Research article 24 Nov 2020
Research article | 24 Nov 2020
A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis
Joel Mohren et al.
Related authors
No articles found.
N. Tilly, F. Reddig, U. Lussem, and G. Bareth
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1069–1076, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1069-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1069-2020, 2020
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019, https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary
Short summary
This paper is about deglaciation history in two areas of southern Norway. By dating rock surfaces we can estimate a minimum ice sheet thickness of 1476 m a.s.l. and a timing of deglaciation around 13 000 years ago in the western study area. In the eastern study area the deglaciation history is complex as the bedrock age most likely has inheritance from earlier ice-free periods. Comparing both study areas demonstrates the complex dynamics of the deglaciation in different areas in southern Norway.
C. Hütt, N. Tilly, H. Schiedung, and G. Bareth
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 803–808, https://doi.org/10.5194/isprs-archives-XLI-B7-803-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-803-2016, 2016
N. Tilly, D. Kelterbaum, and R. Zeese
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 591–597, https://doi.org/10.5194/isprs-archives-XLI-B5-591-2016, https://doi.org/10.5194/isprs-archives-XLI-B5-591-2016, 2016
Related subject area
Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct
Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments
Computing water flow through complex landscapes, Part 3: Fill-Spill-Merge: Flow routing in depression hierarchies
Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset
Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks
Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
The R package “eseis” – a software toolbox for environmental seismology
Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)
A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix
Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics
An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics
Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains
Constraining the stream power law: a novel approach combining a landscape evolution model and an inversion method
Mariela Perignon, Jordan Adams, Irina Overeem, and Paola Passalacqua
Earth Surf. Dynam., 8, 809–824, https://doi.org/10.5194/esurf-8-809-2020, https://doi.org/10.5194/esurf-8-809-2020, 2020
Short summary
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-31, https://doi.org/10.5194/esurf-2020-31, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other, and, if they become full enough, how they merge into one another.
Taylor Smith, Aljoscha Rheinwalt, and Bodo Bookhagen
Earth Surf. Dynam., 7, 475–489, https://doi.org/10.5194/esurf-7-475-2019, https://doi.org/10.5194/esurf-7-475-2019, 2019
Short summary
Short summary
Representing the surface of the Earth on an equally spaced grid leads to errors and uncertainties in derived slope and aspect. Using synthetic data, we develop a quality metric that can be used to compare the uncertainties in different datasets. We then apply this method to a real-world lidar dataset, and find that 1 m data have larger error bounds than lower-resolution data. The highest data resolution is not always the best choice – it is important to consider the quality of the data.
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019, https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Short summary
Monitoring rock slopes for a long time helps to understand the impact of climate change on the alpine environment. Measurements of seismic signals are often affected by external influences, e.g., unwanted anthropogenic noise. In the presented work, these influences are automatically identified and removed to enable proper geoscientific analysis. The methods presented are based on machine learning and intentionally kept generic so that they can be equally applied in other (more generic) settings.
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018, https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Short summary
By using a set of evaluation methods involving GPS, ICESat, hydrological modelling and altimetry satellite orbits, we show that the novel radial basis function (RBF) processing technique can be used for processing the Gravity Recovery and Climate Experiment (GRACE) data yielding global gravity field models which fit independent reference values at the same level as commonly accepted global geopotential models based on spherical harmonics.
Michael Dietze
Earth Surf. Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018, https://doi.org/10.5194/esurf-6-669-2018, 2018
Short summary
Short summary
Environmental seismology is the study of the seismic signals emitted by Earth surface processes. This emerging research field is at the intersection of many Earth science disciplines. The overarching scope requires free integrative software that is accepted across scientific disciplines, such as R. The article introduces the R package "eseis" and illustrates its conceptual structure, available functions, and worked examples.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Andrew Valentine and Lara Kalnins
Earth Surf. Dynam., 4, 445–460, https://doi.org/10.5194/esurf-4-445-2016, https://doi.org/10.5194/esurf-4-445-2016, 2016
Short summary
Short summary
Learning algorithms are powerful tools for understanding and working with large data sets, particularly in situations where any underlying physical models may be complex and poorly understood. Such situations are common in geomorphology. We provide an accessible overview of the various approaches that fall under the umbrella of "learning algorithms", discuss some potential applications within geomorphometry and/or geomorphology, and offer advice on practical considerations.
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015, https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary
Short summary
A semi-distributed hydrological model is used to analyse the hydrological cycle of a glaciated high-mountain catchment in the Pamirs.
