Articles | Volume 11, issue 2
https://doi.org/10.5194/esurf-11-305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Dirk Scherler
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geographical Sciences, Freie Universität Berlin,
12249 Berlin, Germany
Renee van Dongen
International Centre for Water Resources and Global Change, 56068
Koblenz, Germany
Hella Wittmann
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Related authors
Emma B. Lodes
Polarforschung, 90, 1–6, https://doi.org/10.5194/polf-90-1-2022, https://doi.org/10.5194/polf-90-1-2022, 2022
Short summary
Short summary
Girls on Ice Austria is a new all-female organization that encourages young women to stretch themselves during a week-long expedition to a glacier in which they learn about science, art, and mountaineering. Their first expedition was successfully completed in August 2021. Girls on Ice (part of Inspiring Girls Expeditions) encourages girls to pursue traditionally male-dominated paths such as glaciology or mountaineering and to gain self-confidence and inspiration.
Charlotte Läuchli, Nestor Gaviria-Lugo, Anne Bernhardt, Hella Wittmann, Patrick J. Frings, Mahyar Mohtadi, Andreas Lückge, and Dirk Sachse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3153, https://doi.org/10.5194/egusphere-2025-3153, 2025
Short summary
Short summary
Large-scale atmospheric pathways connecting climate across latitudes are poorly documented in the past. Here, we report a high resolution spatial and temporal reconstruction of the evolution of the Southern Hemisphere Westerlies since the Last Glacial Maximum, which, compared with the past evolution of the Intertropical Convergence Zone, allows identifying the dominant atmospheric pathways acting on past climate in South America.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024, https://doi.org/10.5194/tc-18-5259-2024, 2024
Short summary
Short summary
We derived Landsat Collection 2 land surface temperature (LST) trends in the Swiss Alps using a harmonic model with a linear trend. Validation with LST data from 119 high-altitude weather stations yielded robust results, but Landsat LST trends are biased due to unstable acquisition times. The bias varies with topographic slope and aspect. We discuss its origin and propose a simple correction method in relation to modeled changes in shortwave radiation.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Katharina Wetterauer and Dirk Scherler
Earth Surf. Dynam., 11, 1013–1033, https://doi.org/10.5194/esurf-11-1013-2023, https://doi.org/10.5194/esurf-11-1013-2023, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five Swiss glaciers around Pigne d'Arolla indicate an increase in erosion from the end of the Little Ice Age towards deglaciation but temporally more stable rates over the last ∼100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Emma B. Lodes
Polarforschung, 90, 1–6, https://doi.org/10.5194/polf-90-1-2022, https://doi.org/10.5194/polf-90-1-2022, 2022
Short summary
Short summary
Girls on Ice Austria is a new all-female organization that encourages young women to stretch themselves during a week-long expedition to a glacier in which they learn about science, art, and mountaineering. Their first expedition was successfully completed in August 2021. Girls on Ice (part of Inspiring Girls Expeditions) encourages girls to pursue traditionally male-dominated paths such as glaciology or mountaineering and to gain self-confidence and inspiration.
Cited articles
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP191976520), DEM for La Campana, includes Material © JAXA/METI 2009, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2009.
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP269644390), DEM for Nahuelbuta, includes Material © JAXA/METI 2011, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2011a.
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP277746590), DEM for Santa Gracia, includes Material © JAXA/METI 2011, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2011b.
Amundson, R., Richter, D. D., Humphreys, G. S., Jobbágy, E. G., and
Gaillardet, J.: Coupling between biota and earth materials in the critical
zone, Elements, 3, 327–333, https://doi.org/10.2113/gselements.3.5.327, 2007.
Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and Naylor, M.:
Impact of change in erosion rate and landscape steepness on hillslope and
fluvial sediments grain size in the Feather River basin (Sierra Nevada,
California), Earth Surf. Dynam., 3, 201–222, https://doi.org/10.5194/esurf-3-201-2015, 2015.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quatern. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Bierman, P.: Using in situ produced cosmogenic isotopes to estimate rates of
Landscape evolution: A review from the geomorphic perspective, J. Geophys.
Res.-Solid, 99, 13885–13896, https://doi.org/10.1029/94JB00459, 1994.
Bierman, P. R. and Caffee, M. W.: Cosmogenic exposure and erosion history of
Australian rock landforms, Geol. Soc. Am. Bull., 114, 787–803,
https://doi.org/10.1130/0016-7606(2002)114<0787:CEAEHO>2.0.CO;2, 2002.
