Articles | Volume 11, issue 2
https://doi.org/10.5194/esurf-11-305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Dirk Scherler
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geographical Sciences, Freie Universität Berlin,
12249 Berlin, Germany
Renee van Dongen
International Centre for Water Resources and Global Change, 56068
Koblenz, Germany
Hella Wittmann
Earth Surface Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Related authors
Emma B. Lodes
Polarforschung, 90, 1–6, https://doi.org/10.5194/polf-90-1-2022, https://doi.org/10.5194/polf-90-1-2022, 2022
Short summary
Short summary
Girls on Ice Austria is a new all-female organization that encourages young women to stretch themselves during a week-long expedition to a glacier in which they learn about science, art, and mountaineering. Their first expedition was successfully completed in August 2021. Girls on Ice (part of Inspiring Girls Expeditions) encourages girls to pursue traditionally male-dominated paths such as glaciology or mountaineering and to gain self-confidence and inspiration.
Nestor Gaviria Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhard, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
EGUsphere, https://doi.org/10.5194/egusphere-2023-831, https://doi.org/10.5194/egusphere-2023-831, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid along the Chilean coast Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes to avoid overestimating how much climate has changed.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Katharina Wetterauer and Dirk Scherler
EGUsphere, https://doi.org/10.5194/egusphere-2023-630, https://doi.org/10.5194/egusphere-2023-630, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five adjacent Swiss glaciers indicate an increase in erosion from the end of the Little Ice Age towards deglaciation, but temporally more stable rates over the last ~100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Emma B. Lodes
Polarforschung, 90, 1–6, https://doi.org/10.5194/polf-90-1-2022, https://doi.org/10.5194/polf-90-1-2022, 2022
Short summary
Short summary
Girls on Ice Austria is a new all-female organization that encourages young women to stretch themselves during a week-long expedition to a glacier in which they learn about science, art, and mountaineering. Their first expedition was successfully completed in August 2021. Girls on Ice (part of Inspiring Girls Expeditions) encourages girls to pursue traditionally male-dominated paths such as glaciology or mountaineering and to gain self-confidence and inspiration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, https://doi.org/10.5194/esurf-8-245-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 261–274, https://doi.org/10.5194/esurf-8-261-2020, https://doi.org/10.5194/esurf-8-261-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Renee van Dongen, Dirk Scherler, Hella Wittmann, and Friedhelm von Blanckenburg
Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, https://doi.org/10.5194/esurf-7-393-2019, 2019
Short summary
Short summary
The concentration of cosmogenic 10Be is typically measured in the sand fraction of river sediment to estimate catchment-average erosion rates. Using the sand fraction in catchments where the 10Be concentrations differ per grain size could potentially result in biased erosion rates. In this study we investigated the occurrence and causes of grain size-dependent 10Be concentrations and identified the types of catchments which are sensitive to biased catchment-average erosion rates.
Wolfgang Schwanghart and Dirk Scherler
Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, https://doi.org/10.5194/esurf-5-821-2017, 2017
Short summary
Short summary
River profiles derived from digital elevation models are affected by errors. Here we present two new algorithms – quantile carving and the CRS algorithm – to hydrologically correct river profiles. Both algorithms preserve the downstream decreasing shape of river profiles, while CRS additionally smooths profiles to avoid artificial steps. Our algorithms are able to cope with the problems of overestimation and asymmetric error distributions.
Sara Savi, Stefanie Tofelde, Hella Wittmann, Fabiana Castino, and Taylor Schildgen
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-30, https://doi.org/10.5194/esurf-2017-30, 2017
Preprint withdrawn
Short summary
Short summary
When using cosmogenic nuclides to determine exposure ages or denudation rates in rapidly evolving landscapes, challenges arise related to the small number of nuclides that have accumulated in surface materials. Here we describe an approach that defines a lower threshold above which samples with low 10Be content can be statistically distinguished from laboratory blanks. This in turn dictates the meaning and reliability of the samples and their possible use.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
The probabilistic nature of dune collisions in 2D
Shape still matters: rockfall interactions with trees and deadwood in a mountain forest uncover a new facet of rock shape dependency
Earthquake contributions to coastal cliff retreat
Morphologic and morphometric differences between gullies formed in different substrates on Mars: new insights into the gully formation processes
Testing the sensitivity of the CAESAR-Lisflood landscape evolution model to grid cell size
Development of a machine learning model for river bed load
Modeling the spatially distributed nature of subglacial sediment transport and erosion
Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models
The influence of dune lee side shape on time-averaged velocities and turbulence
Synoptic-scale to mesoscale atmospheric circulation connects fluvial and coastal gravel conveyors and directional deposition of coastal landforms in the Dead Sea basin
Initial shape reconstruction of a volcanic island as a tool for quantifying long-term coastal erosion: the case of Corvo Island (Azores)
Geospatial modelling of large-wood supply to rivers: a state-of-the-art model comparison in Swiss mountain river catchments
Mobile evaporite enhances the cycle of physical–chemical erosion in badlands
Revealing the relation between spatial patterns of rainfall return levels and landslide density
Constraints on long-term cliff retreat and intertidal weathering at weak rock coasts using cosmogenic 10Be, nearshore topography and numerical modelling
Impacts of human modifications on material transport in deltas
Evolution of an Alpine proglacial river during 7 decades of deglaciation
Phenomenological model of suspended sediment transport in a small catchment
Water level fluctuations drive bank instability in a hypertidal estuary
Geotechnical controls on erodibility in fluvial impact erosion
Pristine levels of suspended sediment in large German river channels during the Anthropocene?
An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures
Marsh induced backwater: the influence of non-fluvial sedimentation on a delta's channel morphology and kinematics
Spatial and temporal variations in rockwall erosion rates around Pigne d’Arolla, Switzerland, derived from cosmogenic 10Be in medial moraines at five adjacent valley glaciers
Development of the morphodynamics on Little Ice Age lateral moraines in 10 glacier forefields of the Eastern Alps since the 1950s
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
Exploring the transition between water- and wind-dominated landscapes in Deep Springs, California, as an analog for transitioning landscapes on Mars
Sediment source and sink identification using Sentinel-2 and (kayak-based) lagrangian river turbidity profiles on the Vjosa River
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Entrainment and deposition of boulders in a gravel bed river
Coupling between downstream variations of channel width and local pool–riffle bed topography
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Building a Bimodal Landscape with Varying Bed Thicknesses in Last Chance Canyon, New Mexico
Response of modern fluvial sediments to regional tectonic activity along the upper Min River, eastern Tibet
Geophysical evidence of massive hyperconcentrated push waves with embedded toma hills caused by the Flims rockslide, Switzerland
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Episodic sediment supply to alluvial fans: implications for fan incision and morphometry
Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China
Exploring exogenous controls on short- versus long-term erosion rates globally
The effects of late Cenozoic climate change on the global distribution of frost cracking
Transitional rock glaciers at sea level in northern Norway
Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Quantification of post-glacier bedrock surface erosion in the European Alps using 10Be and optically stimulated luminescence exposure dating
A comparison of 1D and 2D bedload transport functions under high excess shear stress conditions in laterally constrained gravel-bed rivers: a laboratory study
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023, https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Short summary
Despite the importance of bedforms (e.g., ripples, dunes) to sediment transport, the details of sediment transport on a sub-bedform scale are poorly understood. This paper investigates sediment transport in the downstream and cross-stream directions over bedforms with straight crests. We find that the patterns of bedload transport are highly variable on the sub-bedform scale, which is important for our understanding of the evolution of bedforms with complex crest geometries.
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023, https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary
Short summary
Many steep glaciated rock walls collapsed when the Ice Age ended. How ice supports a steep rock wall until the ice decays is poorly understood. A collapsed rock wall was surveyed in the field and numerically modelled. Cosmogenic exposure dates show it collapsed and became ice-free ca. 18 ka ago. The model showed that the rock wall failed very slowly because ice was buttressing the slope. Dating other collapsed rock walls can improve understanding of how and when the last Ice Age ended.
Paul A. Jarvis, Clement Narteau, Olivier Rozier, and Nathalie M. Vriend
Earth Surf. Dynam., 11, 803–815, https://doi.org/10.5194/esurf-11-803-2023, https://doi.org/10.5194/esurf-11-803-2023, 2023
Short summary
Short summary
Sand dune migration velocity is inversely proportional to dune size. Consequently, smaller, faster dunes can collide with larger, slower downstream dunes. Such collisions can result in either coalescence or ejection, whereby the dunes exchange mass but remain separate. Our numerical simulations show that the outcome depends probabilistically on the dune size ratio, which we describe through an empirical function. Our numerical predictions compare favourably against experimental observations.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
Earth Surf. Dynam., 11, 757–778, https://doi.org/10.5194/esurf-11-757-2023, https://doi.org/10.5194/esurf-11-757-2023, 2023
Short summary
Short summary
Earthquakes can cause damaging coastal cliff retreat, but we have a limited understanding of how these infrequent events influence multidecadal retreat. This makes hazard planning a challenge. In this study, we use historic aerial images to measure coastal cliff-top retreat at a site in New Zealand. We find that earthquakes account for close to half of multidecadal retreat at this site, and our results have helped us to develop tools for estimating the influence of earthquakes at other sites.
Rishitosh K. Sinha, Dwijesh Ray, Tjalling De Haas, Susan J. Conway, and Axel Noblet
Earth Surf. Dynam., 11, 713–730, https://doi.org/10.5194/esurf-11-713-2023, https://doi.org/10.5194/esurf-11-713-2023, 2023
Short summary
Short summary
Our detailed investigation of Martian gullies formed in different substrates in 29 craters distributed between 30°–75° S latitude suggests that they can be differentiated from one another in terms of (1) morphology and length of alcoves and (2) mean gradient of the gully fans. The comparison between the Melton ratio, alcove length, and fan gradient of Martian and terrestrial gullies suggests that Martian gullies were likely formed by terrestrial debris-flow-like processes in the past.
Christopher J. Skinner and Thomas J. Coulthard
Earth Surf. Dynam., 11, 695–711, https://doi.org/10.5194/esurf-11-695-2023, https://doi.org/10.5194/esurf-11-695-2023, 2023
Short summary
Short summary
Landscape evolution models allow us to simulate the way the Earth's surface is shaped and help us to understand relevant processes, in turn helping us to manage landscapes better. The models typically represent the land surface using a grid of square cells of equal size, averaging heights in those squares. This study shows that the size chosen by the modeller for these grid cells is important, with larger sizes making sediment output events larger but less frequent.
Hossein Hosseiny, Claire C. Masteller, Jedidiah E. Dale, and Colin B. Phillips
Earth Surf. Dynam., 11, 681–693, https://doi.org/10.5194/esurf-11-681-2023, https://doi.org/10.5194/esurf-11-681-2023, 2023
Short summary
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
Alice Lefebvre and Julia Cisneros
Earth Surf. Dynam., 11, 575–591, https://doi.org/10.5194/esurf-11-575-2023, https://doi.org/10.5194/esurf-11-575-2023, 2023
Short summary
Short summary
Underwater dunes are found in various environments with strong hydrodynamics and sandy sediment. Using a numerical model, we investigated how the dune shape influences flow velocity and turbulence. We propose a classification with three types of dunes, depending on their mean lee side angles (low-angle dunes, intermediate-angle dunes and high-angle dunes). We discuss the implications of this classification on the interaction between dune morphology, flow and sediment transport.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Slim Mtibaa and Haruka Tsunetaka
Earth Surf. Dynam., 11, 461–474, https://doi.org/10.5194/esurf-11-461-2023, https://doi.org/10.5194/esurf-11-461-2023, 2023
Short summary
Short summary
We explore the relation between the spatial patterns of rainfall return levels for various timespans (1–72 h) and landslide density during a rainfall event that triggered widespread landslides. We found that landslide density increases with increased rainfall return levels for the various examined timespans. Accordingly, we conclude that whether rainfall intensities reached exceptional return levels for a wide time range is a key determinant of the spatial distribution of landslides.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Jayaram Hariharan, Kyle Wright, Andrew Moodie, Nelson Tull, and Paola Passalacqua
Earth Surf. Dynam., 11, 405–427, https://doi.org/10.5194/esurf-11-405-2023, https://doi.org/10.5194/esurf-11-405-2023, 2023
Short summary
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023, https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary
Short summary
In this study the processes leading to bank failures in the hypertidal Severn Estuary are studied employing numerical models and field observations. Results highlight that the periodic fluctuations in water levels drive an imbalance in the resisting (hydrostatic pressure) versus driving (pore water pressure) forces causing a frequent oscillation of bank stability between stable (at high tide) and unstable states (at low tide) both on semidiurnal bases and in the spring–neap transition.
Jens Martin Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
EGUsphere, https://doi.org/10.5194/egusphere-2023-76, https://doi.org/10.5194/egusphere-2023-76, 2023
Short summary
Short summary
Rivers can cut into rocks and their strength modulates the river's erosion rates. Yet, it is poorly understood which properties of the rock control its response to erosive action. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity and density. Erosion rates vary over a factor of million between different rock types. We use the data to improve current theory.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Kelly Sanks, John Shaw, Samuel Zapp, José Silvestre, Ripul Dutt, and Kyle Straub
EGUsphere, https://doi.org/10.5194/egusphere-2023-545, https://doi.org/10.5194/egusphere-2023-545, 2023
Short summary
Short summary
River deltas encompass many depositional environments (like channels and wetlands) that interact to produce coastal environments that change through time. The processes leading to sedimentation in wetlands are often neglected from physical delta models. We show that wetland sedimentation constrains flow to the channels, changes sedimentation rates, and produces channels more akin to field-scale deltas. These results have implications for management of these vulnerable coastal landscapes.
Katharina Wetterauer and Dirk Scherler
EGUsphere, https://doi.org/10.5194/egusphere-2023-630, https://doi.org/10.5194/egusphere-2023-630, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five adjacent Swiss glaciers indicate an increase in erosion from the end of the Little Ice Age towards deglaciation, but temporally more stable rates over the last ~100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Haojie Huang
Earth Surf. Dynam., 11, 167–181, https://doi.org/10.5194/esurf-11-167-2023, https://doi.org/10.5194/esurf-11-167-2023, 2023
Short summary
Short summary
Straw checkerboard barriers (SCBs) have been widely used in anti-desertification projects. However, research on this mechanism and its laying length are still lacking. The significance of our work is to analyze some results, which seem simple but lack a theoretical basis from the perspective of turbulence through this model. This study may provide theoretical support for the minimum laying length of SCBs in anti-desertification projects.
Taylor Dorn and Mackenzie Day
Earth Surf. Dynam., 11, 149–165, https://doi.org/10.5194/esurf-11-149-2023, https://doi.org/10.5194/esurf-11-149-2023, 2023
Short summary
Short summary
Planetary surfaces are shaped by both wind and water, and their resulting surface features are commonly observed by aerial images. Deep Springs playa, CA, provides a comparable wet-to-dry-transitioning landscape as experienced in Mars' past. Our results, made through collected weather data and drone footage, show that some features, when observed solely by aerial imagery, might be interpreted as being formed by wind when in fact other processes were more influential in their formation.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
EGUsphere, https://doi.org/10.5194/egusphere-2023-156, https://doi.org/10.5194/egusphere-2023-156, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa river. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa river, which is approximately 2.5 Mt of sediment per year and matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023, https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Short summary
Scarpland formation produced low-inclined slopes susceptible to deep-seated landsliding on geological scales. These landslide-affected slopes are often used for forestry activities today, and interaction between geology and vegetation controls shallow landsliding. Our data show that Feuerletten clays control deep-seated landsliding processes that can be reactivated. When trees are sufficiently dense to provide lateral root cohesion, trees can prevent the occurrence of shallow landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-68, https://doi.org/10.5194/esurf-2022-68, 2023
Revised manuscript accepted for ESurf
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listing to the acoustic noise generated by particles impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
Yan Yan, Yifei Cui, Xinghui Huang, Jiaojiao Zhou, Wengang Zhang, Shuyao Yin, Jian Guo, and Sheng Hu
Earth Surf. Dynam., 10, 1233–1252, https://doi.org/10.5194/esurf-10-1233-2022, https://doi.org/10.5194/esurf-10-1233-2022, 2022
Short summary
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Samuel Anderson, Nicole Gasparini, and Joel Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2022-1285, https://doi.org/10.5194/egusphere-2022-1285, 2022
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock which can protect the more fractured sandstone bedrock from erosion.
Wei Shi, Hanchao Jiang, Hongyan Xu, Siyuan Ma, Jiawei Fan, Siqi Zhang, Qiaoqiao Guo, and Xiaotong Wei
Earth Surf. Dynam., 10, 1195–1209, https://doi.org/10.5194/esurf-10-1195-2022, https://doi.org/10.5194/esurf-10-1195-2022, 2022
Short summary
Short summary
Alpine valleys reduce the preservation potential of Quaternary sediment in bedrock valley regions, which seriously hinders the study of modern tectonic activity. We report a new method to reveal regional tectonic activity by analyzing fluvial sediments in tectonically active regions. Our analyses identify three segments of different tectonic activities along the upper Min River, eastern Tibet. This method provides a key framework to reveal tectonic activity in other regions of the world.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Emmanuel Malet, Johan Berthet, Josué Bock, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-58, https://doi.org/10.5194/esurf-2022-58, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Water in fractures drive many processes that destabilize steep permafrost-affected rock walls. However, quantitative knowledge on water availability for infiltration is limited. Here we use a numerical model and field measurements to estimate the water balance in a steep rock walls site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. Below 3600 m, surface water availability is increased rapidly due to rainfall.
Anya S. Leenman and Brett C. Eaton
Earth Surf. Dynam., 10, 1097–1114, https://doi.org/10.5194/esurf-10-1097-2022, https://doi.org/10.5194/esurf-10-1097-2022, 2022
Short summary
Short summary
The supply of sediment (sand and gravel) carried by a stream out of a steep mountain valley is widely thought to control the gradient of the fan-shaped landforms that streams often build where they leave their valley. We tested this idea in a set of
sandboxexperiments with oscillating high and low sediment supply. Even though the average sediment supply never changed, longer oscillations built flatter fans, indicating how wetter climates might affect these mountain landforms.
Shanbai Wu, Ruihua Zhao, Liping Liao, Yunchuan Yang, Yao Wei, and Wenzhi Wei
Earth Surf. Dynam., 10, 1079–1096, https://doi.org/10.5194/esurf-10-1079-2022, https://doi.org/10.5194/esurf-10-1079-2022, 2022
Short summary
Short summary
Granite residual soil landslides are widely distributed in southeastern Guangxi Province, China. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The research provides valuable references for the prevention and early warning of granite residual soil landslide in the southeast of Guangxi.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
David L. Adams and Brett C. Eaton
Earth Surf. Dynam., 10, 895–907, https://doi.org/10.5194/esurf-10-895-2022, https://doi.org/10.5194/esurf-10-895-2022, 2022
Short summary
Short summary
Channel processes under flood conditions are important for river science and management as they involve high volumes of sediment transport and erosion. However, these processes remain poorly understood as the data are difficult to collect. Using a physical model of a river, we found that simple equations based on the mean shear stress and median grain size predicted sediment transport as accurately as ones that accounted for the full range of shear stresses.
Cited articles
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP191976520), DEM for La Campana, includes Material © JAXA/METI 2009, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2009.
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP269644390), DEM for Nahuelbuta, includes Material © JAXA/METI 2011, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2011a.
Alaska Satellite Facility Distributed Active Archive Center: ALOS
PALSAR_Radiometric_Terrain_Corrected_high_res (ALPSRP277746590), DEM for Santa Gracia, includes Material © JAXA/METI 2011, ASF DAAC [data set], https://doi.org/10.5067/Z97HFCNKR6VA, 2011b.
Amundson, R., Richter, D. D., Humphreys, G. S., Jobbágy, E. G., and
Gaillardet, J.: Coupling between biota and earth materials in the critical
zone, Elements, 3, 327–333, https://doi.org/10.2113/gselements.3.5.327, 2007.
Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and Naylor, M.:
Impact of change in erosion rate and landscape steepness on hillslope and
fluvial sediments grain size in the Feather River basin (Sierra Nevada,
California), Earth Surf. Dynam., 3, 201–222, https://doi.org/10.5194/esurf-3-201-2015, 2015.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quatern. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Bierman, P.: Using in situ produced cosmogenic isotopes to estimate rates of
Landscape evolution: A review from the geomorphic perspective, J. Geophys.
Res.-Solid, 99, 13885–13896, https://doi.org/10.1029/94JB00459, 1994.
Bierman, P. R. and Caffee, M. W.: Cosmogenic exposure and erosion history of
Australian rock landforms, Geol. Soc. Am. Bull., 114, 787–803,
https://doi.org/10.1130/0016-7606(2002)114<0787:CEAEHO>2.0.CO;2, 2002.
Boisier, J. P., Alvarez-Garretón, C., Cepeda, J., Osses, A., Vásquez, N., and Rondanelli, R.: CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile, in: EGU General Assembly 2018, April 2018, Vienna, Austria, EGU2018-19739, 2018.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quatern. Geochronol., 31, 188-198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D.L.: Production
of cosmogenic radionuclides at great depth: A multi element approach, Earth
Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold
hillslopes in the northwestern Himalayas, Nature, 379, 505–510,
https://doi.org/10.1038/379505a0, 1996.
Buss, H. L., Brantley, S. L., Scatena, F. N., Bazilievskaya, E. A., Blum, A.,
Schulz, M., Jiménez, R., White, A. F., Rother, G., and Cole, D.: Probing
the deep critical zone beneath the Luquillo Experimental Forest, Puerto
Rico, Earth Surf. Proc. Land., 38, 1170-1186, https://doi.org/10.1002/esp.3409, 2013.
Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M. A.,
Martinod, J., Guyot, J.-L., Hérail, G., and Riquelme, R.: Review of
erosion dynamics along the major N–S climatic gradient in Chile and
perspectives, Geomorphology, 300, 45–68, https://doi.org/10.1016/j.geomorph.2017.10.016, 2018.
Chilton, K. D. and Spotila, J. A.: Preservation of Valley and Ridge topography via delivery of resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains, USA, Geomorphology, 365, 107263, https://doi.org/10.1016/j.geomorph.2020.107263, 2020.
Coira, B., Davidson, J., Mpodozis, C., and Ramos, V.: Tectonic and Magmatic
Evolution of the Andes of Northern Argentina and Chile, Earth Sci Rev., 18,
303–332, https://doi.org/10.1016/0012-8252(82)90042-3, 1982.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J.,
Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: Cologne AMS, a dedicated center for
accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294,
18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
DiBiase, R. A., Lamb, M. P., Ganti, V., and Booth, A. M.: Slope, grain size,
and roughness controls on dry sediment transport and storage on steep
hillslopes, J. Geophys. Res.-Earth Surf., 122, 941–960,
https://doi.org/10.1002/2016JF003970, 2017.
DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain
size controls on the relief structure of bedrock landscapes, Geology, 46, 399–402, https://doi.org/10.1130/G40006.1, 2018.
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic transport laws for predicting landscape form and dynamics, Geophys. Monogr., 135, 103–132, https://doi.org/10.1029/135GM09, 2003.
Dühnforth, M., Anderson, R. S., Ward, D., and Stock, G. M.: Bedrock
fracture control of glacial erosion processes and rates, Geology, 38, 423–426, https://doi.org/10.1130/G30576.1, 2010.
Eppes, M. C. and Keanini, R..: Mechanical weathering and rock erosion by
climate-dependent subcritical cracking, Rev. Geophys., 55, 470–508,
https://doi.org/10.1002/2017RG000557, 2017.
Fletcher, R. C. and Brantley, S. L.: Reduction of bedrock blocks as corestones in the weathering profile: Observations and model, Am. J. Sci., 310, 131–164, https://doi.org/10.2475/03.2010.01, 2010.
Glade, R. C., Anderson, R. S., and Tucker, G. E.: Block-controlled hillslope
form and persistence of topography in rocky landscape, Geology, 45, 311–314, https://doi.org/10.1130/G38665.1, 2017.
Glodny, J., Graaefe, K., and Rosenau, M.: Mesozoic to Quaternary continental
margin dynamics in South-Central Chile (36–42∘ S): the apatite and zircon fission track perspective, Int. J. Earth Sci., 97, 1271–1291,
https://doi.org/10.1007/s00531-007-0203-1, 2008.
Granger, D. E., Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Modulation
of erosion on steep granitic slopes by boulder armoring, as revealed by
cosmogenic 26Al and 10Be, Earth Planet. Sc. Lett., 186, 269–281, https://doi.org/10.1016/S0012-821X(01)00236-9, 2001.
Granger, D. E. and Riebe, C. S.: Cosmogenic Nuclides in Weathering and Erosion, in: Treatise on Geochemistry, 2nd Edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 7, 401–436,
https://doi.org/10.1016/B978-0-08-095975-7.00514-3, 2014.
Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., and Pancost, R. D.:
Controls on granitic weathering fronts in contrasting climates, Chem. Geol.,
535, 119450, https://doi.org/10.1016/j.chemgeo.2019.119450, 2020.
Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K., and Finkel,
R. C.: Soil production on a retreating escarpment in southeastern Australia,
Geology, 28, 787–790, https://doi.org/10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2, 2000.
Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumid, K., and Finkel,
R. C.: Late Quaternary erosion in southeastern Australia: a field example
using cosmogenic nuclides, Quatern. Int., 83, 169–185, https://doi.org/10.1016/S1040-6182(01)00038-6, 2001.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Krone, L.V., Hampl, F. J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte,
A., Übernickel, K., Dielforder, A., Aldaz, S., Oses-Pedraza, R., and
Perez, J. P. H.: Deep weathering in the semi-arid Coastal Cordillera, Chile,
Sci. Rep., 11, 1–15, 2021.
Kügler, M., Hoffmann, T. O., Beer, A. R., Übernickel, K., Ehlers, T.
A., Scherler, D., and Eichel, J.: (LiDAR) 3D Point Clouds and Topographic
Data from the Chilean Coastal Cordillera, V. 1.0, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2022.002, 2022.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lamb, M. P., Finnegan, N. J., Scheingross, J. S. and Sklar, L. S.: New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory, Geomorphology, 244, 33–55, https://doi.org/10.1016/j.geomorph.2015.03.003, 2015.
Lebedeva, M. I. and Brantley, S. L.: Weathering and erosion of fractured
bedrock systems, Earth Surf. Proc. Land., 42, 2090–2108, https://doi.org/10.1002/esp.4177, 2017.
Martel, S. J.: Mechanics of curved surfaces, with application to surface-parallel cracks, Geophys. Res. Lett., 38, L20303, https://doi.org/10.1029/2011GL049354, 2011.
Melnick, D.: Rise of the central Andean coast by earthquakes straddling the
Moho, Nat. Geosci., 9, 1–8, https://doi.org/10.1038/ngeo2683, 2016.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of
rock, and erosion, J. Geophys. Res., 112, F03014, https://doi.org/10.1029/2005JF000433, 2007.
Neely, A. B. and DiBiase, R. A.: Drainage Area, Bedrock Fracture Spacing, and
Weathering Controls on Landscape-Scale Patterns in Surface Sediment Grain
Size, J. Geophys. Res.-Earth, 125, e2020JF005560, https://doi.org/10.1029/2020JF005560, 2020.
Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and Caffee, M. W.: Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA, Earth Planet. Sc. Lett., 522, 186–197, https://doi.org/10.1016/j.epsl.2019.06.011, 2019.
Oeser, R. A., Stroncik, N., Moskwa, L., Bernhard, N., Schaller, M., Canessa,
R., Van Den Brink, L., Köster, M., Brucker, E., Stock, S., Pablo, J.,
Godoy, R., Javier, F., Oses, R., Osses, P., Paulino, L., Seguel, O., Bader,
M. Y., Boy, J., Dippold, M. A., Ehlers, T. A., Kühn, P., Kuzyakov, Y.,
Leinweber, P., Scholten, T., Spielvogel, S., Spohn, M., Übernickel, K.,
Tielbörger, K., Wagner, D., and von Blanckenburg, F.: Chemistry and
microbiology of the Critical Zone along a steep climate and vegetation
gradient in the Chilean Coastal Cordillera, Catena, 170, 183–203,
https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, J.
Geophys. Res.-Earth, 116, 2021, https://doi.org/10.1029/2010JF001801, 2011.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Raab, G., Egli, M., Norton, K., Dahms, D., Brandová, D., Christl, M., and
Scarciglia, F.: Climate and relief-induced controls on the temporal variability of denudation rates in a granitic upland, Earth Surf. Proc.
Land., 44, 2570–2586, https://doi.org/10.1002/esp.4681, 2019.
Riebe, C. S. and Granger, D. E.: Quantifying effects of deep and near-surface
chemical erosion on cosmogenic nuclides in soils, saprolite, and sediment,
Earth Surf. Proc. Land., 38, 523–533, https://doi.org/10.1002/esp.3339, 2013.
Roda-Boluda, D. C., D'Arcy, M., McDonald, J., and Whittaker, A. C.:
Lithological controls on hillslope sediment supply: insights from landslide
activity and grain size distributions, Earth Surf. Proc. Land., 43,
956–977, https://doi.org/10.1002/esp.4281, 2018.
Rodriguez Padilla, A. M., Oskin, M. E., Milliner, C. W., and Plesch, A.: Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes, Nat.
Geosci., 15, 222–226, 2022.
Roy, S. G., Koons, P. O., Upton, P., and Tucker, G. E.: The influence of crustal strength fields on the patterns and rates of fluvial incision, J. Geophys. Res.-Earth, 120, 275–299, https://doi.org/10.1002/2014JF003281, 2015.
Roy, S. G., Tucker, G. E., Koons, P. O., Smith, S. M., and Upton, P.: A fault runs through it: Modeling the influence of rock strength and grain-size
distribution in a fault-damaged landscape, J. Geophys. Res.-Earth, 121, 1911–1930, https://doi.org/10.1002/2015JF003662, 2016.
Schaller, M. and Ehlers, T. A.: Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological
gradient (Chile) to global observations, Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, 2022.
Schaller, M., Ehlers, T. A., Lang, K. A. H., Schmid, M., and Fuentes-Espoz,
J. P.: Addressing the contribution of climate and vegetation cover on
hillslope denudation, Chilean Coastal Cordillera (26∘–38∘ S), Earth Planet. Sc. Lett., 489, 111–122, https://doi.org/10.1016/j.epsl.2018.02.026, 2018.
Schwanghart, W. and Scherler, D.: Short Communication: Topo Toolbox 2 –
MATLAB-based software for topographic analysis and modeling in Earth surface
sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
SERNAGEOMIN: Mapa Geológico de Chile: versión digital, Servicio
Nacional de Geología y Minería, Publicación Geológica
Digital No. 4, SERNAGEOMIN [data set], http://www.ipgp.fr/~dechabal/Geol-millon.pdf (last access: 5 April 2022), 2003.
Shobe, C. M., Tucker, G. E., and Anderson, R. S.: Hillslope-derived blocks
retard river incision, Geophys. Res. Lett., 43, 5070–5078, https://doi.org/10.1002/2016GL069262, 2016.
Sklar, L. S. and Dietrich, W. E.: Sediment and rock strength controls on
river incision into bedrock, Geology, 29, 1087–1090,
https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., and Merces, V.: The problem of predicting the size distribution of sediment supplied by hillslopes to rivers, Geomorphology, 277, 31–49, https://doi.org/10.1016/j.geomorph.2016.05.005, 2017.
Sklar, L. S., Riebe, C. S., Genetti, J., Leclere, S., and Lukens, C. E.:
Downvalley fining of hillslope sediment in an alpine catchment: implications
for downstream fining of sediment flux in mountain rivers, Earth Surf. Proc.
Land., 45, 1828–1845, https://doi.org/10.1002/esp.4849, 2020.
Small, E. E., Anderson, R. S., Repka, J. L., and Finkel, R.: Erosion rates
of alpine bedrock summit surfaces deduced from in situ 10Be and 26A1, Earth Planet. Sc. Lett., 150, 413–425, https://doi.org/10.1016/S0012-821X(97)00092-7, 1997.
St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., and
Martel, S. J.: Geophysical imaging reveals topographic stress control of
bedrock weathering, Geomorphology, 350, 534–538, https://doi.org/10.1126/science.aab2210, 2015.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Solid, 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Terweh, S., Hassan, M. A., Mao, L., Schrott, L., and Hoffmann, T. O.:
Bio-climate affects hillslope and fluvial sediment grain size along the
Chilean Coastal Cordillera, Geomorphology, 384, 107700,
https://doi.org/10.1016/j.geomorph.2021.107700, 2021.
Thaler, E. A. and Covington, M. D.: The influence of sandstone caprock
material on bedrock channel steepness within a tectonically passive setting:
Buffalo National River Basin, Arkansas, USA, J. Geophys. Res.-Earth, 121, 1635–1650, https://doi.org/10.1002/2015JF003771, 2016.
van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.:
Cosmogenic 10Be in river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, 2019.
Verdian, J. P., Sklar, L. S., Riebe, C. S., and Moore, J. R.: Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes, Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, 2021.
von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.: Cosmogenic nuclide
evidence for low weathering and denudation in the wet, tropical highlands of
Sri Lanka, J. Geophys. Res., 109, F03008, https://doi.org/10.1029/2003JF000049, 2004.
Zernitz, E. R.: Drainage patterns and their significance, J. Geol., 40, 498–521, https://doi.org/10.1086/623976, 1932.
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing...