020. a, b
Jerolmack, D. J. and Swenson, J. B.: Scaling relationships and evolution of
distributary networks on wave-influenced deltas, Geophys. Res. Lett., 34, L23402, https://doi.org/10.1029/2007GL031823, 2007. a
Kästner, K., Hoitink, A., Vermeulen, B., Geertsema, T. J., and Ningsih,
N. S.: Distributary channels in the fluvial to tidal transition zone, J. Geophys. Res.-Earth, 122, 696–710, 2017. a
Kehew, A. E. and Lord, M. L.: Origin and large-scale erosional features of
glacial-lake spillways in the northern Great Plains, Geol. Soc. Am. Bull., 97, 162–177, 1986. a
Komar, P. D.: Shapes of streamlined islands on Earth and Mars: Experiments and analyses of the minimum-drag form, Geology, 11, 651–654, 1983. a
Kuehl, S. A., Allison, M. A., Goodbred, S. L., and Kudrass, H.: The
Ganges-Brahmaputra Delta, in: River Deltas: Concepts, Models and Examples,
vol. 83, edited by: Giosan, L. B. J., J. Soc. Sediment. Geol., 83, 413–434, 2005. a
Kullback, S. and Leibler, R. A.: On information and sufficiency, Ann. Math. Stat., 22, 79–86, https://doi.org/10.1214/aoms/1177729694, 1951. a
Lewin, J. and Ashworth, P. J.: Defining large river channel patterns: alluvial exchange and plurality, Geomorphology, 215, 83–98, 2014. a
Liang, M., Kim, W., and Passalacqua, P.: How much subsidence is enough to change the morphology of river deltas?, Geophys. Res. Lett., 43, 10266–10276, https://doi.org/10.1002/2016GL070519, 2016a. a
Liang, M., Van Dyk, C., and Passalacqua, P.: Quantifying the patterns and
dynamics of river deltas under conditions of steady forcing and relative sea
level rise, J. Geophys. Res.-Earth, 121, 465–496, https://doi.org/10.1002/2015JF003653, 2016b. a, b, c
Marra, W. A., Kleinhans, M. G., and Addink, E. A.: Network concepts to describe channel importance and change in multichannel systems: test results for the Jamuna River, Bangladesh, Earth Surf. Proc. Land., 39, 766–778, 2014. a
Melesse, A., Ahmad, S., McClain, M., Wang, X., and Lim, Y.: Suspended sediment load prediction of river systems: An artificial neural network approach, Agr. Water Manage., 98, 855–866, 2011. a
Meshkova, L. V. and Carling, P. A.: Discrimination of alluvial and mixed
bedrock–alluvial multichannel river networks, Earth Surf. Proc. Land., 38, 1299–1316, 2013. a
Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., and Ghazali, A. H. B.:
Ensemble machine-learning-based geospatial approach for flood risk assessment
using multi-sensor remote-sensing data and GIS, Geomatics, Nat. Hazards Risk, 8, 1080–1102, 2017. a
Murray, A. B., Lazarus, E., Ashton, A., Baas, A., Coco, G., Coulthard, T.,
Fonstad, M., Haff, P., McNamara, D., Paola, C., Pelletier, J., and Reinhardt, L.: Geomorphology, complexity, and the emerging science of the Earth's surface, Geomorphology, 103, 496–505, 2009. a
Murray, A. B., Coco, G., and Goldstein, E. B.: Cause and effect in geomorphic
systems: complex systems perspectives, Geomorphology, 214, 1–9, 2014. a
Openshaw, S., Taylor, P. J., and Wrigley, N.: Statistical applications in the
spatial sciences, edited by: Wrigley, N., Pion, London, 127–144, 1979. a
Park, Y.-S., Chon, T.-S., Kwak, I.-S., and Lek, S.: Hierarchical community
classification and assessment of aquatic ecosystems using artificial neural
networks, Sci. Total Environ., 327, 105–122, 2004. a
Passalacqua, P.: The Delta Connectome: A network-based framework for studying
connectivity in river deltas, Geomorphology, 277, 50–62, 2017. a
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016. a
Perignon, M. C.: csdms-contrib/DeltaClassification: First release of DeltaClassification (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.3926763, 2020. a, b, c
Pickering, J. L., Goodbred, S. L., Reitz, M. D., Hartzog, T. R., Mondal, D. R., and Hossain, M. S.: Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain, Geomorphology, 227, 123–136, 2014. a
Rahman, R. and Salehin, M.: Flood risks and reduction approaches in Bangladesh, in: Disaster risk reduction approaches in Bangladesh, Springer, Tokyo, 65–90, 2013. a
Rasouli, K., Hsieh, W. W., and Cannon, A. J.: Daily streamflow forecasting by
machine learning methods with weather and climate inputs, J. Hydrol., 414, 284–293, 2012. a
Reitz, M. D., Pickering, J. L., Goodbred, S. L., Paola, C., Steckler, M. S.,
Seeber, L., and Akhter, S. H.: Effects of tectonic deformation and sea level
on river path selection: Theory and application to the Ganges-Brahmaputra-Meghna River Delta, J. Geophys. Res.-Earth, 120, 671–689, 2015. a
Restrepo, J. D., Kjerfve, B., Correa, I. D., and González, J.:
