Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
Risk Analysis Group, Institute of Earth Sciences, University of
Lausanne, 1015 Lausanne, Switzerland
Geohazard and Earth Observation, Geological Survey of Norway, NGU, 7040 Trondheim, Norway
Michel Jaboyedoff
Risk Analysis Group, Institute of Earth Sciences, University of
Lausanne, 1015 Lausanne, Switzerland
Andrin Caviezel
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
Clément Hibert
Institut Terre et Environnement de Strasbourg/ITES, CNRS & University of Strasbourg, 67084 Strasbourg, France
Franck Bourrier
Université Grenoble Alpes, INRAE, ETNA, 38000 Grenoble, France
Jean-Philippe Malet
Institut Terre et Environnement de Strasbourg/ITES, CNRS & University of Strasbourg, 67084 Strasbourg, France
Related authors
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024, https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025, https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
Short summary
The paper presents an explicit stabilized two-phase material point method (MPM) based on the one-point two-phase MPM scheme. The novelty of the work lies in the employment of stabilized techniques, including the strain smoothing method and the multi-field variational principle. With its effective and easy-to-implement stabilized techniques, the proposed model offers an effective and reliable approach for simulating both static and dynamic processes in solid–fluid porous media.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024, https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Short summary
The recent calving of Astrolabe Glacier in November 2021 presents an opportunity to better understand the processes leading to ice fracturing. Optical-satellite imagery is used to retrieve the calving cycle of the glacier ice tongue and to measure the ice velocity and strain rates in order to document fracture evolution. We observed that the presence of sea ice for consecutive years has favoured the glacier extension but failed to inhibit the growth of fractures that accelerated in June 2021.
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024, https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Short summary
Landslides and flash floods are rainfall-induced processes that often co-occur and interact, generally very quickly. In mountainous cloud-covered environments, determining when these processes occur remains challenging. We propose a regional methodology using open-access satellite radar images that allow for the timing of landslide and flash floods events, in the contrasting landscapes of tropical Africa, with an accuracy of up to a few days. The methodology shows potential for transferability.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Martin Franz, Michel Jaboyedoff, Ryan P. Mulligan, Yury Podladchikov, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 21, 1229–1245, https://doi.org/10.5194/nhess-21-1229-2021, https://doi.org/10.5194/nhess-21-1229-2021, 2021
Short summary
Short summary
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave dynamics and their interaction. This phenomenon threatens numerous lives and infrastructures around the world. To assess this natural hazard, we developed an efficient numerical model able to simulate the landslide, the momentum transfer and the wave all at once. The good agreement between the numerical simulations and physical experiments validates our model and its novel momentum transfer approach.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Short summary
In this work, we present an efficient and fast material point method (MPM) implementation in MATLAB. We first discuss the vectorization strategies to adapt this numerical method to a MATLAB implementation. We report excellent agreement of the solver compared with classical analysis among the MPM community, such as the cantilever beam problem. The solver achieves a performance gain of 28 compared with a classical iterative implementation.
Cited articles
Berger, F. and Dorren, L. K. A.: Objective comparison of rockfall models using real size experimental data, in: Disaster mitigation of debris flows, slope failures and landslides, Universal Academy Press. Inc., Tokyo, Japan,
245–252, ISBN 4-946443-98-3, 2006.
Berger, F., Martin, R., Auber, B., and Mathy, A.: Etude comparative, en
utilisant l'événement du 28 décembre 2008 à Saint Paul de
Varces, du zonage de l'aléa chute de pierre avec différents outils
de simulation trajectographique et différentes matrices d'aléa,
report, Cemagref, Grenoble, 226 pp., http://www.risknat.org/pages/programme_dep/projets/cemagref_epm/berger_2009b.html (last access: 10 November 2022), 2011.
Bonneau, D. A., Hutchinson, D. J., DiFrancesco, P.-M., Coombs, M., and Sala, Z.: Three-dimensional rockfall shape back analysis: methods and implications, Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019, 2019.
Boucheny, C.: Visualisation scientifique interactive de grands volumes de
données: pour une approche perceptive, PHD thesis, Université
Joseph Fourier, HAL Id: tel-00438464, version 1, 198 pp., 2009.
Bourrier, F., Berger, F., Tardif, P., Dorren, L., and Hungr, O.: Rockfall
rebound: comparison of detailed field experiments and alternative modelling
approaches, Earth Surf. Process. Landforms, 37, 656–665,
https://doi.org/10.1002/esp.3202, 2012.
Bourrier, F., Toe, D., Garcia, B., Baroth, J., and Lambert, S.: Experimental
investigations on complex block propagation for the assessment of
propagation models quality, Landslides, 18, 639–654,
https://doi.org/10.1007/s10346-020-01469-5, 2021.
C2ROP, all participants of A. 3.1: Benchmark des approches d'analyse
trajectographique par analyse comparative de simulations prédictives et
d'essais de terrain, Rev. Française Géotechnique, 12 pp.,
https://doi.org/10.1051/geotech/2020015, 2020.
Caviezel, A., Demmel, S. E., Ringenbach, A., Bühler, Y., Lu, G., Christen, M., Dinneen, C. E., Eberhard, L. A., von Rickenbach, D., and Bartelt, P.: Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes, Earth Surf. Dynam., 7, 199–210, https://doi.org/10.5194/esurf-7-199-2019, 2019.
Caviezel, A., Demmel, S. E., Bühler, Y., Ringenbach, A., Christen, M.,
and Bartelt, P.: Induced Rockfall Dataset #2 (Chant Sura Experimental
Campaign), Flüelapass, Grisons, Switzerland, Envidat [data set],
https://doi.org/10.16904/envidat.174, 2020.
Caviezel, A., Ringenbach, A., Demmel, S. E., Dinneen, C. E., Krebs, N.,
Bühler, Y., Christen, M., Meyrat, G., Stoffel, A., Hafner, E., Eberhard,
L. A., von Rickenbach, D., Simmler, K., Mayer, P., Niklaus, P. S., Birchler,
T., Aebi, T., Cavigelli, L., Schaffner, M., Rickli, S., Schnetzler, C.,
Magno, M., Benini, L., and Bartelt, P.: The relevance of rock shape over
mass—implications for rockfall hazard assessments, Nat. Commun., 12, 5546,
https://doi.org/10.1038/s41467-021-25794-y, 2021.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and
Ranzuglia, G.: MeshLab: An open-source mesh processing tool, in: 6th
Eurographics Italian Chapter Conference 2008 – Proceedings, 129–136, ISBN 978-3-905673-68-5,
https://doi.org/10.2312/LocalChapterEvents/Ital, 2008.
Dewez, T., Nachbaur, A., Mathon, C., Sedan, O., Kobayashi, H., Rivière,
C., Berger, F., Des Garets, E., and Nowak, E.: OFAI: 3D block tracking in a
real-size rockfall experiment in the weathered volcanic context of Tahiti,
French Polynesia, in: RSS Rock Slope Stability 2010 symposium, Paris, France, 1–13, 2010.
Dorren, L. K. A., Berger, F., le Hir, C., Mermin, E., and Tardif, P.:
Mechanisms, effects and management implications of rockfall in forests, For.
Ecol. Manage., 215, 183–195, https://doi.org/10.1016/j.foreco.2005.05.012,
2005.
Dorren, L. K. A., Berger, F., and Putters, U. S.: Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., 6, 145–153, https://doi.org/10.5194/nhess-6-145-2006, 2006.
Duguet, F. and Girardeau-Montaut, D.: Rendu en Portion de Ciel Visible de
Gros Nuages de Points 3D, in: Actes des journées de l'AFIG, Poitiers, France, https://hal.inria.fr/inria-00606751 (last access: 10 November 2022), 2004.
Drake, S. and MacLachlan, J.: Galileo's Discovery of the Parabolic Trajectory, Scientific American, a division of Nature America, Inc.,
https://www.jstor.org/stable/24949756 (last access: 10 November 2022),
1975.
Fortin, A.: Analyse numérique pour ingénieurs, 5th ed., Presses
internationales Polytechnique, 490 pp., ISBN 9782553016806, 2016.
