Articles | Volume 9, issue 4
https://doi.org/10.5194/esurf-9-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Archéorient, Maison de l'Orient et de la Méditerranée,
University of Lyon 2, 69365 Lyon, France
Jane Kathrin Willenbring
Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
Tristan Salles
School of Geosciences, University of Sydney, Camperdown, Australia
Michael Cosca
US Geological Survey, Denver Federal Center, Denver, CO 80225, USA
Axel Guttiérez-Orrego
Carrera de Geología, Universitad San Carlos de Guatemala,
Centro Universitario del Noreste, 16001 Cobán, Guatemala
Noé Cacao Chiquín
Carrera de Geología, Universitad San Carlos de Guatemala,
Centro Universitario del Noreste, 16001 Cobán, Guatemala
Sergio Morán-Ical
Carrera de Geología, Universitad San Carlos de Guatemala,
Centro Universitario del Noreste, 16001 Cobán, Guatemala
Christian Teyssier
Department of Earth Sciences, University of Minnesota, Minneapolis,
MN 55455, USA
Related authors
No articles found.
Beatriz Hadler Boggiani, Tristan Salles, Claire Mallard, and Nicholas Atwood
Earth Surf. Dynam., 13, 683–704, https://doi.org/10.5194/esurf-13-683-2025, https://doi.org/10.5194/esurf-13-683-2025, 2025
Short summary
Short summary
We studied how erosion and tectonic forces can affect the exposure and preservation of copper deposits formed in subduction zones in the past 65 Myr. We used a global model that simulates landscape changes over time based on climate and elevation changes. Our findings show that climate is more important in preserving or exposing copper deposits than previously described. We help improve methods for locating copper deposits, offering new insights for mineral exploration.
Yinbing Zhu, Patrice Rey, and Tristan Salles
EGUsphere, https://doi.org/10.5194/egusphere-2025-1585, https://doi.org/10.5194/egusphere-2025-1585, 2025
Short summary
Short summary
We use computer models to study how landscapes respond to changes in rainfall and tectonic uplift. We find that rainfall rate changes produce unique slope change reversals near the headwaters, which differ from the simpler responses caused by uplift rate changes. These reversals are more pronounced when hillslope diffusion is dominant. These findings help us understand how climate and tectonic forcing shape the landscape differently and may allow scientists to tell their effects apart in nature.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89, https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary
Short summary
Using landscape evolution models integrating mantle dynamics, climate, eustatism and surface processes, we break down a previous idea that considers mantle flow as the main driver of the pulse of sedimentation in the Orange Basin, SA, over the last 30 Ma. Instead, climate impact seems to be a predominant mechanism. We also show that sediment flux and landscape evolution in the region is the product of interlinked processes accounting for both lithology variations, mantle dynamics and climate.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Nathan J. Lyons, Pedro Val, James S. Albert, Jane K. Willenbring, and Nicole M. Gasparini
Earth Surf. Dynam., 8, 893–912, https://doi.org/10.5194/esurf-8-893-2020, https://doi.org/10.5194/esurf-8-893-2020, 2020
Short summary
Short summary
Organisms evolve in ever-changing environments under complex process interactions. We applied a new software modelling tool to assess how changes in river course impact the evolution of riverine species. Models illustrate the climatically and tectonically forced landscape changes that can drive riverine biodiversity, especially where topographic relief is low. This research demonstrates that river course changes can contribute to the high riverine biodiversity found in real-world lowland basins.
Cited articles
Anderson, T. H., Burkart, B., Clemons, R. E., Bohnenberger, O. H., and Blount, D. N.: Geology of the Western Altos de Cuchumatanes, Northwestern Guatemala, Geol. Soc. Am. Bull., 84, 805–826, https://doi.org/10.1130/0016-7606(1973)84<805:gotwac>2.0.co;2, 1973.
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P.: Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment, J. Geophys. Res., 113, F03013, https://doi.org/10.1029/2007jf000893, 2008.
Authemayou, C., Brocard, G., Teyssier, C., Simon-Labric, T., Guttierrez, A., Chiquin, E. N., and Moran, S.: The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models, Tectonics, 30, TC3010, https://doi.org/10.1029/2010tc002814, 2011.
Authemayou, C., Brocard, G., Teyssier, C., Suski, B., Cosenza, B., Moran-Ical, S., Gonzalez-Veliz, C. W., Aguilar-Hengstenberg, M. A., and Holliger, K.: Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala, J. Geophys. Res.-Sol. Ea., 117, B07403, https://doi.org/10.1029/2012jb009444, 2012.