Morphodynamics of a high discharge tropical delta, San Juan River, Pacific
coast of Colombia, Mar. Geol., 192, 355–381, 2002. a
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E.:
Tidal networks: 2. Watershed delineation and comparative network morphology,
Water Resour. Res., 35, 3905–3917, 1999. a
Rubin, D. M.: Use of forecasting signatures to help distinguish periodicity,
randomness, and chaos in ripples and other spatial patterns, Chaos, 2, 525–535, 1992. a
Sassi, M. G., Hoitink, A. J. F., de Brye, B., and Deleernnijder, E.: Downstream hydraulic geometry of a tidally influenced river delta, J. Geophys. Res.-Earth, 117, F04022, https://doi.org/10.1029/2012JF002448, 2012. a
Schmelter, M., Hooten, M., and Stevens, D. K.: Bayesian sediment transport
model for unisize bed load, Water Resour. Res., 47, W11514, https://doi.org/10.1029/2011WR010754, 2011. a
Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F.: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds, Hydrol. Earth Syst. Sci., 20, 2611–2628, https://doi.org/10.5194/hess-20-2611-2016, 2016. a
Silva, T. A. and Bigg, G. R.: Computer-based identification and tracking of
Antarctic icebergs in SAR images, Remote Sens. Environ., 94, 287–297, 2005. a
Singh, I. B.: The Ganga River, Large rivers: geomorphology and management, John Wiley & Sons Ltd, Chichester, West Sussex, England, 347–371, 2007. a
Smart, J. S. and Moruzzi, V. L.: Quantitative properties of delta channel
networks, Tech. rep., IBM Thomas J. Watson Res. Cent., Yorktown, NY, 1971. a
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., and Green, P.:
Impact of humans on the flux of terrestrial sediment to the global coastal
ocean, Science, 308, 376–380, 2005. a
Tamene, L., Park, S., Dikau, R., and Vlek, P.: Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia,
Geomorphology, 76, 76–91, 2006. a
Tehrany, M. S., Pradhan, B., and Jebur, M. N.: Flood susceptibility mapping
using a novel ensemble weights-of-evidence and support vector machine models
in GIS, J. Hydrol., 512, 332–343, 2014. a
Tejedor, A., Longjas, A., Zaliapin, I., and Foufoula-Georgiou, E.: Delta
channel networks: 1. A graph-theoretic approach for studying connectivity and
steady state transport on deltaic surfaces, Water Resour. Res., 51, 3998–4018, 2015a. a
Tejedor, A., Longjas, A., Zaliapin, I., and Foufoula-Georgiou, E.: Delta
channel networks: 2. Metrics of topologic and dynamic complexity for delta
comparison, physical inference, and vulnerability assessment, Water Resour. Res., 51, 4019–4045, 2015b. a
Tejedor, A., Longjas, A., Caldwell, R., Edmonds, D. A., Zaliapin, I., and
Foufoula-Georgiou, E.: Quantifying the signature of sediment composition on
the topologic and dynamic complexity of river delta channel networks and
inferences toward delta classification, Geophys. Res. Lett., 43, 3280–3287, 2016. a
Tobler, W. R.: Geographical filters and their inverses, Geogr. Anal., 1, 234–253, 1969. a
Trigg, M. A., Bates, P. D., Wilson, M. D., Schumann, G., and Baugh, C.:
Floodplain channel morphology and networks of the middle Amazon River, Water
Resour. Res., 48, W10504, https://doi.org/10.1029/2012WR011888, 2012. a
Valentine, A. and Kalnins, L.: An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics, Earth Surf. Dynam., 4, 445–460, https://doi.org/10.5194/esurf-4-445-2016, 2016. a
Vesanto, J. and Alhoniemi, E.: Clustering of the self-organizing map, IEEE T. Neural Netw., 11, 586–600, 2000. a
Vila, D. and Machado, L.: Shape and radiative properties of convective systems observed from infrared satellite images, Int. J. Remote Sens., 25, 4441–4456, 2004. a
Werner, B.: Complexity in natural landform patterns, Science, 284, 102–104,
1999. a
Wilson, C., Goodbred, S., Small, C., Gilligan, J., Sams, S., Mallick, B., and
Hale, R.: Widespread infilling of tidal channels and navigable waterways in
human-modified tidal deltaplain of southwest Bangladesh, Element. Sci. Anthrop., 5, 78, https://doi.org/10.1525/elementa.263, 2017. a, b, c
Wolinsky, M. A., Edmonds, D. A., Martin, J., and Paola, C.: Delta allometry:
Growth laws for river deltas, Geophys. Res. Lett., 37, L21403, https://doi.org/10.1029/2010GL044592, 2010. a, b
Wu, J., Feng, Z., Gao, Y., and Peng, J.: Hotspot and relationship
identification in multiple landscape services: a case study on an area with
intensive human activities, Ecol. Indicat., 29, 529–537, 2013. a
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.
We propose a machine learning approach for the classification and analysis of large delta...