Garcia, B.: Analyse des mécanismes d'interaction entre un bloc rocheux
et un versant de propagation: application à l'ingénierie, PHD
thesis, Grenoble Alpes University, https://tel.archives-ouvertes.fr/tel-02445651 (last access: 10 November 2022), 2019.
Gerber, W.: Naturgefahr Steinschlag – Erfahrungen und Erkenntnisse, WSL
Berichte, 149 pp., ISSN 2296-3448, 2019.
Girardeau-Montaut, D.: Détection de changement sur des données
géométriques tridimensionnelles, PHD thesis, Télécom
ParisTech, 207 pp., https://tel.archives-ouvertes.fr/pastel-00001745/ (last access: 10 November 2022), 2006.
Glover, J., Denk, M., Bourrier, F., Volkwein, A., and Gerber, W.: Measuring
the kinetic energy dissipation effects of rock fall attenuating systems with
video analysis, Proc. Interpraevent Congr., 1, 151–160, 2012.
Glover, J. M. H.: Rock-shape and its role in rockfall dynamics, PHD
thesis, Durham University, http://etheses.dur.ac.uk/10968/ (last access: 10 November 2022), 2015.
Hibert, C., Malet, J.-P., Bourrier, F., Provost, F., Berger, F., Bornemann, P., Tardif, P., and Mermin, E.: Single-block rockfall dynamics inferred from seismic signal analysis, Earth Surf. Dynam., 5, 283–292, https://doi.org/10.5194/esurf-5-283-2017, 2017.
Hibert, C., Noël, F., Toe, D., Talib, M., Desrues, M., Wyser, E., Brenguier, O., Bourrier, F., Toussaint, R., Malet, J.-P., and Jaboyedoff, M.: Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-522, 2022.
Jaboyedoff, M., Metzger, R., Oppikofer, T., Couture, R., Derron, M. H.,
Locat, J., and Turmel, D.: New insight techniques to analyze rock-slope
relief using DEM and 3D-imaging cloud points: COLTOP-3D software, in: Rock
mechanics: Meeting Society's Challenges and demands, 61–68, https://doi.org/10.1201/NOE0415444019, 2007.
Jarsve, K. T.: Uncertainties of Simulating Rockfalls and Debris Flows Using
RAMMS, MS thesis, University of Oslo, http://urn.nb.no/URN:NBN:no-66993 (last access: 10 November 2022), 2018.
Jones, C. L., Higgins, J. D., and Andrew, R. D.: Colorado Rockfall
Simulation Program [software], https://coloradogeologicalsurvey.org/publications/colorado-rockfall-simulation-program/ (last access: 10 November 2022), 2000.
Labiouse, V.: Fragmental rockfall paths: comparison of simulations on Alpine
sites and experimental investigation of boulder impacts, in: Landslides:
Evaluation and Stabilization/Glissement de Terrain: Evaluation et
Stabilisation, Set of 2 Volumes, CRC Press, 457–466,
https://doi.org/10.1201/b16816, 2004.
Lu, G., Caviezel, A., Christen, M., Bühler, Y., and Bartelt, P.:
Modelling rockfall dynamics using (convex) non-smooth mechanics, in:
Numerical Methods in Geotechnical Engineering IX, CRC Press, 575–583,
https://doi.org/10.1201/9781351003629-72, 2018.
Noël, F.: stnParabel, https://stnparabel.org/ (last access: 4 November 2022), 2020.
Noël, F., Wyser, E., Jaboyedoff, M., and Derron, M.: Real-size rockfall
experiment: A relatively simple method to acquire 3D impact characteristics
from video footage, in: 15th Swiss Geoscience Meeting, 17 and 18 November 2017, Davos, Switzerland, https://geo.scnat.ch/en/swiss_geoscience_meetings/sgm2017_davos
(last access: 10 November 2022), 2017.
Noël, F., Wyser, E., Jaboyedoff, M., Derron, M.-H., Cloutier, C.,
Turmel, D., and Locat, J.: Real-size rockfall experiment: How different
rockfall simulation impact models perform when confronted with reality?, in:
Geohazards 7 Engineering resiliency in a Changing Climate, 8, 3–6 June 2018,
Canmore, Canada,
https://cgs.ca/docs/geohazards/canmore2018/GeoHazards2018/authors.html#N (last access: 10 November 2022), 2018.
Noël, F., Cloutier, C., Jaboyedoff, M., and Locat, J.: Impact-Detection
Algorithm That Uses Point Clouds as Topographic Inputs for 3D Rockfall
Simulations, 11, 188, https://doi.org/10.3390/geosciences11050188, 2021.
Noël, F., Nordang, S. F., Jaboyedoff, M., Travelletti, J., Matasci, B., Digout, M., Derron, M.-H., Caviezel, A., Hibert, C., Toe, D., Talib, M., Wyser, E., Bourrier, F., Toussaint, R., Malet, J.-P., and Locat, J.: Highly energetic rockfalls: Back analysis of the 2015 event from the Mel de la Niva, Switzerland, Zenodo [data set], https://doi.org/10.5281/zenodo.7296498, 2022.
Pfeiffer, T. J. and Bowen, T. D.: Computer Simulation of Rockfalls, xxvi,
135–146, https://doi.org/10.2113/gseegeosci.xxvi.1.135, 1989.
Rocscience Inc.: RocFall [software], https://www.rocscience.com, last access: 4 November 2022.
Rowlands, A.: Physics of Digital Photography (Second Edition), IOP
Publishing Ltd, https://doi.org/10.1088/978-0-7503-2558-5, 2020.
Sanchez, M. A. and Caviezel, A.: Full-scale testing of rockfall nets in real
terrain. Results of tests at Chant Sura: 13th September and 4th October,
2019, report, WSL Berichte, 81 pp., ISSN 2296-3456, 2020.
Spadari, M., Giacomini, A., Buzzi, O., Fityus, S., and Giani, G. P.: In situ
rockfall testing in New South Wales, Australia, Int. J. Rock Mech. Min.
Sci., 49, 84–93, https://doi.org/10.1016/j.ijrmms.2011.11.013, 2012.
Steer, P., Guerit, L., Lague, D., Crave, A., and Gourdon, A.: Size, shape and orientation matter: fast and automatic measurement of grain geometries from 3D point clouds, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-75, 2022.
Stevens, W. D.: RocFall, a tool for probabilistic analysis, design of
remedial measures and prediction of rockfalls, MS thesis, University of
Toronto, 143 pp.,urlhttps://hdl.handle.net/1807/16244 (last access: 4 November 2022), 1998.
Tarini, M., Cignoni, P., and Montani, C.: Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization, IEEE Trans. Vis. Comput. Graph., 12, 1237–1244, https://doi.org/10.1109/TVCG.2006.115, 2006.
Valagussa, A., Crosta, G. B., Frattini, P., Zenoni, S., and Massey, C.:
Rockfall Runout Simulation Fine-Tuning in Christchurch, New Zealand, in:
Engineering Geology for Society and Territory, vol. 2, edited by:
Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski,
J., and Sciarra, N., Springer International Publishing, Cham, 1913–1917,
https://doi.org/10.1007/978-3-319-09057-3_339, 2015.
Volkwein, A. and Klette, J.: Semi-Automatic Determination of Rockfall
Trajectories, 14, 18187–18210, https://doi.org/10.3390/s141018187, 2014.
Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M.: Rockfall characterisation and structural protection – a review, Nat. Hazards Earth Syst. Sci., 11, 2617–2651, https://doi.org/10.5194/nhess-11-2617-2011, 2011.
Volkwein, A., Brügger, L., Gees, F., Gerber, W., Krummenacher, B.,
Kummer, P., Lardon, J., and Sutter, T.: Repetitive Rockfall Trajectory
Testing, 8, 88, https://doi.org/10.3390/geosciences8030088, 2018.
Wyllie, D. C.: Rock fall engineering: development and calibration of an
improved model for analysis of rock fall hazards on highways and railways,
PHD thesis, The University of British Columbia, 238 pp., https://doi.org/10.14288/1.0167542, 2014.
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose,...