Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-955-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-955-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics
Steven A. H. Weisscher
CORRESPONDING AUTHOR
Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Marcio Boechat-Albernaz
Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Jasper R. F. W. Leuven
Royal HaskoningDHV, Rivers & Coasts – Water, P.O. Box 151, 6500 AD Nijmegen, the Netherlands
Department of Environmental Sciences, Wageningen University, 6708 PB Wageningen, the Netherlands
Wout M. Van Dijk
Arcadis, Rivers & Coasts, P.O. Box 220, 3800 AE Amersfoort, the Netherlands
Yasuyuki Shimizu
Faculty of Engineering, Hokkaido University, North 13, West 8, Kitaku, Sapporo, Hokkaido, 080-8628, Japan
Maarten G. Kleinhans
Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Related authors
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Marco Schrijver, Maarten van der Vegt, Gerben Ruessink, and Maarten Kleinhans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1202, https://doi.org/10.5194/egusphere-2025-1202, 2025
Short summary
Short summary
Mid-channel bars in estuaries are important habitats and bird foraging areas. We measured current velocities on and along the tidal flat of an estuarine mid-channel bar. Our analysis shows that the intertidal currents have a much more three-dimensional pattern than those on shore-connected tidal flats. Existing models for tidal flats underestimate flow velocities on the mid-channel bar, which has consequences for sediment transport and morphodynamics.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Cited articles
Ashmore, P. E.: Channel morphology and bed load pulses in braided, gravel-bed
streams, Geogr. Ann. A, 73, 37–52,
https://doi.org/10.1080/04353676.1991.11880331, 1991a. a, b
Ashmore, P. E.: How do gravel-bed rivers braid?, Can. J. Earth
Sci., 28, 326–341, https://doi.org/10.1139/e91-030, 1991b. a
Ashworth, P. J., Best, J. L., and Leddy, J. O.: 6 The Physical Modelling of
Braided Rivers and Deposition of Fine-grained, edited by: Kirkby, M. J.,vol. 8, John Wiley & Sons Ltd, 1994. a
Baptist, M. J., Babovic, V., Rodríquez Uthurburu, J., Keijzer, M.,
Uittenbogaard, R. E., Mynett, A., and Verwey, A.: On inducing equations for
vegetation resistance, J. Hydraul. Res., 45, 435–450,
https://doi.org/10.1080/00221686.2007.9521778, 2007. a, b, c
Berends, K. D., Straatsma, M. W., Warmink, J. J., and Hulscher, S. J. M. H.: Uncertainty quantification of flood mitigation predictions and implications for interventions, Nat. Hazards Earth Syst. Sci., 19, 1737–1753, https://doi.org/10.5194/nhess-19-1737-2019, 2019. a, b
Bolla Pittaluga, M., Repetto, R., and Tubino, M.: Channel bifurcation in
braided rivers: equilibrium configurations and stability, Water Resour.
Res., 39, 1046, https://doi.org/10.1029/2001WR001112, 2003. a
Defina, A.: Two-dimensional shallow flow equations for partially dry areas,
Water Resour. Res., 36, 3251–3264, 2000. a
De Vet, P. L. M., Van Prooijen, B. C., and Wang, Z. B.: The differences in
morphological development between the intertidal flats of the Eastern and
Western Scheldt, Geomorphology, 281, 31–42, 2017. a
Friedrichs, C. T.: Tidal flat morphodynamics: a synthesis, Coastal and Estuarine Research Federation, 21st Biennial Conference, Daytona Beach, FL, 2011. a
Groen, P.: On the residual transport of suspended matter by an alternating
tidal current, Neth. J. Sea Res., 3, 564–574,
https://doi.org/10.1016/0077-7579(67)90004-X, 1967. a
Kleinhans, M. G.: Sorting out river channel patterns, Prog. Phys.
Geogr., 34, 287–326, https://doi.org/10.1177/0309133310365300, 2010. a
Kleinhans, M. G. and Van den Berg, J. H.: River channel and bar patterns
explained and predicted by an empirical and a physics-based method, Earth
Surf. Proc. Land., 36, 721–738, https://doi.org/10.1002/esp.2090, 2011. a
Kleinhans, M. G., Jagers, H. R. A., Mosselman, E., and Sloff, C. J.:
Bifurcation dynamics and avulsion duration in meandering rivers by
one-dimensional and three-dimensional models, Water Resour. Res., 44, W08454,
https://doi.org/10.1029/2007WR005912, 2008. a
Kleinhans, M. G., Van der Vegt, M., Van Scheltinga, R. T., Baar, A. W., and
Markies, H.: Turning the tide: experimental creation of tidal channel
networks and ebb deltas, Neth. J. Geosci., 91, 311–323,
2012. a
Kleinhans, M. G., van Rosmalen, T. M., Roosendaal, C., and van der Vegt, M.: Turning the tide: mutually evasive ebb- and flood-dominant channels and bars in an experimental estuary, Adv. Geosci., 39, 21–26, https://doi.org/10.5194/adgeo-39-21-2014, 2014. a, b
Kleinhans, M. G., Van Scheltinga, R. T., Van Der Vegt, M., and Markies, H.:
Turning the tide: Growth and dynamics of a tidal basin and inlet in
experiments, J. Geophys. Res.-Earth, 120, 95–119,
2015. a
Kleinhans, M. G., Van Der Vegt, M., Leuven, J. R. F. W., Braat, L., Markies,
H., Simmelink, A., Roosendaal, C., Van Eijk, A., Vrijbergen, P., and
Van Maarseveen, M.: Turning the tide: comparison of tidal flow by periodic
sea level fluctuation and by periodic bed tilting in scaled landscape
experiments of estuaries, Earth Surf. Dynam., 5, 731–756, 2017. a, b, c
Lanzoni, S. and Seminara, G.: On the nature of meander instability, J.
Geophys. Res.-Earth, 111, F04006, https://doi.org/10.1029/2005JF000416, 2006. a
Lokhorst, I. R., De Lange, S. I., Van Buiten, G., Selaković, S., and
Kleinhans, M. G.: Species selection and assessment of eco-engineering effects
of seedlings for biogeomorphological landscape experiments, Earth Surf.
Proc. Land., 44, 2922–2935, 2019. a
Marani, M., Belluco, E., D'Alpaos, A., Defina, A., Lanzoni, S., and Rinaldo,
A.: On the drainage density of tidal networks, Water Resour. Res., 39, 1040, https://doi.org/10.1029/2001WR001051,
2003. a, b, c, d
Marra, W. A., Braat, L., Baar, A. W., and Kleinhans, M. G.: Valley formation by
groundwater seepage, pressurized groundwater outbursts and crater-lake
overflow in flume experiments with implications for Mars, Icarus, 232,
97–117, 2014. a
Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, in: IAHSR
2nd meeting, Stockholm, appendix 2, IAHR, 1948. a
Mori, N. and Chang, K.-A.: Experimental study of a horizontal jet in a wavy
environment, J. Eng. Mech., 129, 1149–1155, 2003. a
Neary, V., Sotiropoulos, F., and Odgaard, A.: Three-dimensional numerical model
of lateral-intake inflows, J. Hydraul. Eng., 125, 126–140,
1999. a
Postma, H.: Transport and accumulation of suspended matter in the Dutch Wadden
Sea, Netherlands J. Sea Res., 1, 148–190,
https://doi.org/10.1016/0077-7579(61)90004-7, 1961. a
Schramkowski, G., Schuttelaars, H., and De Swart, H.: The effect of geometry
and bottom friction on local bed forms in a tidal embayment, Cont.
Shelf Res., 22, 1821–1833, 2002. a
Schumm, S. A. and Khan, H.: Experimental study of channel patterns, Geol.
Soc. Am. Bull., 83, 1755–1770, 1972. a
Schumm, S. A., Mosley, M. P., and Weaver, W.: Experimental fluvial
geomorphology, United States, 1987. a
Shimizu, Y., Kimura, I., Iwasaki, T., Hamaki, M., and Inoue, T.:
Nays2D Solver Version 4.2.3302, available at: https://i-ric.org/en/download (last access: 31 January 2020), 2013. a
Siviglia, A., Stecca, G., Vanzo, D., Zolezzi, G., Toro, E. F., and Tubino, M.:
Numerical modelling of two-dimensional morphodynamics with applications to
river bars and bifurcations, Adv. Water Resour., 52, 243–260, 2013. a
Struiksma, N., Olesen, K. W., Flokstra, C., and de Vriend, H. J.: Bed
deformation in curved alluvial channels, J. Hydraul. Res.,
23, 57–79, https://doi.org/10.1080/00221688509499377, 1985. a, b
Van de Lageweg, W. I., Van Dijk, W. M., and Kleinhans, M. G.: Channel belt
architecture formed by a meandering river, Sedimentology, 60, 840–859, 2013. a
Van Dijk, W. M., Van de Lageweg, W. I., and Kleinhans, M. G.:
Experimental meandering river with chute cutoffs, J. Geophys.
Res.-Earth, 117, F03023, https://doi.org/10.1029/2011JF002314, 2012. a, b
Van Dijk, W. M., Teske, R., Van de Lageweg, W. I., and Kleinhans,
M. G.: Effects of vegetation distribution on experimental river channel
dynamics, Water Resour. Res., 49, 7558–7574,
https://doi.org/10.1002/2013WR013574, 2013b. a, b
Van Dijk, W. M., Mastbergen, D. R., Van den Ham, G. A., Leuven, J. R. F. W.,
and Kleinhans, M. G.: Location and probability of shoal margin collapses in a
sandy estuary, Earth Surf. Proc. Land., 43, 2342–2357, 2018. a
Van Oorschot, M. V., Kleinhans, M. G., Geerling, G., and Middelkoop, H.:
Distinct patterns of interaction between vegetation and morphodynamics, Earth
Surf. Proc. Land., 41, 791–808, https://doi.org/10.1002/esp.3864, 2016. a
Van Rijn, L. C.: Unified View of Sediment Transport by Currents and Waves. I:
Initiation of Motion, Bed Roughness, and Bed-Load Transport, J.
Hydraul. Eng., 133, 649–667,
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649), 2007. a
Weisscher, S. A. H., Shimizu, Y., and Kleinhans, M. G.: Upstream perturbation
and floodplain formation effects on chute cutoff-dominated meandering river
pattern and dynamics, Earth Surf. Proc. Land., 44, 2156–2169, https://doi.org/10.1002/esp.4638, 2019. a, b, c, d
Weisscher, S. A. H., Boechat-Albernaz, M., Leuven, J. R. F. W, van Dijk, W. M., Shimizu, Y., and Kleinhans, M. G.:
Data supplementary to “Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics”, YODA, https://doi.org/10.24416/UU01-CZV56M, 2020.
a
Weitbrecht, V., Kühn, G., and Jirka, G.: Large scale PIV-measurements at
the surface of shallow water flows, Flow Meas. Instrum., 13,
237–245, 2002. a
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds,
J.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314, 2012. a
Yabe, T., Ishikawa, T., Kadota, Y., and Ikeda, F.: A multidimensional
cubic-interpolated pseudoparticle (CIP) method without time splitting
technique for hyperbolic equations, J. Phys. Soc. Jpn.,
59, 2301–2304, https://doi.org/10.1143/JPSJ.59.2301, 1990. a
Ysebaert, T., Herman, P. M. J., Meire, P., Craeymeersch, J., Verbeek, H., and
Heip, C. H. R.: Large-scale spatial patterns in estuaries: estuarine
macrobenthic communities in the Schelde estuary, NW Europe, Estuar.
Coast. Shelf S., 57, 335–355, 2003. a
Zanichelli, G., Caroni, E., and Fiorotto, V.: River bifurcation analysis by
physical and numerical modeling, J. Hydraul. Eng., 130,
237–242, 2004. a
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
Accurate and continuous data collection is challenging in physical scale experiments. A novel...