Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-995-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Steven A. Binnie
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Gregor M. Rink
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
present address: Department of Geosciences, University of
Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Katharina Knödgen
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Carlos Miranda
Departemento de Ciencias Geólogicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
Nora Tilly
Institute of Geography, University of Cologne, Otto-Fischer-Str. 4,
50674 Cologne, Germany
Tibor J. Dunai
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Related authors
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Juan Ríos-Contesse, Richard Albert, Benedikt Ritter-Prinz, Axel Gerdes, Tibor Dunai, and Eduardo Campos
EGUsphere, https://doi.org/10.5194/egusphere-2025-4801, https://doi.org/10.5194/egusphere-2025-4801, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
This study dated chrysocolla, a supergene copper mineral, from copper deposits hosted in the Coastal Cordillera of northern Chile, with ages between 8.4 and 0.046 million years. Results show that from the Late Miocene to the Pleistocene, short periods of moisture triggered mineral formation despite the hyperarid climate. These wetter periods were likely caused by occasional rainfall or stronger coastal fog, causing repeated pulses of supergene activity in the Coastal Cordillera.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Cited articles
Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M.,
and Gates, W.: Soil Bulk Density Estimation Methods: A Review, Pedosphere,
28, 581–596, 2018.
Armesto, J. J. and Martnez, J. A.: Relations Between Vegetation Structure and Slope Aspect in the Mediterranean Region of Chile, J. Ecol., 66, 881–889, 1978.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quatern. Geochronol., 39, 150–173, 2017.
Bauer, T., Strauss, P., and Murer, E.: A photogrammetric method for calculating soil bulk density, J. Plant Nutr. Soil Sci., 177, 496–499, 2014.
Berney IV, E., Ganesh, N. B., and Pratt, T. C.: A Photogrammetric Method for
Obtaining Soil Density, US Army Engineer Research and Development Center,
Vicksburg, 2018.
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y., Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L., Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A., Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov, Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y., Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M., Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K.,
Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.:
Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the
Coastal Cordillera of Chile, Catena, 170, 335–355, 2018.
Blake, G. R. and Hartge, K. H.: Bulk Density, in: Methods of Soil Analysis:
Part 1 – Physical and Mineralogical Methods, SSSA Book Series, 5.1, edited by: Klute, A., Soil Science Society of America, American Society of Agronomy,
Madison, WI, 1986.
Bockheim, J. G. and Hartemink, A. E.: Soil-forming factors, in: The Soils of Wisconsin, Springer, Cham, Switzerland, 2017.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quatern. Geochronol., 31, 188–198, 2016.
Brahim, N., Bernoux, M., and Gallali, T.: Pedotransfer functions to estimate
soil bulk density for Northern Africa: Tunisia case, J. Arid Environ., 81, 77–83, 2012.
Braucher, R., Del Castillo, P., Siame, L., Hidy, A. J., and Bourlés, D. L.: Determination of both exposure time and denudation rate from an in
situ-produced 10 Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases, Quatern. Geochronol., 4,
56–67, 2009.
Brye, K. R., Morris, T. L., Miller, D. M., Formica, S. J., and Van Eps, M.
A.: Estimating Bulk Density in Vertically Exposed Stoney Alluvium Using a
Modified Excavation Method, J. Environ. Qual., 33, 1937–1942, 2004.
Casanova, M., Salazar, O., Seguel, O., and Luzio, W.: The Soils of Chile,
Springer, Dordrecht, the Netherlands, 2013.
Casanova, M., Tapia, E., Seguel, O., and Salazar, O.: Direct measurement and
prediction of bulk density on alluvial soils of central Chile, Chile. J.
Agricult. Res., 76, 105–113, 2016.
Coelho, M. A.: Spatial variability of water related soil physical properties, PhD thesis, The University of Arizona, Tucson, Arizona, 1974.
Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T. A., Kaufmann, M. S.,
Fuentes Espoz, J. P., Vereecken, H., and van der Kruk, J.: Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in
the Chilean coastal cordillera, Catena, 180, 146–159, 2019.
Dunai, T. J.: Cosmogenic nuclides: principles, concepts and applications in
the earth surface sciences, Cambridge University Press, Cambridge, UK, New
York, 2010.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Emparan, C. and Pineda, G.: Geología del Área Andacollo-Puerto Aldea, Región de Coquimbo, Escala 1:100.000, Servicio Nacional de Geología y Minería, Santiago de Chile, 2006.
Fuhrmann, S., Langguth, F., and Goesele, M.: MVE – A Multi-View Reconstruction Environment, Eurographics, Geneve, Switzerland, 11–18, 2014.
Furukawa, Y. and Ponce, J.: Accurate, dense, and robust multiview stereopsis, IEEE T. Patt. Anal. Mach. Intel., 32, 1362–1376, 2009.