Babault, J., Van Den Driessche, J., Bonnet, S., Castelltort, S., and Crave, A.: Origin of the highly elevated Pyrenean peneplain, Tectonics, 24, TC2010, https://doi.org/10.1029/2004TC001697, 2005.
Baldwin, J. A.: Implications of the shear stress river incision model for the timescale of postorogenic decay of topography, J. Geophys. Res., 108, ETG7-1, https://doi.org/10.1029/2001jb000550, 2003.
Bartole, R., Lodolo, E., Obrist-Farner, J., and Morelli, D.: Sedimentary architecture, structural setting, and Late Cenozoic depocentre migration of an asymmetric transtensional basin: Lake Izabal, eastern Guatemala, Tectonophysics, 750, 419–433, 2019.
Baulig, H.: Peneplains and pediplains, Geol. Soc. Am. Bull., 68, 913–930, 1957.
Beaumont, C., Fullsack, P., and Hamilton, J.: Erosional control of active
compressional orogens, in: Thrust tectonics, Springer, Dordrecht, 1–18, 1992.
Bosc, E. A.: Geology of the San Agustin Acasaguastlan quadrangle and
northeastern part of El Progreso quadrangle, Guatemala, PhD thesis, Rice University, Houston, 131 pp., 1971.
Brocard, G. and Morán, S.: Phreatic clastic dikes and other degasing structures in the Los Chocoyos pumice formation, Guatemala, Revista Guatemalteca de Ciencias de la Tierra, 1, 55–65, 2014.
Brocard, G. and Van der Beek, P.: Influence of incision rate, rock strength,
and bedload supply on bedrock river gradients and valley-?at widths:
Field-based evidence and calibrations from western Alpine rivers (southeast
France), edited by: Willett, S. D. et al., Geol. Soc. Am. Spec. Pap., 398, 101–126, 2006.
Brocard, G., Teyssier, C., Dunlap, W. J., Authemayou, C., Simon-Labric, T., Cacao-Chiquin, E. N., Gutierrez-Orrego, A., and Moran-Ical, S.: Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow, Basin Res., 23, 631–651, https://doi.org/10.1111/j.1365-2117.2011.00510.x, 2011.
Brocard, G., Willenbring, J., Suski, B., Audra, P., Authemayou, C., Cosenza-Muralles, B., Moran-Ical, S., Demory, F., Rochette, P., Vennemann, T., Holliger, K., and Teyssier, C.: Rate and processes of river network rearrangement during incipient faulting: The case of the cahabon river, guatemala, Am. J. Sci., 312, 449–507, https://doi.org/10.2475/05.2012.01, 2012.
Brocard, G., Morán, S., Dura, T., and Vásquez, O.: The Plio-Pleistocene lacustrine Jolom Naj Formation of Cobán, Alta Verapaz: implications for the growth and demise of the Cahabón River network, Guatemala, Revista Guatemalteca de Ciencias de la Tierra, 2, 45–56, 2015a.
Brocard, G. Y., Willenbring, J. K., Scatena, F. N., and Johnson, A. H.: Effects of a tectonically-triggered wave of incision on riverine exports and soil mineralogy in the Luquillo Mountains of Puerto Rico, Appl. Geochem., 63, 586–598, 2015b.
Brocard, G., Morán, S., Jared Vasquez, O., and Fernandez, M.: Natural hazard associated with the genesis of Lake Chichoy, Alta Verapaz, Guatemala, Revista Guatemalteca de Ciencias de la Tierra, 3, 5–19, 2016a.
Brocard, G. Y., Willenbring, J. K., Miller, T. E., and Scatena, F. N.: Relict landscape resistance to dissection by upstream migrating knickpoints, J. Geophys. Res.-Earth, 121, 1182–1203, 2016b.
Brown, E., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and
Yiou, F.: Denudation rates determined from the accumulation of in-situ
produced 10Be in the Luquillo experimental forest, Puerto Rico, Earth Planet. Sc. Lett., 129, 193–202, https://doi.org/10.1016/0012-821x(94)00249-x, 1995.
Bucknam, R. C., Coe, J. A., Chavarría, M. M., Godt, J. W., Tarr, A. C., Bradley, L.-A., Rafferty, S., Hancock, D., Dart, R. L., and Johnson, M. L.: Landslides triggered by Hurricane Mitch in Guatemala–inventory and discussion, US Geological Survey Open File Report, 1, 2001.
