Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated quantification of floating wood pieces in rivers from video monitoring: a new software tool and validation
Hossein Ghaffarian
CORRESPONDING AUTHOR
Univ. Lyon, UMR 5600, Environnement-Ville-Société CNRS, Site EVS,
69362 Lyon, France
Pierre Lemaire
Univ. Lyon, UMR 5600, Environnement-Ville-Société CNRS, Site EVS,
69362 Lyon, France
Univ. Lyon, UMR 5205, Laboratoire d'InfoRmatique en Image et
Systèmes d'information CNRS, 69676 Lyon, France
Zhang Zhi
Univ. Lyon, UMR 5600, Environnement-Ville-Société CNRS, Site EVS,
69362 Lyon, France
Laure Tougne
Univ. Lyon, UMR 5205, Laboratoire d'InfoRmatique en Image et
Systèmes d'information CNRS, 69676 Lyon, France
Bruce MacVicar
Department of Civil and Environmental Engineering, Univ. Waterloo,
Waterloo, Ontario, Canada
Hervé Piégay
Univ. Lyon, UMR 5600, Environnement-Ville-Société CNRS, Site EVS,
69362 Lyon, France
Related authors
No articles found.
Megan Iun, F. Asal Montakhab, Lukas Mueller, and Bruce MacVicar
EGUsphere, https://doi.org/10.5194/egusphere-2025-4669, https://doi.org/10.5194/egusphere-2025-4669, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
It is hard to measure sediment transport in rivers, even in small laboratory channels. More information on this key process would help us better understand how bedforms like bars and pools develop and how they can be restored in damaged rivers. In this paper we paint tracers in fluorescent colors and then shine ultraviolet lights on them to make them highly visible. A code to track the movements of three different classes of particles is tested and validated, with good success.
Santiago Yépez, Francisca Salas, Andrea Nardini, Noelia Valenzuela, Víctor Osores, José Vargas, Rolando Rodríguez, and Hervé Piégay
Proc. IAHS, 385, 189–196, https://doi.org/10.5194/piahs-385-189-2024, https://doi.org/10.5194/piahs-385-189-2024, 2024
Short summary
Short summary
Automated morphological characterization of river systems using the South Rivers Toolbox provides valuable information on river behavior, helps quantify fluvial changes, improves model accuracy, and contributes to the management and restoration of river systems. It also provides a conceptual and working framework for understanding the complexity of the fluvial continuum, in addition to its usefulness as an important support tool for other important issues, such as flood risk assessment.
Fanny Arnaud, Lalandy Sehen Chanu, Jules Grillot, Jérémie Riquier, Hervé Piégay, Dad Roux-Michollet, Georges Carrel, and Jean-Michel Olivier
Earth Syst. Sci. Data, 13, 1939–1955, https://doi.org/10.5194/essd-13-1939-2021, https://doi.org/10.5194/essd-13-1939-2021, 2021
Short summary
Short summary
This article provides a database of 350 cartographic and topographic resources on the 530-km-long French Rhône River, compiled from the 17th to mid-20th century in 14 national, regional, and departmental archive services. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and sustainable river management and restoration, as well as permitting comparisons of channel changes with other human-impacted rivers worldwide.
Oleksandra O. Shumilova, Alexander N. Sukhodolov, George S. Constantinescu, and Bruce J. MacVicar
Earth Syst. Sci. Data, 13, 1519–1529, https://doi.org/10.5194/essd-13-1519-2021, https://doi.org/10.5194/essd-13-1519-2021, 2021
Short summary
Short summary
Obstructions (vegetation and/or boulders) located on a riverbed alter flow structure and affect riverbed morphology and biodiversity. We studied flow dynamics around obstructions by carrying out experiments in a gravel-bed river. Flow rates, size, submergence and solid fractions of the obstructions were varied in a set of 30 experimental runs, in which high-resolution patterns of mean and turbulent flow were obtained. For an introduction to the experiments see: https://youtu.be/5wXjvzqxONI.
Cited articles
Abbe, T. B. and Montgomery, D. R.: Patterns and processes of wood debris
accumulation in the Queets river basin, Washington, Geomorphology, 51,
81–107, https://doi.org/10.1016/S0169-555X(02)00326-4, 2003.
Ali, I. and Tougne, L.: Unsupervised Video Analysis for Counting of Wood in
River during Floods, in: Advances in Visual Computing, vol. 5876, edited by:
Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola,
R., Lindstrom, P., Hinkenjann, A., Encarnação, M. L., Silva, C. T.,
and Coming, D., Springer Berlin Heidelberg, Berlin, Heidelberg, 578–587,
https://doi.org/10.1007/978-3-642-10520-3_55, 2009.
Ali, I., Mille, J., and Tougne, L.: Wood detection and tracking in videos of
rivers, in: Scandinavian Conference on Image Analysis, 646–655, Berlin, https://doi.org/10.1007/978-3-642-21227-7_60, Heidelberg, 2011.
Ali, I., Mille, J., and Tougne, L.: Space–time spectral model for object
detection in dynamic textured background, Pattern Recogn. Lett., 33, 1710–1716, https://doi.org/10.1016/j.patrec.2012.06.011, 2012.
Ali, I., Mille, J., and Tougne, L.: Adding a rigid motion model to
foreground detection: application to moving object detection in rivers, Pattern Anal. Appl., 17,
567–585, https://doi.org/10.1007/s10044-013-0346-6, 2014.
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014.
Benacchio, V., Piégay, H., Buffin-Belanger, T., Vaudor, L., and Michel,
K.: Automatioc imagery analysis to monitor wood flux in rivers (Rhône
River, France), Third International Conference on Wood in World Rivers, available at: https://halshs.archives-ouvertes.fr/halshs-01618826 (last access: 2 June 2021), 2015.
Benacchio, V., Piégay, H., Buffin-Bélanger, T., and Vaudor, L.: A
new methodology for monitoring wood fluxes in rivers using a ground camera:
Potential and limits, Geomorphology, 279, 44–58,
https://doi.org/10.1016/j.geomorph.2016.07.019, 2017.
Boivin, M., Buffin-Bélanger, T., and Piégay, H.: The raft of the
Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping
most of the wood transported from the catchment, Geomorphology, 231,
270–280, https://doi.org/10.1016/j.geomorph.2014.12.015, 2015.
Boivin, M., Buffin-Bélanger, T., and Piégay, H.: Interannual
kinetics (2010–2013) of large wood in a river corridor exposed to a 50-year
flood event and fluvial ice dynamics, Geomorphology, 279, 59–73,
https://doi.org/10.1016/j.geomorph.2016.07.010, 2017.
Braudrick, C. A. and Grant, G. E.: When do logs move in rivers?, Water
Resour. Res., 36, 571–583, https://doi.org/10.1029/1999WR900290, 2000.
Cerutti, G., Tougne, L., Vacavant, A., and Coquin, D.: A parametric active
polygon for leaf segmentation and shape estimation, in: International
symposium on visual computing, Las Vegas, United States, 202–213, 2011.
Cerutti, G., Tougne, L., Mille, J., Vacavant, A., and Coquin, D.:
Understanding leaves in natural images–a model-based approach for tree
species identification, Comput. Vis. Image Und. 117, 1482–1501, https://doi.org/10.1016/j.cviu.2013.07.003, 2013.
Comiti, F., Andreoli, A., Lenzi, M. A., and Mao, L.: Spatial density and
characteristics of woody debris in five mountain rivers of the Dolomites
(Italian Alps), Geomorphology, 78, 44–63, https://doi.org/10.1016/j.geomorph.2006.01.021, 2006.
ComputerVisionToolboxTM: The MathWorks, Inc., Natick, Massachusetts, United
States., Release 2017b.
De Cicco, P. N., Paris, E., Ruiz-Villanueva, V., Solari, L., and Stoffel,
M.: In-channel wood-related hazards at bridges: A review: In-channel
wood-related hazards at bridges: A review, River Res. Applic., 34, 617–628,
https://doi.org/10.1002/rra.3300, 2018.
Forsyth, D. and Ponce, J.: Computer vision: a modern approach, 2nd ed.,
Pearson, Boston, 1 pp., 2012.
Ghaffarian, H., Piégay, H., Lopez, D., Rivière, N., MacVicar, B.,
Antonio, A., and Mignot, E.: Video-monitoring of wood discharge: first
inter-basin comparison and recommendations to install video cameras, Earth Surf. Proc. Land., 45,
2219–2234, https://doi.org/10.1002/esp.4875, 2020.
Gordo, A., Almazán, J., Revaud, J., and Larlus, D.: Deep Image Retrieval: Learning Global Representations for Image Search, in: Computer Vision – ECCV 2016, ECCV 2016, Lecture Notes in Computer Science, edited by: Leibe, B., Matas, J., Sebe, N., and Welling, M., vol 9910, Springer, Cham, https://doi.org/10.1007/978-3-319-46466-4_15, 2016.
Gregory, S., Boyer, K. L., and Gurnell, A. M.: Ecology and management of
wood in world rivers, in: International Conference of Wood in World Rivers, 2000, Corvallis, Oregon, 2003.
Gurnell, A. M., Piégay, H., Swanson, F. J., and Gregory, S. V.: Large
wood and fluvial processes, Freshwater Biol., 47, 601–619,
https://doi.org/10.1046/j.1365-2427.2002.00916.x, 2002.
Haga, H., Kumagai, T., Otsuki, K., and Ogawa, S.: Transport and retention of
coarse woody debris in mountain streams: An in situ field experiment of log
transport and a field survey of coarse woody debris distribution: coarse
woody debris in mountain streams, Water Resour. Res., 38, 1-1–1-16,
https://doi.org/10.1029/2001WR001123, 2002.
Jacobson, P. J., Jacobson, K. M., Angermeier, P. L., and Cherry, D. S.:
Transport, retention, and ecological significance of woody debris within a
large ephemeral river, Water Resour. Res., 18, 429–444, 1999.
Keller, E. A. and Swanson, F. J.: Effects of large organic material on
channel form and fluvial processes, Earth Surf. Process., 4, 361–380,
https://doi.org/10.1002/esp.3290040406, 1979.
Kramer, N. and Wohl, E.: Estimating fluvial wood discharge using time-lapse
photography with varying sampling intervals, Earth Surf. Proc. Land., 39, 844–852, 2014.
Kramer, N., Wohl, E., Hess-Homeier, B., and Leisz, S.: The pulse of
driftwood export from a very large forested river basin over multiple time
scales, Slave River, Canada, 53, 1928–1947, 2017.
Lassettre, N. S., Piégay, H., Dufour, S., and Rollet, A.-J.: Decadal
changes in distribution and frequency of wood in a free meandering river,
the Ain River, France, Earth Surf. Proc. Land., 33, 1098–1112, https://doi.org/10.1002/esp.1605,
2008.
Lejot, J., Delacourt, C., Piégay, H., Fournier, T., Trémélo,
M.-L., and Allemand, P.: Very high spatial resolution imagery for channel
bathymetry and topography from an unmanned mapping controlled platform, Earth Surf. Proc. Land., 32,
1705–1725, 2007.
Lemaire, P., Piegay, H., MacVicar, B., Mouquet-Noppe, C., and Tougne, L.:
Automatically monitoring driftwood in large rivers: preliminary results, in:
2014 AGU Fall Meeting, San Francisco, 15–19 December 2014.
Lienkaemper, G. W. and Swanson, F. J.: Dynamics of large woody debris in
streams in old-growth Douglas-fir forests, Can. J. Forest Res., 150–156, https://doi.org/10.1139/x87-02717, 1987.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and
Pietikäinen, M.: Deep learning for generic object detection: A survey,
Int. J. Comput. Vision, 128, 261–318, https://doi.org/10.1007/s11263-019-01247-4, 2020.
Lucía, A., Comiti, F., Borga, M., Cavalli, M., and Marchi, L.: Dynamics of large wood during a flash flood in two mountain catchments, Nat. Hazards Earth Syst. Sci., 15, 1741–1755, https://doi.org/10.5194/nhess-15-1741-2015, 2015.
Lyn, D., Cooper, T., and Yi, Y.-K.: Debris accumulation at bridge crossings:
laboratory and field studies, Purdue University, West Lafayette, Indiana,
https://doi.org/10.5703/1288284313171, 2003.
MacVicar, B. and Piégay, H.: Implementation and validation of video
monitoring for wood budgeting in a wandering piedmont river, the Ain River
(France), Earth Surf. Process. Landforms, 37, 1272–1289,
https://doi.org/10.1002/esp.3240, 2012.
MacVicar, B. J., Piégay, H., Henderson, A., Comiti, F., Oberlin, C., and
Pecorari, E.: Quantifying the temporal dynamics of wood in large rivers:
field trials of wood surveying, dating, tracking, and monitoring techniques,
Earth Surf. Process. Landforms, 34, 2031–2046,
https://doi.org/10.1002/esp.1888, 2009a.
MacVicar, B. J., Piégay, H., Tougne, L., and Ali, I.: Video monitoring
of wood transport in a free-meandering piedmont river, 2009, H54A-05, AGU, San Francisco, United States, 2009b.
Mao, L. and Comiti, F.: The effects of large wood elements during an extreme
flood in a small tropical basin of Costa Rica, 67, 225–236, Debris Flow,
Milan, Italy, https://doi.org/10.2495/DEB100191, 2010.
Marcus, W. A., Marston, R. A., Colvard Jr., C. R., and Gray, R. D.: Mapping
the spatial and temporal distributions of woody debris in streams of the
Greater Yellowstone Ecosystem, USA, Geomorphology, 44, 323–335, https://doi.org/10.1016/S0169-555X(01)00181-7, 2002.
Marcus, W. A., Legleiter, C. J., Aspinall, R. J., Boardman, J. W., and
Crabtree, R. L.: High spatial resolution hyperspectral mapping of in-stream
habitats, depths, and woody debris in mountain streams, Geomorphology, 55, 363–380, https://doi.org/10.1016/S0169-555X(03)00150-8, 2003.
Martin, D. J. and Benda, L. E.: Patterns of Instream Wood Recruitment and
Transport at the Watershed Scale, T. Am. Fish. Soc., 130, 940–958,
https://doi.org/10.1577/1548-8659(2001)130<0940:POIWRA>2.0.CO;2, 2001.
Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B.,
Gschnitzer, T., Mao, L., Iroumé, A., and Valdebenito, G.: Assessing and
mitigating large wood-related hazards in mountain streams: recent
approaches: Assessing and mitigating LW-related hazards in mountain streams,
J. Flood Risk Manag., 11, 207–222, https://doi.org/10.1111/jfr3.12316,
2018.
Moulin, B. and Piegay, H.: Characteristics and temporal variability of large
woody debris trapped in a reservoir on the River Rhone(Rhone): implications
for river basin management, River Res. Applic., 20, 79–97,
https://doi.org/10.1002/rra.724, 2004.
Muste, M., Fujita, I., and Hauet, A.: Large-scale particle image velocimetry
for measurements in riverine environments, Water Resour. Res., 44, W00D19, https://doi.org/10.1029/2008WR006950, 2008.
Ravazzolo, D., Mao, L., Picco, L., and Lenzi, M. A.: Tracking log
displacement during floods in the Tagliamento River using RFID and GPS
tracker devices, Geomorphology, 228, 226–233,
https://doi.org/10.1016/j.geomorph.2014.09.012, 2015.
Roussillon, T., Piégay, H., Sivignon, I., Tougne, L., and Lavigne, F.:
Automatic computation of pebble roundness using digital imagery and discrete
geometry, Comput. Geosci., 35, 1992–2000, https://doi.org/10.1016/j.cageo.2009.01.013, 2009.
Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, A., and Bladé,
E.: Large wood transport as significant influence on flood risk in a
mountain village, Nat. Hazards, 74, 967–987, https://doi.org/10.1007/s11069-014-1222-4, 2014.
Ruiz-Villanueva, V., Piégay, H., Gurnell, A. M., Marston, R. A., and
Stoffel, M.: Recent advances quantifying the large wood dynamics in river
basins: New methods and remaining challenges: Large Wood Dynamics, Rev.
Geophys., 54, 611–652, https://doi.org/10.1002/2015RG000514, 2016.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L.,
Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D.,
Sanz-Ramos, M., Stoffel, M., and Wohl, E.: Characterization of wood-laden
flows in rivers: wood-laden flows, Earth Surf. Process. Landforms, 44,
1694–1709, https://doi.org/10.1002/esp.4603, 2019.
Schenk, E. R., Moulin, B., Hupp, C. R., and Richter, J. M.: Large wood
budget and transport dynamics on a large river using radio telemetry, Earth
Surf. Process. Landforms, 39, 487–498, https://doi.org/10.1002/esp.3463,
2014.
Senter, A., Pasternack, G., Piégay, H., and Vaughan, M.: Wood export
prediction at the watershed scale, Earth Surf. Proc. Land., 42, 2377–2392,
https://doi.org/10.1002/esp.4190, 2017.
Senter, A. E. and Pasternack, G. B.: Large wood aids spawning Chinook salmon
(Oncorhynchus tshawytscha) in marginal habitat on a regulated river in
California, River Res. Appl., 27, 550–565, https://doi.org/10.1002/rra.1388, 2011.
Seo, J. I. and Nakamura, F.: Scale-dependent controls upon the fluvial
export of large wood from river catchments, Earth Surf. Proc. Land.,
34, 786–800, https://doi.org/10.1002/esp.1765, 2009.
Seo, J. I., Nakamura, F., Nakano, D., Ichiyanagi, H., and Chun, K. W.:
Factors controlling the fluvial export of large woody debris, and its
contribution to organic carbon budgets at watershed scales, Water Resour. Res., 44, https://doi.org/10.1029/2007WR006453, 2008.
Seo, J. I., Nakamura, F., and Chun, K. W.: Dynamics of large wood at the
watershed scale: a perspective on current research limits and future
directions, Landsc. Ecol. Eng., 6, 271–287, https://doi.org/10.1007/s11355-010-0106-3, 2010.
Turowski, J. M., Badoux, A., Bunte, K., Rickli, C., Federspiel, N., and Jochner, M.: The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream, Earth Surf. Dynam., 1, 1–11, https://doi.org/10.5194/esurf-1-1-2013, 2013.
Viola, P. A. and Jones, M. J.: Object recognition system, J. Acoust. Soc. Am., https://doi.org/10.1121/1.382198, 2006.
Warren, D. R. and Kraft, C. E.: Dynamics of large wood in an eastern US
mountain stream, Forest Ecol. Manage., 256, 808–814, https://doi.org/10.1016/j.foreco.2008.05.038, 2008.
Wohl, E.: Floodplains and wood, Earth Sci. Rev., 123, 194–212, https://doi.org/10.1016/j.earscirev.2013.04.009, 2013.
Wohl, E. and Scott, D. N.: Wood and sediment storage and dynamics in river
corridors, Earth Surf. Proc. Land., 42, 5–23, https://doi.org/10.1002/esp.3909, 2017.
Zevenbergen, L. W., Lagasse, P. F., Clopper, P. E., and Spitz, W. J.: Effects of Debris on Bridge Pier Scour, in: Proceedings 3rd International Conference on Scour and Erosion (ICSE-3), 1–3 November 2006, Amsterdam, The Netherlands, Gouda (NL): CURNET. S., 741–749, 2006.
Zhang, Z., Ghaffarian, H., MacVicar, B., Vaudor, L., Antonio, A., Michel,
K., and Piégay, H.: Video monitoring of in-channel wood: From flux
characterization and prediction to recommendations to equip stations, Earth Surf. Proc. Land., 46, 822–836, https://doi.org/10.1002/esp.5068, 2021.
Short summary
Quantifying wood fluxes in rivers would improve our understanding of the key processes in river ecology and morphology. In this work, we introduce new software for the automatic detection of wood pieces in rivers. The results show 93.5 % and 86.5 % accuracy for piece number and volume, respectively.
Quantifying wood fluxes in rivers would improve our understanding of the key processes in river...