Boisier, J. P., Alvarez-Garretón, C., Cepeda, J., Osses, A., Vásquez, N., and Rondanelli, R.: CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile, in: EGU General Assembly 2018, April 2018, Vienna, Austria, EGU2018-19739, 2018.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quatern. Geochronol., 31, 188-198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D.L.: Production
of cosmogenic radionuclides at great depth: A multi element approach, Earth
Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold
hillslopes in the northwestern Himalayas, Nature, 379, 505–510,
https://doi.org/10.1038/379505a0, 1996.
Buss, H. L., Brantley, S. L., Scatena, F. N., Bazilievskaya, E. A., Blum, A.,
Schulz, M., Jiménez, R., White, A. F., Rother, G., and Cole, D.: Probing
the deep critical zone beneath the Luquillo Experimental Forest, Puerto
Rico, Earth Surf. Proc. Land., 38, 1170-1186, https://doi.org/10.1002/esp.3409, 2013.
Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M. A.,
Martinod, J., Guyot, J.-L., Hérail, G., and Riquelme, R.: Review of
erosion dynamics along the major N–S climatic gradient in Chile and
perspectives, Geomorphology, 300, 45–68, https://doi.org/10.1016/j.geomorph.2017.10.016, 2018.
Chilton, K. D. and Spotila, J. A.: Preservation of Valley and Ridge topography via delivery of resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains, USA, Geomorphology, 365, 107263, https://doi.org/10.1016/j.geomorph.2020.107263, 2020.
Coira, B., Davidson, J., Mpodozis, C., and Ramos, V.: Tectonic and Magmatic
Evolution of the Andes of Northern Argentina and Chile, Earth Sci Rev., 18,
303–332, https://doi.org/10.1016/0012-8252(82)90042-3, 1982.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J.,
Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: Cologne AMS, a dedicated center for
accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294,
18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
DiBiase, R. A., Lamb, M. P., Ganti, V., and Booth, A. M.: Slope, grain size,
and roughness controls on dry sediment transport and storage on steep
hillslopes, J. Geophys. Res.-Earth Surf., 122, 941–960,
https://doi.org/10.1002/2016JF003970, 2017.
DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain
size controls on the relief structure of bedrock landscapes, Geology, 46, 399–402, https://doi.org/10.1130/G40006.1, 2018.
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic transport laws for predicting landscape form and dynamics, Geophys. Monogr., 135, 103–132, https://doi.org/10.1029/135GM09, 2003.
Dühnforth, M., Anderson, R. S., Ward, D., and Stock, G. M.: Bedrock
fracture control of glacial erosion processes and rates, Geology, 38, 423–426, https://doi.org/10.1130/G30576.1, 2010.
Eppes, M. C. and Keanini, R..: Mechanical weathering and rock erosion by
climate-dependent subcritical cracking, Rev. Geophys., 55, 470–508,
https://doi.org/10.1002/2017RG000557, 2017.
Fletcher, R. C. and Brantley, S. L.: Reduction of bedrock blocks as corestones in the weathering profile: Observations and model, Am. J. Sci., 310, 131–164, https://doi.org/10.2475/03.2010.01, 2010.
Glade, R. C., Anderson, R. S., and Tucker, G. E.: Block-controlled hillslope
form and persistence of topography in rocky landscape, Geology, 45, 311–314, https://doi.org/10.1130/G38665.1, 2017.
Glodny, J., Graaefe, K., and Rosenau, M.: Mesozoic to Quaternary continental
margin dynamics in South-Central Chile (36–42∘ S): the apatite and zircon fission track perspective, Int. J. Earth Sci., 97, 1271–1291,
https://doi.org/10.1007/s00531-007-0203-1, 2008.
Granger, D. E., Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Modulation
of erosion on steep granitic slopes by boulder armoring, as revealed by
cosmogenic 26Al and 10Be, Earth Planet. Sc. Lett., 186, 269–281, https://doi.org/10.1016/S0012-821X(01)00236-9, 2001.
Granger, D. E. and Riebe, C. S.: Cosmogenic Nuclides in Weathering and Erosion, in: Treatise on Geochemistry, 2nd Edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 7, 401–436,
https://doi.org/10.1016/B978-0-08-095975-7.00514-3, 2014.
Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., and Pancost, R. D.:
Controls on granitic weathering fronts in contrasting climates, Chem. Geol.,
535, 119450, https://doi.org/10.1016/j.chemgeo.2019.119450, 2020.
Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K., and Finkel,
R. C.: Soil production on a retreating escarpment in southeastern Australia,
Geology, 28, 787–790, https://doi.org/10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2, 2000.
Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumid, K., and Finkel,
R. C.: Late Quaternary erosion in southeastern Australia: a field example
using cosmogenic nuclides, Quatern. Int., 83, 169–185, https://doi.org/10.1016/S1040-6182(01)00038-6, 2001.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Krone, L.V., Hampl, F. J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte,
A., Übernickel, K., Dielforder, A., Aldaz, S., Oses-Pedraza, R., and
Perez, J. P. H.: Deep weathering in the semi-arid Coastal Cordillera, Chile,
Sci. Rep., 11, 1–15, 2021.
Kügler, M., Hoffmann, T. O., Beer, A. R., Übernickel, K., Ehlers, T.
A., Scherler, D., and Eichel, J.: (LiDAR) 3D Point Clouds and Topographic
Data from the Chilean Coastal Cordillera, V. 1.0, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2022.002, 2022.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lamb, M. P., Finnegan, N. J., Scheingross, J. S. and Sklar, L. S.: New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory, Geomorphology, 244, 33–55, https://doi.org/10.1016/j.geomorph.2015.03.003, 2015.
Lebedeva, M. I. and Brantley, S. L.: Weathering and erosion of fractured
bedrock systems, Earth Surf. Proc. Land., 42, 2090–2108, https://doi.org/10.1002/esp.4177, 2017.
Martel, S. J.: Mechanics of curved surfaces, with application to surface-parallel cracks, Geophys. Res. Lett., 38, L20303, https://doi.org/10.1029/2011GL049354, 2011.
Melnick, D.: Rise of the central Andean coast by earthquakes straddling the
Moho, Nat. Geosci., 9, 1–8, https://doi.org/10.1038/ngeo2683, 2016.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of
rock, and erosion, J. Geophys. Res., 112, F03014, https://doi.org/10.1029/2005JF000433, 2007.
Neely, A. B. and DiBiase, R. A.: Drainage Area, Bedrock Fracture Spacing, and
Weathering Controls on Landscape-Scale Patterns in Surface Sediment Grain
Size, J. Geophys. Res.-Earth, 125, e2020JF005560, https://doi.org/10.1029/2020JF005560, 2020.
Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and Caffee, M. W.: Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA, Earth Planet. Sc. Lett., 522, 186–197, https://doi.org/10.1016/j.epsl.2019.06.011, 2019.
Oeser, R. A., Stroncik, N., Moskwa, L., Bernhard, N., Schaller, M., Canessa,
R., Van Den Brink, L., Köster, M., Brucker, E., Stock, S., Pablo, J.,
Godoy, R., Javier, F., Oses, R., Osses, P., Paulino, L., Seguel, O., Bader,
M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P., Kuzyakov, Y.,
Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K.,
Tielbörger, K., Wagner, D., and von Blanckenburg, F.: Chemistry and
microbiology of the Critical Zone along a steep climate and vegetation
gradient in the Chilean Coastal Cordillera, Catena, 170, 183–203,
https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, J.
Geophys. Res.-Earth, 116, 2021, https://doi.org/10.1029/2010JF001801, 2011.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Raab, G., Egli, M., Norton, K., Dahms, D., Brandová, D., Christl, M., and
Scarciglia, F.: Climate and relief-induced controls on the temporal variability of denudation rates in a granitic upland, Earth Surf. Proc.
Land., 44, 2570–2586, https://doi.org/10.1002/esp.4681, 2019.
Riebe, C. S. and Granger, D. E.: Quantifying effects of deep and near-surface
chemical erosion on cosmogenic nuclides in soils, saprolite, and sediment,
Earth Surf. Proc. Land., 38, 523–533, https://doi.org/10.1002/esp.3339, 2013.
Roda-Boluda, D. C., D'Arcy, M., McDonald, J., and Whittaker, A. C.:
Lithological controls on hillslope sediment supply: insights from landslide
activity and grain size distributions, Earth Surf. Proc. Land., 43,
956–977, https://doi.org/10.1002/esp.4281, 2018.
Rodriguez Padilla, A. M., Oskin, M. E., Milliner, C. W., and Plesch, A.: Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes, Nat.