We overcome data scarcity by utilising various raster data sets as meteorological input. Temperature in combination with the amount of snow provided in winter play the key role in the annual cycle.
This implies that expected Earth surface processes along precipitation and altitude gradients differ substantially.
T. Croissant and J. Braun
Earth Surf. Dynam., 2, 155–166, https://doi.org/10.5194/esurf-2-155-2014, https://doi.org/10.5194/esurf-2-155-2014, 2014
Cited articles
Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M.,
and Gates, W.: Soil Bulk Density Estimation Methods: A Review, Pedosphere,
28, 581–596, 2018.
Armesto, J. J. and Martnez, J. A.: Relations Between Vegetation Structure and Slope Aspect in the Mediterranean Region of Chile, J. Ecol., 66, 881–889, 1978.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quatern. Geochronol., 39, 150–173, 2017.
Bauer, T., Strauss, P., and Murer, E.: A photogrammetric method for calculating soil bulk density, J. Plant Nutr. Soil Sci., 177, 496–499, 2014.
Berney IV, E., Ganesh, N. B., and Pratt, T. C.: A Photogrammetric Method for
Obtaining Soil Density, US Army Engineer Research and Development Center,
Vicksburg, 2018.
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y., Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L., Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A., Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov, Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y., Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M., Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K.,
Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.:
Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the
Coastal Cordillera of Chile, Catena, 170, 335–355, 2018.
Blake, G. R. and Hartge, K. H.: Bulk Density, in: Methods of Soil Analysis:
Part 1 – Physical and Mineralogical Methods, SSSA Book Series, 5.1, edited by: Klute, A., Soil Science Society of America, American Society of Agronomy,
Madison, WI, 1986.
Bockheim, J. G. and Hartemink, A. E.: Soil-forming factors, in: The Soils of Wisconsin, Springer, Cham, Switzerland, 2017.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quatern. Geochronol., 31, 188–198, 2016.
Brahim, N., Bernoux, M., and Gallali, T.: Pedotransfer functions to estimate
soil bulk density for Northern Africa: Tunisia case, J. Arid Environ., 81, 77–83, 2012.
Braucher, R., Del Castillo, P., Siame, L., Hidy, A. J., and Bourlés, D. L.: Determination of both exposure time and denudation rate from an in
situ-produced 10 Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases, Quatern. Geochronol., 4,
56–67, 2009.
Brye, K. R., Morris, T. L., Miller, D. M., Formica, S. J., and Van Eps, M.
A.: Estimating Bulk Density in Vertically Exposed Stoney Alluvium Using a
Modified Excavation Method, J. Environ. Qual., 33, 1937–1942, 2004.
Casanova, M., Salazar, O., Seguel, O., and Luzio, W.: The Soils of Chile,
Springer, Dordrecht, the Netherlands, 2013.
Casanova, M., Tapia, E., Seguel, O., and Salazar, O.: Direct measurement and
prediction of bulk density on alluvial soils of central Chile, Chile. J.
Agricult. Res., 76, 105–113, 2016.
Coelho, M. A.: Spatial variability of water related soil physical properties, PhD thesis, The University of Arizona, Tucson, Arizona, 1974.
Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T. A., Kaufmann, M. S.,
Fuentes Espoz, J. P., Vereecken, H., and van der Kruk, J.: Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in
the Chilean coastal cordillera, Catena, 180, 146–159, 2019.
Dunai, T. J.: Cosmogenic nuclides: principles, concepts and applications in
the earth surface sciences, Cambridge University Press, Cambridge, UK, New
York, 2010.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Emparan, C. and Pineda, G.: Geología del Área Andacollo-Puerto Aldea, Región de Coquimbo, Escala 1:100.000, Servicio Nacional de Geología y Minería, Santiago de Chile, 2006.
Fuhrmann, S., Langguth, F., and Goesele, M.: MVE – A Multi-View Reconstruction Environment, Eurographics, Geneve, Switzerland, 11–18, 2014.
Furukawa, Y. and Ponce, J.: Accurate, dense, and robust multiview stereopsis, IEEE T. Patt. Anal. Mach. Intel., 32, 1362–1376, 2009.
Gana, F.: Mapa geológico de la cordillera de la costa entre La Serena y
Quebrada El Teniente: Región de Coquimbo, Servicio Nacional de Geología y Minería, Santiago de Chile, 1991.
Grossman, R. B. and Reinsch, T. G.: Bulk density and linear extensibility, in: Methods of Soil Analysis: Part 4 Physical Methods, methodsofsoilan4, edited by: Dane, J. M. and Topp, G. C., Soil Science Society of America, Madison, Wisconsin, USA, 2002.
Gruen, A.: Development and Status of Image Matching in Photogrammetry, Photogram. Rec., 27, 36–57, 2012.
Gutierrez, J. R., Meserve, P. L., Kelt, D. A., Engilis Jr., A., and Andrea, M.: Long-term research in Bosque Fray Jorge National Park: Twenty years
studying the role of biotic and abiotic factors in a Chilean semiarid scrubland, Revista Chilena de Historia Natural, 83, 69–98, 2010.
Gutiérrez-Jurado, H. A. and Vivoni, E. R.: Ecogeomorphic expressions of
an aspect-controlled semiarid basin: I. Topographic analyses with high-resolution data sets, Ecohydrology, 6, 8–23, 2013a.
Gutiérrez-Jurado, H. A. and Vivoni, E. R.: Ecogeomorphic expressions of
an aspect-controlled semiarid basin: II. Topographic and vegetation controls
on solar irradiance, Ecohydrology, 6, 24–37, 2013b.
Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., and Parkin, G. W.:
Soil density and porosity, in: Soil sampling and methods of analysis, edited by: Carter M. R. and Gregorich, E. G., CRC Press, Boca Raton, Florida, USA, 2008.
Hartel, P. G.: MICROBIAL PROCESSES | Environmental Factors, in:
Encyclopedia of Soils in the Environment, edited by: Hillel, D., Elsevier,
Oxford, 2005.
Heimsath, A. and Jungers, M.: Processes, transport, deposition, and landforms: quantifying creep, in: Treatise on Geomorphology, Academic Press,
San Diego, 2013.
Heimsath, A. M. and Burke, B. C.: The impact of local geochemical variability on quantifying hillslope soil production and chemical weathering, Geomorphology, 200, 75–88, 2013.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and landscape equilibrium, Nature, 388, 358–361, 1997.
Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R. C.: A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona, Geochem. Geophy. Geosy., 11, 1–18, https://doi.org/10.1029/2010GC003084, 2010.
Hippe, K.: Constraining processes of landscape change with combined in situ
cosmogenic 14C–10Be analysis, Quaternary Sci. Rev., 173, 1–19, 2017.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: Accuracy and geoscience application, J. Geophys. Res.-Earth, 117, 1–17, https://doi.org/10.1029/2011JF002289, 2012.
Jenny, H.: Factors of soil formation: a system of quantitative pedology,
Courier Corporation, Dover, New York, 1994.
Kazhdan, M. and Hoppe, H.: Screened poisson surface reconstruction, ACM T. Graph., 32, 1–13, 2013.
Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, in: Symposium on Geometry Processing 2006, Fourth Eurographics Symposium on Geometry Processing, 26–28 June 2006, Cagliari, Sardinia, Italy, 61–70, 2006.
Kels, H.: Bau und Bilanzierung der Lössdecke am westlichen Niederrhein, PhD thesis, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany, 2007.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
Lal, D. and Arnold, J. R.: Tracing quartz through the environment, P. Indian Acad. Sci. – Earth Planet. Sci., 94, 1–5, 1985.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planetary Sci. Lett., 386, 149–160, 2014.
Liu, X., Ren, T., and Horton, R.: Determination of soil bulk density with
thermo-time domain reflectometry sensors, Soil Sci. Soc. Am. J., 72, 1000–1005, 2008.
López-Cortés, F. and López, D.: Antecedentes bioclimáticos
del parque nacional bosque fray jorge, Historia Natural del Parque Nacional
Bosque Fray Jorge, 2, 45–60, 2004.
Manrique, L. A. and Jones, C. A.: Bulk Density of Soils in Relation to Soil
Physical and Chemical Properties, Soil Sci. Soc. Am. J., 55, 476–481, 1991.
Maynard, D. G. and Curran, M. P.: Bulk density measurement in forest soils,
in: Soil sampling and methods of analysis, edited by: Carter, M. R. and Gregorich, E. G., CRC Press, Boca Raton, Florida, USA, 2008.
McLintock, T. F.: A Method for Obtaining Soil-Sample Volumes in Stony Soils,
J. Forest., 57, 832–834, 1959.
Micheletti, N., Chandler, J. H., and Lane, S. N.: Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone, Earth Surf. Proc. Land., 40, 473–486, 2015.
Mosbrucker, A. R., Spicer, K. R., Christianson, T. S., and Uhrich, M. A.:
Estimating concentrations of fine-grained and total suspended sediment from
close-range remote sensing imagery, in: SEDHYD 2015, Proceedings of the 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, 19–23 April 2015, Reno, Nevada, USA, 67–78, 3rdJFIC, 2015.
Mosbrucker, A. R., Major, J. J., Spicer, K. R., and Pitlick, J.: Camera system considerations for geomorphic applications of SfM photogrammetry, Earth Surf. Proc. Land., 42, 969–986, 2017.
Muller, R. N. and Hamilton, M. E.: A simple, effective method for determining the bulk density of stony soils, Commun. Soil Sci. Plant Anal., 23, 313–319, 1992.
Neale, W. T., Hessel, D., and Terpstra, T.: Photogrammetric Measurement
Error Associated with Lens Distortion, SAE Technical Paper 2011-01-0286, SAE International, Warrendale, PA, USA, https://doi.org/10.4271/2011-01-0286, 2011.
Oeser, R. A., Stroncik, N., Moskwa, L.-M., Bernhard, N., Schaller, M., Canessa, R., van den Brink, L., Köster, M., Brucker, E., Stock, S., Fuentes, J. P., Godoy, R., Matus, F. J., Oses Pedraza, R., Osses McIntyre,
P., Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P., Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K., Tielbörger, K., Wagner, D., and von Blanckenburg, F.: Chemistry and microbiology of the Critical Zone along a
steep climate and vegetation gradient in the Chilean Coastal Cordillera,
Catena, 170, 183–203, 2018.
Owen, J. J., Amundson, R., Dietrich, W. E., Nishiizumi, K., Sutter, B., and
Chong, G.: The sensitivity of hillslope bedrock erosion to precipitation,
Earth Surf. Proc. Land., 36, 117–135, 2011.
Pelletier, J. D. and Swetnam, T. L.: Asymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and
temperature, Earth Surf. Proc. Land., 42, 1408–1418, 2017.
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. J. T., Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K., Reedy, R. C., Schaefer, J., Stone, J. O. H., Swanson, T., and Zreda, M. G.: The CRONUS-Earth Project: A synthesis, Quatern. Geochronol., 31, 119–154, 2016.
Rodés, Á. and Evans, D. L.: Cosmogenic soil production rate
calculator, MethodsX, 7, 100753, https://doi.org/10.1016/j.mex.2019.11.026, 2020.
Rodés, Á., Pallàs, R., Braucher, R., Moreno, X., Masana, E., and
Bourlés, D. L.: Effect of density uncertainties in cosmogenic 10Be
depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras
Fault, SE Iberia), Quatern. Geochronol., 6, 186–194, 2011.
Rodríguez-Rodríguez, L., Antón, L., Rodés, Á., Pallàs, R., García-Castellanos, D., Jiménez-Munt, I., Struth, L., Leanni, L., Aumaître, G., Bourlès, D., and Keddadouche, K.: Dates and rates of endo-exorheic drainage development: Insights from fluvial terraces (Duero River, Iberian Peninsula), Global Planet. Change, 193, 103271,
https://doi.org/10.1016/j.gloplacha.2020.103271, 2020.
Russo, D.: Leaching Characteristics of a Stony Desert Soil, Soil Sci. Soc. Am. J., 47, 431–438, 1983.
Schaetzl, R. J. and Thompson, M. L.: Soils, Cambridge University Press,
Cambridge, 2015.
Smith, M., Carrivick, J., and Quincey, D.: Structure from motion photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275, 2016.
Soil Survey Staff: Kellogg Soil Survey Laboratory Methods Manual, US Department of Agriculture, Natural Resources Conservation Service, Lincoln, Nebraska, USA, 2014.
Thoeni, K., Giacomini, A., Murtagh, R., and Kniest, E.: A comparison of
multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner, Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci., 40, 573–580, 2014.
Timm, L. C., Pires, L. F., Reichardt, K., Roveratti, R., Oliveira, J. C. M.,
and Bacchi, O. O. S.: Soil bulk density evaluation by conventional and nuclear methods, Soil Res., 43, 97–103, 2005.
Vincent, K. R. and Chadwick, O. A.: Synthesizing Bulk Density for Soils with
Abundant Rock Fragments, Soil Sci. Soc. Am. J., 58, 455–464, 1994.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, 2012.
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
In this study, we comprehensively test a method to derive soil densities under fieldwork...