Gana, F.: Mapa geológico de la cordillera de la costa entre La Serena y
Quebrada El Teniente: Región de Coquimbo, Servicio Nacional de Geología y Minería, Santiago de Chile, 1991.
Grossman, R. B. and Reinsch, T. G.: Bulk density and linear extensibility, in: Methods of Soil Analysis: Part 4 Physical Methods, methodsofsoilan4, edited by: Dane, J. M. and Topp, G. C., Soil Science Society of America, Madison, Wisconsin, USA, 2002.
Gruen, A.: Development and Status of Image Matching in Photogrammetry, Photogram. Rec., 27, 36–57, 2012.
Gutierrez, J. R., Meserve, P. L., Kelt, D. A., Engilis Jr., A., and Andrea, M.: Long-term research in Bosque Fray Jorge National Park: Twenty years
studying the role of biotic and abiotic factors in a Chilean semiarid scrubland, Revista Chilena de Historia Natural, 83, 69–98, 2010.
Gutiérrez-Jurado, H. A. and Vivoni, E. R.: Ecogeomorphic expressions of
an aspect-controlled semiarid basin: I. Topographic analyses with high-resolution data sets, Ecohydrology, 6, 8–23, 2013a.
Gutiérrez-Jurado, H. A. and Vivoni, E. R.: Ecogeomorphic expressions of
an aspect-controlled semiarid basin: II. Topographic and vegetation controls
on solar irradiance, Ecohydrology, 6, 24–37, 2013b.
Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., and Parkin, G. W.:
Soil density and porosity, in: Soil sampling and methods of analysis, edited by: Carter M. R. and Gregorich, E. G., CRC Press, Boca Raton, Florida, USA, 2008.
Hartel, P. G.: MICROBIAL PROCESSES | Environmental Factors, in:
Encyclopedia of Soils in the Environment, edited by: Hillel, D., Elsevier,
Oxford, 2005.
Heimsath, A. and Jungers, M.: Processes, transport, deposition, and landforms: quantifying creep, in: Treatise on Geomorphology, Academic Press,
San Diego, 2013.
Heimsath, A. M. and Burke, B. C.: The impact of local geochemical variability on quantifying hillslope soil production and chemical weathering, Geomorphology, 200, 75–88, 2013.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and landscape equilibrium, Nature, 388, 358–361, 1997.
Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R. C.: A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona, Geochem. Geophy. Geosy., 11, 1–18, https://doi.org/10.1029/2010GC003084, 2010.
Hippe, K.: Constraining processes of landscape change with combined in situ
cosmogenic 14C–10Be analysis, Quaternary Sci. Rev., 173, 1–19, 2017.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: Accuracy and geoscience application, J. Geophys. Res.-Earth, 117, 1–17, https://doi.org/10.1029/2011JF002289, 2012.
Jenny, H.: Factors of soil formation: a system of quantitative pedology,
Courier Corporation, Dover, New York, 1994.
Kazhdan, M. and Hoppe, H.: Screened poisson surface reconstruction, ACM T. Graph., 32, 1–13, 2013.
Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, in: Symposium on Geometry Processing 2006, Fourth Eurographics Symposium on Geometry Processing, 26–28 June 2006, Cagliari, Sardinia, Italy, 61–70, 2006.
Kels, H.: Bau und Bilanzierung der Lössdecke am westlichen Niederrhein, PhD thesis, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany, 2007.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
Lal, D. and Arnold, J. R.: Tracing quartz through the environment, P. Indian Acad. Sci. – Earth Planet. Sci., 94, 1–5, 1985.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planetary Sci. Lett., 386, 149–160, 2014.
Liu, X., Ren, T., and Horton, R.: Determination of soil bulk density with
thermo-time domain reflectometry sensors, Soil Sci. Soc. Am. J., 72, 1000–1005, 2008.
López-Cortés, F. and López, D.: Antecedentes bioclimáticos
del parque nacional bosque fray jorge, Historia Natural del Parque Nacional
Bosque Fray Jorge, 2, 45–60, 2004.
Manrique, L. A. and Jones, C. A.: Bulk Density of Soils in Relation to Soil
Physical and Chemical Properties, Soil Sci. Soc. Am. J., 55, 476–481, 1991.
Maynard, D. G. and Curran, M. P.: Bulk density measurement in forest soils,
in: Soil sampling and methods of analysis, edited by: Carter, M. R. and Gregorich, E. G., CRC Press, Boca Raton, Florida, USA, 2008.
McLintock, T. F.: A Method for Obtaining Soil-Sample Volumes in Stony Soils,
J. Forest., 57, 832–834, 1959.
Micheletti, N., Chandler, J. H., and Lane, S. N.: Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone, Earth Surf. Proc. Land., 40, 473–486, 2015.
Mosbrucker, A. R., Spicer, K. R., Christianson, T. S., and Uhrich, M. A.:
Estimating concentrations of fine-grained and total suspended sediment from
close-range remote sensing imagery, in: SEDHYD 2015, Proceedings of the 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, 19–23 April 2015, Reno, Nevada, USA, 67–78, 3rdJFIC, 2015.
Mosbrucker, A. R., Major, J. J., Spicer, K. R., and Pitlick, J.: Camera system considerations for geomorphic applications of SfM photogrammetry, Earth Surf. Proc. Land., 42, 969–986, 2017.
Muller, R. N. and Hamilton, M. E.: A simple, effective method for determining the bulk density of stony soils, Commun. Soil Sci. Plant Anal., 23, 313–319, 1992.
Neale, W. T., Hessel, D., and Terpstra, T.: Photogrammetric Measurement
Error Associated with Lens Distortion, SAE Technical Paper 2011-01-0286, SAE International, Warrendale, PA, USA, https://doi.org/10.4271/2011-01-0286, 2011.
Nishiizumi, K., Lal, D., Klein, J., Middleton, R., and Arnold, J. R.:
Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates, Nature, 319, 134–136, 1986.
Oeser, R. A., Stroncik, N., Moskwa, L.-M., Bernhard, N., Schaller, M., Canessa, R., van den Brink, L., Köster, M., Brucker, E., Stock, S., Fuentes, J. P., Godoy, R., Matus, F. J., Oses Pedraza, R., Osses McIntyre,
P., Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P., Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K., Tielbörger, K., Wagner, D., and von Blanckenburg, F.: Chemistry and microbiology of the Critical Zone along a
steep climate and vegetation gradient in the Chilean Coastal Cordillera,
Catena, 170, 183–203, 2018.
Owen, J. J., Amundson, R., Dietrich, W. E., Nishiizumi, K., Sutter, B., and
Chong, G.: The sensitivity of hillslope bedrock erosion to precipitation,
Earth Surf. Proc. Land., 36, 117–135, 2011.
Page-Dumroese, D. S., Brown, R. E., Jurgensen, M. F., and Mroz, G. D.:
Comparison of Methods for Determining Bulk Densities of Rocky Forest Soils,
Soil Sci. Soc. Am. J., 63, 379–383, 1999.
Pelletier, J. D. and Swetnam, T. L.: Asymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and
temperature, Earth Surf. Proc. Land., 42, 1408–1418, 2017.
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. J. T., Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K., Reedy, R. C., Schaefer, J., Stone, J. O. H., Swanson, T., and Zreda, M. G.: The CRONUS-Earth Project: A synthesis, Quatern. Geochronol., 31, 119–154, 2016.
Rodés, Á. and Evans, D. L.: Cosmogenic soil production rate
calculator, MethodsX, 7, 100753, https://doi.org/10.1016/j.mex.2019.11.026, 2020.
Rodés, Á., Pallàs, R., Braucher, R., Moreno, X., Masana, E., and
Bourlés, D. L.: Effect of density uncertainties in cosmogenic 10Be
depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras
Fault, SE Iberia), Quatern. Geochronol., 6, 186–194, 2011.
Rodríguez-Rodríguez, L., Antón, L., Rodés, Á., Pallàs, R., García-Castellanos, D., Jiménez-Munt, I., Struth, L., Leanni, L., Aumaître, G., Bourlès, D., and Keddadouche, K.: Dates and rates of endo-exorheic drainage development: Insights from fluvial terraces (Duero River, Iberian Peninsula), Global Planet. Change, 193, 103271,
https://doi.org/10.1016/j.gloplacha.2020.103271, 2020.
Russo, D.: Leaching Characteristics of a Stony Desert Soil, Soil Sci. Soc. Am. J., 47, 431–438, 1983.
Schaetzl, R. J. and Thompson, M. L.: Soils, Cambridge University Press,
Cambridge, 2015.
Smith, M., Carrivick, J., and Quincey, D.: Structure from motion photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275, 2016.
Soil Survey Staff: Kellogg Soil Survey Laboratory Methods Manual, US Department of Agriculture, Natural Resources Conservation Service, Lincoln, Nebraska, USA, 2014.
Thoeni, K., Giacomini, A., Murtagh, R., and Kniest, E.: A comparison of
multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner, Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci., 40, 573–580, 2014.
Timm, L. C., Pires, L. F., Reichardt, K., Roveratti, R., Oliveira, J. C. M.,
and Bacchi, O. O. S.: Soil bulk density evaluation by conventional and nuclear methods, Soil Res., 43, 97–103, 2005.
Vincent, K. R. and Chadwick, O. A.: Synthesizing Bulk Density for Soils with
Abundant Rock Fragments, Soil Sci. Soc. Am. J., 58, 455–464, 1994.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, 2012.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(18617 KB) - Full-text XML
- Corrigendum
-
Supplement
(1811 KB) - BibTeX
- EndNote
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
In this study, we comprehensively test a method to derive soil densities under fieldwork...