Burkart, B.: Offset across the Polochic fault of Guatemela and Chiapas, Mexico Geology, 6, 328–332, https://doi.org/10.1130/0091-7613(1978)6<328:oatpfo>2.0.co;2, 1978.
Callahan, R. P., Ferrier, K. L., Dixon, J., Dosseto, A., Hahm, W. J., Jessup, B. S., Miller, S. N., Hunsaker, C. T., Johnson, D. W., and Sklar, L. S.: Arrested development: Erosional equilibrium in the southern Sierra Nevada, California, maintained by feedbacks between channel incision and hillslope sediment production, Geol. Soc. Am. Bull., 131, 1179–1202, 2019.
Calvet, M., Gunnell, Y., and Farines, B.: Flat-topped mountain ranges: Their global distribution and value for understanding the evolution of mountain topography, Geomorphology, 241, 255–291, 2015.
Carballo-Hernandez, M., Banks, N., Franco-Austin, J., and Lopez-Aguilar, L.:
Cuenca Amatique, Guatemala: Una Cuenca Transtencional al Sur del Limite de
Placas NorteAmericana–Caribe, Paper Presented at Congreso Geologico Chileno,
8–12 August 1988, Santiago, Chile, 1988.
Champel, B., van der Beek, P., Mugnier, J. L., and Leturmy, P.: Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature, J. Geophys. Res.-Sol. Ea., 107, 2111, https://doi.org/10.1029/2001jb000578, 2002.
Clarke, B. A. and Burbank, D. W.: Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides, Earth Planet. Sc. Lett., 297, 577–586, https://doi.org/10.1016/j.epsl.2010.07.011, 2010.
Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G., Tucker, G. E., and Ganas, A.: New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic signals from river profiles, Geology, 36, 535–538, https://doi.org/10.1130/g24681a.1, 2008.
Crosby, B. T. and Whipple, K. X.: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand, Geomorphology, 82, 16–38, https://doi.org/10.1016/j.geomorph.2005.08.023, 2006.
Deaton, B. C. and Burkart, B.: Time of sinistral slip along the
Polochic fault of Guatemala Tectonophysics, 102, 297–313, https://doi.org/10.1016/0040-1951(84)90018-0, 1984.
Ferrier, K. L., Kirchner, J. W., Riebe, C. S., and Finkel, R. C.: Mineral-specific chemical weathering rates over millennial timescales: Measurements at Rio Icacos, Puerto Rico, Chem. Geol., 277, 101–114, https://doi.org/10.1016/j.chemgeo.2010.07.013, 2010.
Ferrier, K. L., Perron, J. T., Mukhopadhyay, S., Rosener, M., Stock, J. D., Huppert, K. L., and Slosberg, M.: Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua `i, Geol. Soc. Am. Bull., 125, 1146–1163, 2013.
Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Yuping, L.: Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet, Geol. Soc. Am. Bull., 120, 142–155, https://doi.org/10.1130/b26224.1, 2008.
Flores, K. E., Martens, U. C., Harlow, G. E., Brueckner, H. K., and Pearson, N. J.: Jadeitite formed during subduction: In situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone, Earth Planet. Sc. Lett., 371–372, 67–81, https://doi.org/10.1016/j.epsl.2013.04.015, 2013.
Fourcade, E., Mendez, J., Azema, J., Cros, P., Dewever, P., Duthou, J. L., Romero, J. E., and Michaud, F.: Pre-Santonian Campanian age for the obdcution of the Guatemalan ophiolites, C. R. Acad. Sci. II, 318, 527–533, 1994.
Galewsky, J.: Rain shadow development during the growth of mountain ranges: An atmospheric dynamics perspective, J. Geophys. Res.-Earth, 114, F001085, https://doi.org/10.1029/2008JF001085, 2009.
Garcia-Castellanos, D.: The role of climate during high plateau formation. Insights from numerical experiments, Earth Planet. Sc. Lett., 257, 372–390, 2007.
Gardner, T. W.: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material, Geol. Soc. Am. Bull., 94, 664, https://doi.org/10.1130/0016-7606(1983)94<664:esokal>2.0.co;2, 1983.
Goldrick, G. and Bishop, P.: Differentiating the roles of lithology and uplift in the steepening of bedrock river long profiles: an example from southeastern Australia, J. Geol., 103, 227–231, 1995.
Gould, W. A., Alarcón, C., Fevold, B., Jiménez, M. E., Martinuzzi, S.,
Potts, G., Quiñones, M., Solórzano, M., and Ventosa, E.: The Puerto
Rico Gap Analysis Project volume 1: land cover, vertebrate species
distributions, and land stewardship, Gen. Tech. Rep. IITF-39, 1,
US Dept. Agric. For. Serv. Int. Inst. Trop. For. Río Piedras, Puerto Rico, 2008.
Guttiérrez, A.: Caracterización de conglomerados y areniscas en la formación Subinal, en el suroriente del país, University San Carlos de Guatemala, 90, 2008.
Guzmán-Speziale, M.: Beyond the Motagua and Polochic faults: Active strike-slip faulting along the Western North America–Caribbean plate boundary zone, Tectonophysics, 496, 17–27, https://doi.org/10.1016/j.tecto.2010.10.002, 2010.
Harp, E. L., Wilson, R. C., and Wieczorek, G. F.: Landslides from the February 4, 1976, Guatemala earthquake, US Government Printing Office, Washington, DC, 1981.
Harvey, A. M.: Effective timescales of coupling within fluvial systems, Geomorphology, 44, 175–201, 2002.
Hirschman, T.: Reconnaissance geology of part of the Department of El Progreso, Guatemala: Unpub, Master's thesis, Univ. Indiana, 1962.
Holder, C. D.: Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala, Forest Ecol. Manag., 190, 373–384, https://doi.org/10.1016/j.foreco.2003.11.004, 2004.
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, 1994.
Howard, A. D.: Badland morphology and evolution: Interpretation using a simulation model, Earth Surf. Proc. Land., 22, 211–227, 1997.
Humphrey, N. F. and Heller, P. L.: Natural oscillations in coupled geomorphic systems: An alternative origin for cyclic sedimentation, Geology, 23, 499, https://doi.org/10.1130/0091-7613(1995)023<0499:noicgs>2.3.co;2, 1995.
Jackson, J., Ritz, J. F., Siame, L., Raisbeck, G., Yiou, F., Norris, R., Youngson, J., and Bennett, E.: Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be, Earth Planet. Sc. Lett., 195, 185–193, https://doi.org/10.1016/s0012-821x(01)00583-0, 2002.
Kirby, E.: Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, J. Geophys. Res., 108, 2217, https://doi.org/10.1029/2001jb000861, 2003.
Lachniet, M. S. and Vazquez-Selem, L.: Last Glacial Maximum equilibrium line altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela), Quatern. Int., 138–139, 129–144, https://doi.org/10.1016/j.quaint.2005.02.010, 2005.
Leland, J., Reid, M. R., Burbank, D. W., Finkel, R., and Caffee, M.: Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths, Earth Planet. Sc. Lett., 154, 93–107, https://doi.org/10.1016/s0012-821x(97)00171-4, 1998.
Liang, Z., Liu, H., Zhao, Y., Wang, Q., Wu, Z., Deng, L., and Gao, H.: Effects of rainfall intensity, slope angle, and vegetation coverage on the erosion characteristics of Pisha sandstone slopes under simulated rainfall conditions, Environ. Sci. Pollut. Res., 27, 17458–17467, 2020.
Machorro, R.: Drought assessment in the Dry Corridor of Guatemala, Earth Science Review of Guatemala, 1, 11, 2014.
MARN – Ministerio de Ambiente y Recursos Naturales: Informe ambiental del Estado 2016 – Guatemala, Guatemala, 138 pp., 2016.
McAdams, B. C., Trierweiler, A. M., Welch, S. A., Restrepo, C., and Carey, A. E.: Two sides to every range: orographic influences on CO2 consumption by silicate weathering, Appl. Geochem., 63, 472–483, 2015.
Meijers, M. J., Brocard, G. Y., Cosca, M. A., Lüdecke, T., Teyssier, C., Whitney, D. L., and Mulch, A.: Rapid late Miocene surface uplift of the Central Anatolian Plateau margin, Earth Planet. Sc. Lett., 497, 29–41,
https://doi.org/10.1016/j.epsl.2018.05.040, 2018.
Merritts, D. J., Vincent, K. R., and Wohl, E. E.: Long river profiles, tectonism, and eustasy – a guide to interpreting fluxial terraces, J. Geophys. Res.-Sol. Ea., 99, 14031–14050, https://doi.org/10.1029/94jb00857, 1994.
Montgomery, D. R. and Stolar, D. B.: Reconsidering Himalayan river anticlines, Geomorphology, 82, 4–15, https://doi.org/10.1016/j.geomorph.2005.08.021, 2006.
Mudd, S. M. and Furbish, D. J.: Responses of soil-mantled hillslopes to transient channel incision rates, J. Geophys. Res.-Earth, 112, F03S18, https://doi.org/10.1029/2006JF000516, 2007.
Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A.: A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis, J. Geophys. Res.-Earth, 119, 138–152, 2014.
Muller, P. D.: Geology of the Los Amates quadrangle and vicinity, Guatemala,
Central America, State University of NY, New York, 1979.
Murphy, B. P., Johnson, J. P., Gasparini, N. M., and Sklar, L. S.: Chemical weathering as a mechanism for the climatic control of bedrock river incision, Nature, 532, 223–227, https://doi.org/10.1038/nature17449, 2016.
Neely, A. B. and DiBiase, R. A.: Drainage Area, Bedrock Fracture Spacing, and Weathering Controls on Landscape-Scale Patterns in Surface Sediment Grain Size, J. Geophys. Res.-Earth, 125, e2020JF005560, https://doi.org/10.1002/essoar.10502617.1, 2020.
Newcomb, W. E.: Geology, Structure and Metamorphism of the Chuacus Group, Rio Hondo Quadrangle and Vicinity, Guatemala, State University of New York, Binghamton, 1975.
Ortega-Gutierrez, F., Solari, L. A., Sole, J., Martens, U., Gomez-Tuena, A., Moran-Ical, S., Reyes-Salas, M., and Ortega-Obregon, C.: Polyphase, high-temperature eclogite-facies metamorphism in the Chuacus Complex, Central Guatemala: Petrology, geochronology, and tectonic implications, Int. Geol. Rev., 46, 445–470, https://doi.org/10.2747/0020-6814.46.5.445, 2004.
Ortega-Obregón, C., Solari, L., Keppie, J., Ortega-Gutiérrez, F., Solé, J., and Morán-Ical, S.: Middle-Late Ordovician magmatism and Late Cretaceous collision in the southern Maya block, Rabinal-Salamá area, central Guatemala: implications for North America–Caribbean plate tectonics, Geol. Soc. Am. Bull., 120, 556–570, 2008.
Pain, C. and Ollier, C.: Inversion of relief – a component of landscape evolution, Geomorphology, 12, 151–165, 1995.
Pelletier, J. D.: How do pediments form?: A numerical modeling investigation with comparison to pediments in southern Arizona, USA, Geol. Soc. Am. Bull., 122, 1815–1829, https://doi.org/10.1130/b30128.1, 2010.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Ramos Scharrón, C. E., Castellanos, E. J., and Restrepo, C.: The transfer of modern organic carbon by landslide activity in tropical montane ecosystems, J. Geophys. Res., 117, G03016, https://doi.org/10.1029/2011jg001838, 2012.
Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., Stubner, K., Nelson, B. K., Herrmann, U., Weber, B., Lopez-Martinez, M., Jonckheere, R., Sperner, B., Tichomirowa, M., McWilliams, M. O., Gordon, M., Meschede, M., and Bock, P.: The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras, Geological Society, London, Special Publications, 328, 219–293, https://doi.org/10.1144/sp328.11, 2009.
Riebe, C. S., Sklar, L. S., Lukens, C. E., and Shuster, D. L.:
Climate and topography control the size and flux of sediment produced on steep mountain slopes, P. Natl. Acad. Sci. USA, 112, 15574–15579, 2015.
Rogers, R. D. and Mann, P.: Transtensional deformation of the western Caribbean–North America plate boundary zone, Geol. Soc. Am. Spec. Pap., 428, 37–64, 2007.
Roper, P.: Stratigraphy of the Chuacu's Group on the south side of the Sierra de las Minas range, Guatemala, Geol. Mijn, 57, 309–313, 1978.
Rose, W. I., Newhall, C. G., Bornhorst, T. J., and Self, S.: Quaternary silicic pyroclastic deposits of atitlan caldera, Guatemala, J. Volcanol. Geoth. Res., 33, 57–80, https://doi.org/10.1016/0377-0273(87)90054-0, 1987.
Rosenbloom, N. A. and Anderson, R. S.: Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California, J. Geophys. Res.-Sol. Ea., 99, 14013–14029, 1994.
Royden, L. and Taylor Perron, J.: Solutions of the stream power equation and application to the evolution of river longitudinal profiles, J. Geophys. Res.-Earth, 118, 497–518, 2013.
Sieh, K. E. and Jahns, R. H.: Holocene activity of the San Andreas fault at Wallace Creek, California, Geol. Soc. Am. Bull., 95, 883, https://doi.org/10.1130/0016-7606(1984)95<883:haotsa>2.0.co;2, 1984.
Simon-Labric, T., Brocard, G. Y., Teyssier, C., van der Beek, P. A.,
Fellin, M. G., Reiners, P. W., and Authemayou, C.: Preservation of contrasting geothermal gradients across the Caribbean-North America plate boundary (Motagua Fault, Guatemala), Tectonics, 32, 1–18, https://doi.org/10.1002/tect.20060, 2013.
Sklar, L. S. and Dietrich, W. E.: The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation–abrasion incision model, Geomorphology, 82, 58–83, https://doi.org/10.1016/j.geomorph.2005.08.019, 2006.
Sobel, E. R., Hilley, G. E., and Strecker, M. R.: Formation of internally
drained contractional basins by aridity-limited bedrock incision,
J. Geophys. Res.-Sol. Ea., 108, 2344, https://doi.org/10.1029/2002JB001883, 2003.
Strudley, M. W., Murray, A. B., and Haff, P. K.: Emergence of pediments, tors, and piedmont junctions from a bedrock weathering–regolith thickness feedback, Geology, 34, 805, https://doi.org/10.1130/g22482.1, 2006.
Thattai, D., Kjerfve, B., and Heyman, W.: Hydrometeorology and variability of water discharge and sediment load in the inner Gulf of Honduras, western Caribbean, J. Hydrometeorol., 4, 985–995, 2003.
Thomas, M. F.: The role of etch processes in landform development. I. Etching concepts and their applications, Z. Geomorphol., 33, 129–142, 1989.
Tobisch, M. K.: Part I, late Cenozoic geology of the central Motagua Valley,
Guatemala: part II, uplift rates, deformation and neotectonics of Holocene
marine terraces from Point Delgado to Cape Mendocino, California,
PhD thesis, University of California, Ssanta Cruz, 276 pp., 1986.
Tucker, G. E. and Whipple, K.: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, J. Geophys. Res., 107, 2179, https://doi.org/10.1029/2001jb000162, 2002.
van der Beek, P., Champel, B., and Mugnier, J. L.: Control of detachment dip on drainage development in regions of active fault-propagation folding, Geology, 30, 471–474, https://doi.org/10.1130/0091-7613(2002)030<0471:coddod>2.0.co;2, 2002.
Weissel, J. K. and Seidl, M. A.: Inland propagation of erosional escarpments
and river profile evolution across the southeast Australian passive
continental margin, in: Rivers over rock: fluvial processes in bedrock
channels, Geophysical Monograph 107, American Geophysical Union, Washington, DC, 189–206, 1998.
Whipple, K. and Meade, B.: Orogen response to changes in climatic and tectonic forcing, Earth Planet. Sc. Lett., 243, 218–228, https://doi.org/10.1016/j.epsl.2005.12.022, 2006.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res., 104, 17661, https://doi.org/10.1029/1999jb900120, 1999.
Whipple, K. X. and Tucker, G. E.: Implications of sediment-flux-dependent river incision models for landscape evolution, J. Geophys. Res.-Sol. Ea., 107, 2039, https://doi.org/10.1029/2000jb000044, 2002.
Whittaker, A. C. and Boulton, S. J.: Tectonic and climatic controls on knickpoint retreat rates and landscape response times, J. Geophys. Res., 117, F02024, https://doi.org/10.1029/2011jf002157, 2012.
Willenbring, J. K., Codilean, A. T., and McElroy, B.: Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales, Geology, 41, 343–346, https://doi.org/10.1130/g33918.1, 2013a.
Willenbring, J. K., Gasparini, N. M., Crosby, B. T., and Brocard, G.: What does a mean mean? The temporal evolution of detrital cosmogenic denudation rates in a transient landscape, Geology, 41, 1215–1218, 2013b.
Willett, S. D. and Brandon, M. T.: On steady states in mountain belts, Geology, 30, 175, https://doi.org/10.1130/0091-7613(2002)030<0175:ossimb>2.0.co;2, 2002.
Williams, E. A. and McBirney, A. R.: Volcanic history of Honduras, University
of California publications in Geological Sciences, University of California, Berkeley, 85, 1–65, 1969.
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
The rise of a mountain affects the circulation of water, both in the atmosphere and over the...