Geosci., 15, 222–226, 2022.
Roy, S. G., Koons, P. O., Upton, P., and Tucker, G. E.: The influence of crustal strength fields on the patterns and rates of fluvial incision, J. Geophys. Res.-Earth, 120, 275–299, https://doi.org/10.1002/2014JF003281, 2015.
Roy, S. G., Tucker, G. E., Koons, P. O., Smith, S. M., and Upton, P.: A fault runs through it: Modeling the influence of rock strength and grain-size
distribution in a fault-damaged landscape, J. Geophys. Res.-Earth, 121, 1911–1930, https://doi.org/10.1002/2015JF003662, 2016.
Schaller, M. and Ehlers, T. A.: Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological
gradient (Chile) to global observations, Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, 2022.
Schaller, M., Ehlers, T. A., Lang, K. A. H., Schmid, M., and Fuentes-Espoz,
J. P.: Addressing the contribution of climate and vegetation cover on
hillslope denudation, Chilean Coastal Cordillera (26∘–38∘ S), Earth Planet. Sc. Lett., 489, 111–122, https://doi.org/10.1016/j.epsl.2018.02.026, 2018.
Schwanghart, W. and Scherler, D.: Short Communication: Topo Toolbox 2 –
MATLAB-based software for topographic analysis and modeling in Earth surface
sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
SERNAGEOMIN: Mapa Geológico de Chile: versión digital, Servicio
Nacional de Geología y Minería, Publicación Geológica
Digital No. 4, SERNAGEOMIN [data set], http://www.ipgp.fr/~dechabal/Geol-millon.pdf (last access: 5 April 2022), 2003.
Shobe, C. M., Tucker, G. E., and Anderson, R. S.: Hillslope-derived blocks
retard river incision, Geophys. Res. Lett., 43, 5070–5078, https://doi.org/10.1002/2016GL069262, 2016.
Sklar, L. S. and Dietrich, W. E.: Sediment and rock strength controls on
river incision into bedrock, Geology, 29, 1087–1090,
https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., and Merces, V.: The problem of predicting the size distribution of sediment supplied by hillslopes to rivers, Geomorphology, 277, 31–49, https://doi.org/10.1016/j.geomorph.2016.05.005, 2017.
Sklar, L. S., Riebe, C. S., Genetti, J., Leclere, S., and Lukens, C. E.:
Downvalley fining of hillslope sediment in an alpine catchment: implications
for downstream fining of sediment flux in mountain rivers, Earth Surf. Proc.
Land., 45, 1828–1845, https://doi.org/10.1002/esp.4849, 2020.
Small, E. E., Anderson, R. S., Repka, J. L., and Finkel, R.: Erosion rates
of alpine bedrock summit surfaces deduced from in situ 10Be and 26A1, Earth Planet. Sc. Lett., 150, 413–425, https://doi.org/10.1016/S0012-821X(97)00092-7, 1997.
St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., and
Martel, S. J.: Geophysical imaging reveals topographic stress control of
bedrock weathering, Geomorphology, 350, 534–538, https://doi.org/10.1126/science.aab2210, 2015.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Solid, 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Terweh, S., Hassan, M. A., Mao, L., Schrott, L., and Hoffmann, T. O.:
Bio-climate affects hillslope and fluvial sediment grain size along the
Chilean Coastal Cordillera, Geomorphology, 384, 107700,
https://doi.org/10.1016/j.geomorph.2021.107700, 2021.
Thaler, E. A. and Covington, M. D.: The influence of sandstone caprock
material on bedrock channel steepness within a tectonically passive setting:
Buffalo National River Basin, Arkansas, USA, J. Geophys. Res.-Earth, 121, 1635–1650, https://doi.org/10.1002/2015JF003771, 2016.
van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.:
Cosmogenic 10Be in river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, 2019.
Verdian, J. P., Sklar, L. S., Riebe, C. S., and Moore, J. R.: Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes, Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, 2021.
von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.: Cosmogenic nuclide
evidence for low weathering and denudation in the wet, tropical highlands of
Sri Lanka, J. Geophys. Res., 109, F03008, https://doi.org/10.1029/2003JF000049, 2004.
Zernitz, E. R.: Drainage patterns and their significance, J. Geol., 40, 498–521, https://doi.org/10.1086/623976, 1932.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4902 KB) - Full-text XML
- Corrigendum
-
Supplement
(702 KB) - BibTeX
- EndNote
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing...