Articles | Volume 6, issue 3
https://doi.org/10.5194/esurf-6-723-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-723-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Holocene channel pattern change from laterally stable to meandering – a palaeohydrological reconstruction
Soil Geography and Landscape Group, Wageningen University &
Research, Wageningen, P.O. Box 47, 6700AA, the Netherlands
Maarten G. Kleinhans
Department of Physical Geography, Utrecht University, Utrecht, P.O. Box 80125, 3508TC, the Netherlands
Bart Makaske
Soil Geography and Landscape Group, Wageningen University &
Research, Wageningen, P.O. Box 47, 6700AA, the Netherlands
Wim Z. Hoek
Department of Physical Geography, Utrecht University, Utrecht, P.O. Box 80125, 3508TC, the Netherlands
Cindy Quik
Soil Geography and Landscape Group, Wageningen University &
Research, Wageningen, P.O. Box 47, 6700AA, the Netherlands
Jakob Wallinga
Soil Geography and Landscape Group, Wageningen University &
Research, Wageningen, P.O. Box 47, 6700AA, the Netherlands
Related authors
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Cathelijne R. Stoof, Jasper H. J. Candel, Laszlo A. G. M. van der Wal, and Gert Peek
SOIL, 5, 159–175, https://doi.org/10.5194/soil-5-159-2019, https://doi.org/10.5194/soil-5-159-2019, 2019
Short summary
Short summary
Teaching and outreach of soils is often done with real-life snapshots of soils and sediments in lacquer or glue peels. While it may seem hard, anyone can make such a peel. Illustrated with handmade drawings and an instructional video, we explain how to capture soils in peels using readily available materials. A new twist to old methods makes this safer, simpler, and more successful, and thus a true DIY (do-it-yourself) activity, highlighting the value and beauty of the ground below our feet.
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Short summary
We developed a model to simulate long-term development of soils and landscapes under varying rainfall and land-use conditions to quantify the temporal variation of soil patterns. In natural landscapes, rainfall amount was the dominant factor influencing soil variation, while for agricultural landscapes, landscape position became the dominant factor due to tillage erosion. Our model shows potential for simulating past and future developments of soils in various landscapes and climates.
Arya P. Iwantoro, Maarten van der Vegt, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 413–429, https://doi.org/10.5194/esurf-8-413-2020, https://doi.org/10.5194/esurf-8-413-2020, 2020
Short summary
Short summary
We investigated the effect of tides on the morphodynamic evolution of bifurcations in tide-influenced deltas. Using results from a numerical morphodynamic model (Delft3D), we found that tides cause less asymmetric bifurcations and thereby keep both downstream channels open. Our results explain why avulsion rarely occurs in tide-influenced deltas, whereas it occurs more often in river-dominated deltas.
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Jalal Samia, Arnaud Temme, Arnold Bregt, Jakob Wallinga, Fausto Guzzetti, and Francesca Ardizzone
Nat. Hazards Earth Syst. Sci., 20, 271–285, https://doi.org/10.5194/nhess-20-271-2020, https://doi.org/10.5194/nhess-20-271-2020, 2020
Short summary
Short summary
For the Collazzone study area in Italy, we quantified how much landslides follow others using Ripley's K function, finding that susceptibility is increased within 60 m and 17 years after a previous landslide. We then calculated the increased susceptibility for every pixel and for the 17-time-slice landslide inventory. We used these as additional explanatory variables in susceptibility modelling. Model performance increased substantially with this landslide history component included.
Elizabeth L. Chamberlain and Jakob Wallinga
Earth Surf. Dynam., 7, 723–736, https://doi.org/10.5194/esurf-7-723-2019, https://doi.org/10.5194/esurf-7-723-2019, 2019
Short summary
Short summary
Sand and mud may take many different pathways within a river as they travel from inland to the coast. During the trip, grains may be exposed to daylight, resetting a signal trapped within certain minerals. The signal can be measured in a laboratory to estimate the time since last light exposure. Here, we measure the trapped signal of sand and mud grains from the Mississippi River and its banks. We use this information to infer sediment pathways. Such knowledge is useful for delta management.
Cathelijne R. Stoof, Jasper H. J. Candel, Laszlo A. G. M. van der Wal, and Gert Peek
SOIL, 5, 159–175, https://doi.org/10.5194/soil-5-159-2019, https://doi.org/10.5194/soil-5-159-2019, 2019
Short summary
Short summary
Teaching and outreach of soils is often done with real-life snapshots of soils and sediments in lacquer or glue peels. While it may seem hard, anyone can make such a peel. Illustrated with handmade drawings and an instructional video, we explain how to capture soils in peels using readily available materials. A new twist to old methods makes this safer, simpler, and more successful, and thus a true DIY (do-it-yourself) activity, highlighting the value and beauty of the ground below our feet.
Menno W. Straatsma, Jan M. Fliervoet, Johan A. H. Kabout, Fedor Baart, and Maarten G. Kleinhans
Nat. Hazards Earth Syst. Sci., 19, 1167–1187, https://doi.org/10.5194/nhess-19-1167-2019, https://doi.org/10.5194/nhess-19-1167-2019, 2019
Short summary
Short summary
Climate adaptation of deltas is a hot topic given their high population density in many countries. We quantified trade-offs between hydraulics, potential biodiversity, implementation costs, and the number of land owners involved, using a newly developed tool called RiverScape. With our approach, we move towards finding integrated solutions at the scale of a large river in a delta to support the negotiations among stakeholders in the decision-making process.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Ivar R. Lokhorst, Lisanne Braat, Jasper R. F. W. Leuven, Anne W. Baar, Mijke van Oorschot, Sanja Selaković, and Maarten G. Kleinhans
Earth Surf. Dynam., 6, 883–901, https://doi.org/10.5194/esurf-6-883-2018, https://doi.org/10.5194/esurf-6-883-2018, 2018
Short summary
Short summary
In estuaries, mud sedimentation enhances salt marsh accretion. Here we explore system-scale effects of plants and mud on planform shape and size of estuaries. We coupled Delft3D for hydromorphodynamics with our vegetation model and ran controls for comparison. Effects are greatest at the fluvial–tidal transition, where for the first time in a model, a bedload convergence zone formed. Regardless of local vegetation effects, mud and vegetation cause gradual filling of estuaries over time.
Jasper R. F. W. Leuven, Sanja Selaković, and Maarten G. Kleinhans
Earth Surf. Dynam., 6, 763–778, https://doi.org/10.5194/esurf-6-763-2018, https://doi.org/10.5194/esurf-6-763-2018, 2018
Short summary
Short summary
This paper reports the along-channel variability in occurring bed levels as described by hypsometry in natural estuaries. We found a novel relation between the estuary planform shape and the hypsometric function shape, which implies that it is possible to characterise and predict subwater estuarine morphology and bed levels in data-poor environments.
Cindy Quik and Jakob Wallinga
Earth Surf. Dynam., 6, 705–721, https://doi.org/10.5194/esurf-6-705-2018, https://doi.org/10.5194/esurf-6-705-2018, 2018
Short summary
Short summary
Identifying contemporary river migration rates is often based on aerial photos or recent topographical maps. Here, we propose to use river sediments as an archive to look further back in time using optically stimulated luminescence (OSL) dating and develop a modelling procedure for the joint analysis of dating results and historical maps. The procedure is applied to the Overijsselse Vecht river in The Netherlands, and we show that the river migrated with 0.9–2.6 m yr−1 between 1400 and 1900 CE.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Maarten G. Kleinhans, Maarten van der Vegt, Jasper Leuven, Lisanne Braat, Henk Markies, Arjan Simmelink, Chris Roosendaal, Arjan van Eijk, Paul Vrijbergen, and Marcel van Maarseveen
Earth Surf. Dynam., 5, 731–756, https://doi.org/10.5194/esurf-5-731-2017, https://doi.org/10.5194/esurf-5-731-2017, 2017
Short summary
Short summary
Creating estuaries in the laboratory has been challenging. When the ebb and flood currents are driven by ebb and flood in the sea, they are too weak to move sand. Here we describe how the periodic tilting of an entire experimental set-up leads to ebb and flood currents with similar behaviour as in nature and with enough strength to move sand. This means that this novel set-up now allows for the creation of estuarine landscapes in experiments.
Lisanne Braat, Thijs van Kessel, Jasper R. F. W. Leuven, and Maarten G. Kleinhans
Earth Surf. Dynam., 5, 617–652, https://doi.org/10.5194/esurf-5-617-2017, https://doi.org/10.5194/esurf-5-617-2017, 2017
Short summary
Short summary
Mud raises concern in the short-term management of estuaries, but it is not known whether cohesive mud affects the long-term development of estuaries. We discovered that a small supply of mud from the river confines the estuary by forming stable mudflats on the sides in centuries, whereas estuaries with only sand continue to grow. Mudflats also reduce the shifting of channels and bars. This implies that changes in mud supply in estuaries may have led to changes in shape and dynamics in the past.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
F. Schuurman, M. G. Kleinhans, and H. Middelkoop
Earth Surf. Dynam., 4, 25–45, https://doi.org/10.5194/esurf-4-25-2016, https://doi.org/10.5194/esurf-4-25-2016, 2016
Short summary
Short summary
We studied the propagation of natural and human-induced perturbations in large braided sand-bed rivers using a physics-based 3-D model. The results show that the perturbations not only affect the local morphology but their effects amplify while propagating through the braided network. This occurs by destabilization of bifurcations in combination with reshaping of bars and branches. These results could have a major impact on the assessment of engineering measures in large braided sand-bed rivers.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
A. C. Cunningham, J. Wallinga, N. Hobo, A. J. Versendaal, B. Makaske, and H. Middelkoop
Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, https://doi.org/10.5194/esurf-3-55-2015, 2015
Short summary
Short summary
Rivers transport sediment from mountains to coast, but on the way sediment is trapped and re-eroded multiple times. We looked at Rhine river sediments to see if they preserve evidence of how geomorphic variables have changed over time. We found that measured signals potentially relate to water level and river management practices. These relationships can be treated as hypotheses to guide further research, and our statistical approach will increase the utility of research in this field.
M. G. Kleinhans, T.M. van Rosmalen, C. Roosendaal, and M. van der Vegt
Adv. Geosci., 39, 21–26, https://doi.org/10.5194/adgeo-39-21-2014, https://doi.org/10.5194/adgeo-39-21-2014, 2014
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Downstream rounding rate of pebbles in the Himalaya
A physics-based model for fluvial valley width
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Geomorphic indices for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, Korea
How water, temperature and seismicity control the preparation of massive rock slope failure (Hochvogel, DE/AT)
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
The impact of bedrock meander cutoffs on 50 ka-year-scale incision rates, San Juan River, Utah
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
River suspended-sand flux computation with uncertainty estimation, using water samples and high-resolution ADCP measurements
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Analysis of autogenic bifurcation processes resulting in river avulsion
Bedload transport fluctuations, flow conditions, and disequilibrium ratio at the Swiss Erlenbach stream: results from 27 years of high-resolution temporal measurements
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Coexistence of two dune scales in a lowland river
Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Barchan swarm dynamics from a Two-Flank Agent-Based Model
Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor
Numerical modelling of the evolution of a river reach with a complex morphology to help define future sustainable restoration decisions
Method to evaluate large-wood behavior in terms of the convection equation associated with sediment erosion and deposition
Effects of seasonal variations in vegetation and precipitation on catchment erosion rates along a climate and ecological gradient: insights from numerical modeling
On the use of convolutional deep learning to predict shoreline change
On the use of packing models for the prediction of fluvial sediment porosity
Automated riverbed composition analysis using deep learning on underwater images
Marsh-induced backwater: the influence of non-fluvial sedimentation on a delta's channel morphology and kinematics
Spatial and temporal variations in rockwall erosion rates derived from cosmogenic 10Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland
Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA
Geotechnical controls on erodibility in fluvial impact erosion
Linear-stability analysis of plane beds under flows with suspended loads
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-198, https://doi.org/10.5194/egusphere-2024-198, 2024
Short summary
Short summary
Geomorphic indices were used to understand topographic changes in response to tectonic activity. We applied indices to evaluate the relative tectonic intensity of Ulsan Fault Zone, one of the most active fault zones in Korea. We divided the UFZ into five segments based on spatial variation in intensity. We modelled the landscape evolution of study area and interpreted tectono-geomorphic history that the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-231, https://doi.org/10.5194/egusphere-2024-231, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the earth´s surface. Therefore, we must understand what controls the preparation of such events. By correlating four years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates, where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
EGUsphere, https://doi.org/10.5194/egusphere-2024-71, https://doi.org/10.5194/egusphere-2024-71, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate on the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Jessica Laible, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2348, https://doi.org/10.5194/egusphere-2023-2348, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross section. It merges water samples taken at various positions throughout the cross section with high-resolution acoustic velocity and discharge measurements. The method also determines the sand flux uncertainty and can be easily applied to other sites using the available open-source code.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024, https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Short summary
River bifurcations often show the closure of one branch (avulsion), whose causes are still poorly understood. Our model shows that when one branch stops transporting sediments, the other considerably erodes and captures much more flow, resulting in a self-sustaining process. This phenomenon intensifies when increasing the length of the branches, eventually leading to branch closure. This work may help to understand when avulsions occur and thus to design sustainable river restoration projects.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024, https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary
Short summary
Coastal flooding can cause significant damage to coastal ecosystems, infrastructure, and communities and is expected to increase in frequency with the acceleration of sea level rise. In order to respond to it, it is crucial to measure and model their frequency and intensity. Here, we show deep-learning techniques can be successfully used to automatically detect flooding events from complex coastal imagery, opening the way to real-time monitoring and data acquisition for model development.
Judith Y. Zomer, Bart Vermeulen, and Antonius J. F. Hoitink
Earth Surf. Dynam., 11, 1283–1298, https://doi.org/10.5194/esurf-11-1283-2023, https://doi.org/10.5194/esurf-11-1283-2023, 2023
Short summary
Short summary
Secondary bedforms that are superimposed on large, primary dunes likely play a large role in fluvial systems. This study demonstrates that they can be omnipresent. Especially during peak flows, they grow large and can have steep slopes, likely affecting flood risk and sediment transport dynamics. Primary dune morphology determines whether they continuously or intermittently migrate. During discharge peaks, the secondary bedforms can become the dominant dune scale.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Dominic T. Robson and Andreas C. W. Baas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2900, https://doi.org/10.5194/egusphere-2023-2900, 2023
Short summary
Short summary
We present simulations of large populations (swarms) of a type of sand dune known as barchans. Our findings reveal that the rate at which sand moves inside an asymmetric barchan is vital to the behaviour of swarms and that many observed properties of the dunes can be explained by similar rates. We also show that different directions of the wind and the density of dunes added to swarms play important roles in shaping their evolution.
Christopher Tomsett and Julian Leyland
Earth Surf. Dynam., 11, 1223–1249, https://doi.org/10.5194/esurf-11-1223-2023, https://doi.org/10.5194/esurf-11-1223-2023, 2023
Short summary
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Rabab Yassine, Ludovic Cassan, Hélène Roux, Olivier Frysou, and François Pérès
Earth Surf. Dynam., 11, 1199–1221, https://doi.org/10.5194/esurf-11-1199-2023, https://doi.org/10.5194/esurf-11-1199-2023, 2023
Short summary
Short summary
Predicting river morphology evolution is very complicated, especially for mountain rivers with complex morphologies such as the Lac des Gaves reach in France. A 2D hydromorphological model was developed to reproduce the channel's evolution and provide reliable volumetric predictions while revealing the challenge of choosing adapted sediment transport and friction laws. Our model can provide decision-makers with reliable predictions to design suitable restoration measures for this reach.
Daisuke Harada and Shinji Egashira
Earth Surf. Dynam., 11, 1183–1197, https://doi.org/10.5194/esurf-11-1183-2023, https://doi.org/10.5194/esurf-11-1183-2023, 2023
Short summary
Short summary
This paper proposes a method for describing large-wood behavior in terms of the convection equation and the storage equation, which are associated with active sediment erosion and deposition. Compared to the existing Lagrangian method, the proposed method can easily simulate the behavior of large wood in the flow field with active sediment transport. The method is applied to the flood disaster in the Akatani River in 2017, and the 2-D flood flow computations are successfully performed.
Hemanti Sharma and Todd A. Ehlers
Earth Surf. Dynam., 11, 1161–1181, https://doi.org/10.5194/esurf-11-1161-2023, https://doi.org/10.5194/esurf-11-1161-2023, 2023
Short summary
Short summary
Seasonality in precipitation (P) and vegetation (V) influences catchment erosion (E), although which factor plays the dominant role is unclear. In this study, we performed a sensitivity analysis of E to P–V seasonality through numerical modeling. Our results suggest that P variations strongly influence seasonal variations in E, while the effect of seasonal V variations is secondary but significant. This is more pronounced in moderate and least pronounced in extreme environmental settings.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Christoph Rettinger, Mina Tabesh, Ulrich Rüde, Stefan Vollmer, and Roy M. Frings
Earth Surf. Dynam., 11, 1097–1115, https://doi.org/10.5194/esurf-11-1097-2023, https://doi.org/10.5194/esurf-11-1097-2023, 2023
Short summary
Short summary
Packing models promise efficient and accurate porosity predictions of fluvial sediment deposits. In this study, three packing models were reviewed, calibrated, and validated. Only two of the models were able to handle the continuous and large grain size distributions typically encountered in rivers. We showed that an extension by a cohesion model is necessary and developed guidelines for successful predictions in different rivers.
Alexander A. Ermilov, Gergely Benkő, and Sándor Baranya
Earth Surf. Dynam., 11, 1061–1095, https://doi.org/10.5194/esurf-11-1061-2023, https://doi.org/10.5194/esurf-11-1061-2023, 2023
Short summary
Short summary
A novel, artificial-intelligence-based riverbed sediment analysis methodology is introduced that uses underwater images to identify the characteristic sediment classes. The main novelties of the procedure are as follows: underwater images are used, the method enables continuous mapping of the riverbed along the measurement vessel’s route contrary to conventional techniques, the method is cost-efficient, and the method works without scaling.
Kelly M. Sanks, John B. Shaw, Samuel M. Zapp, José Silvestre, Ripul Dutt, and Kyle M. Straub
Earth Surf. Dynam., 11, 1035–1060, https://doi.org/10.5194/esurf-11-1035-2023, https://doi.org/10.5194/esurf-11-1035-2023, 2023
Short summary
Short summary
River deltas encompass many depositional environments (like channels and wetlands) that interact to produce coastal environments that change through time. The processes leading to sedimentation in wetlands are often neglected from physical delta models. We show that wetland sedimentation constrains flow to the channels, changes sedimentation rates, and produces channels more akin to field-scale deltas. These results have implications for the management of these vulnerable coastal landscapes.
Katharina Wetterauer and Dirk Scherler
Earth Surf. Dynam., 11, 1013–1033, https://doi.org/10.5194/esurf-11-1013-2023, https://doi.org/10.5194/esurf-11-1013-2023, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five Swiss glaciers around Pigne d'Arolla indicate an increase in erosion from the end of the Little Ice Age towards deglaciation but temporally more stable rates over the last ∼100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate-type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock, which can protect the more fractured sandstone bedrock from erosion.
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
Earth Surf. Dynam., 11, 979–994, https://doi.org/10.5194/esurf-11-979-2023, https://doi.org/10.5194/esurf-11-979-2023, 2023
Short summary
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023, https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Short summary
We investigated the influence of sediment transport modes on the formation of bedforms using theoretical analysis. The results of the theoretical analysis were verified with published data of plane beds obtained by fieldwork and laboratory experiments. We found that suspended sand particles can promote the formation of plane beds on a fine-grained bed, which suggests that the presence of suspended particles suppresses the development of dunes under submarine sediment-laden gravity currents.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Cited articles
Agrawal, Y., McCave, I., and Riley, J.: Laser diffraction size analysis,
Principles, methods, and application of particle size analysis, Cambridge
University Press, New York, 119–128, 1991.
Allen, J. R. L.: The sedimentation and palaeogeography of the Old Red
Sandstone of Anglesey, north Wales, P. Yorks. Geol. Soc., 35, 139–185, 1965.
Archer, D.: Land of Singing Waters-rivers and great floods of Northumbria,
Spredden Press, 1992.
Baden, W. and Eggelsmann, R.: Der Wasserkreislauf eines nordwestdeutschen
Hochmoores, The water balance of a high moor in northwest Germany,
Schriftenreihe des Kuratoriums fur Kulturbauwesen, 12, 156 pp., 1964.
Baird, A. J., Eades, P. A., and Surridge, B. W.: The hydraulic structure of a
raised bog and its implications for ecohydrological modelling of bog
development, Ecohydrology, 1, 289–298, 2008.
Behringer, W.: Climatic change and witch-hunting: the impact of the Little
Ice Age on mentalities, Climate Change, 43, 335–351, 1999.
Berendsen, H. J. and Stouthamer, E.: Palaeogeographic development of the
Rhine-Meuse delta, the Netherlands, Koninklijke van Gorcum, 2001.
Beschta, R. L. and Ripple, W. J.: The role of large predators in maintaining
riparian plant communities and river morphology, Geomorphology, 157, 88–98,
2012.
Borger, G. J.: Draining – digging – dredging; the creation of a new
landscape in the peat areas of the low countries, in: Fens and bogs in the
Netherlands, edited by: Verhoeven, J. T. A., Springer, Geobotany, 1992.
Bos, I. J., Busschers, F. S., and Hoek, W. Z.: Organic-facies determination:
a key for understanding facies distribution in the basal peat layer of the
Holocene Rhine-Meuse delta, The Netherlands, Sedimentology, 59, 676–703,
2012.
Brewer, P. and Lewin, J.: Planform cyclicity in an unstable reach: complex
fluvial response to environmental change, Earth Surf. Proc. Land., 23,
989–1008, 1998.
Bronk Ramsey, C.: OxCal Program v4. 2, available at:
http://www.rlaha.ox.ac.uk/orau/oxcal.html (last access: 13 March 2017),
2009.
Brownlie, W. R.: Flow depth in sand-bed channels, J. Hydraul. Eng., 109,
959–990, 1983.
Burke, W.: Effect of drainage on the hydrology of blanket bog, Irish J. Agr.
Res., 14, 145–162, 1975.
Candel, J. H. J., Makaske, B., Storms, J. E. A., and Wallinga, J.: Oblique
aggradation: a novel explanation for sinuosity of low-energy streams in
peat-filled valley systems, Earth Surf. Proc. Land., 42, 2679–2696, 2017.
Candel, J. H. J., Makaske, B., Kijm, N., Storms, J. E. A., and Wallinga, J.:
Decreasing lateral migration and increasing planform complexity of the Dommel
River during the Holocene, NCR Days 2018 Proceedings, 42-2018, 32–33, 2018.
Casparie, W. A. and Streefkerk, J.: Climatological, stratigraphic and
palaeo-ecological aspects of mire development, in: Fens and Bogs in the
Netherlands, Springer, Kluwer Academic Publishers, Dordrecht, 1992.
Conway, V. and Millar, A.: The hydrology of some small peat-covered
catchments in the northern Pennines, J. Inst. Wat. Eng., 14, 415–424, 1960.
Crosato, A. and Mosselman, E.: Simple physics-based predictor for the number
of river bars and the transition between meandering and braiding, Water
Resour. Res., 45, W03424, https://doi.org/10.1029/2008WR007242, 2009.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial
archives using robust OSL chronologies, Quat. Geochronol., 12, 98–106, 2012.
De Bakker, H. and Schelling, J.: Systeem van bodemclassificatie voor
Nederland, De hogere niveaus, Grondboor & Hamer, 20, 229–229, 1966.
De Moor, J., Kasse, C., Van Balen, R., Vandenberghe, J., and Wallinga, J.:
Human and climate impact on catchment development during the Holocene–Geul
River, the Netherlands, Geomorphology, 98, 316–339, 2008.
Driessen, A. M. A. J., Van de Ven, G. P., and Wasser, H. J.: Gij beken eeuwig
vloeijend, Water in de streek van Rijn en IJssel, Matrijs, Utrecht, 2000.
Dury, G.: Magnitude-frequency analysis and channel morphology, Fluvial
Geomorphology: New York, State University of New York, 91–121, 1973.
Eekhout, J., Fraaije, R., and Hoitink, A.: Morphodynamic regime change in a
reconstructed lowland stream, Earth Surf. Dynam., 2, 279–293, 2014.
Engelund, F. and Hansen, E.: A monograph on sediment transport in alluvial
streams, Tekniskforlag Skelbrekgade 4 Copenhagen V, Denmark, 1967.
Ferguson, R.: Hydraulic and sedimentary controls of channel pattern, River
channels: environment and process, in: River channels: environment and
process, edited by: Richards, K. S., Blackwell, Oxford, UK, 129–158, 1987.
Fohrer, N., Haverkamp, S., Eckhardt, K., and Frede, H.-G.: Hydrologic
response to land use changes on the catchment scale, Phys. Chem. Earth. Pt.
B, 26, 577–582, 2001.
Friedkin, J. F.: Laboratory study of the meandering of alluvial rivers,
Vicksburg, Mississippi, 1945.
Gerding, M.: Vier eeuwen turfwinning, De verveningen in Groningen, Friesland,
Drenthe en Overijssel tussen, 1550, 1995.
Gibling, M. R. and Davies, N. S.: Palaeozoic landscapes shaped by plant
evolution, Nat. Geosci., 5, 99–105, 2012.
Glaser, R. and Stangl, H.: Historical floods in the Dutch Rhine Delta, Nat.
Hazards Earth Syst. Sci., 3, 605–613,
https://doi.org/10.5194/nhess-3-605-2003, 2003.
Glaser, R., Riemann, D., Schönbein, J., Barriendos, M., Brázdil, R.,
Bertolin, C., Camuffo, D., Deutsch, M., Dobrovolný, P., and van Engelen,
A.: The variability of European floods since AD 1500, Climatic Change, 101,
235–256, 2010.
Grove, J.: The Little Ice Age, 498 pp., Methuen, London, 1988.
Gurnell, A.: Plants as river system engineers, Earth Surf. Proc. Land., 39,
4–25, 2014.
Hesselink, A. W., Weerts, H. J., and Berendsen, H. J.: Alluvial architecture
of the human-influenced river Rhine, The Netherlands, Sediment. Geol., 161,
229–248, 2003.
Hickin, E. J. and Nanson, G. C.: Lateral migration rates of river bends, J.
Hydraul. Eng., 110, 1557–1567, 1984.
Hobo, N.: The sedimentary dynamics in natural and human-influenced delta
channel belts, Utrecht Stud Earth Sci., 97–200, 2015.
Hobo, N., Makaske, B., Wallinga, J., and Middelkoop, H.: Reconstruction of
eroded and deposited sediment volumes of the embanked River Waal, the
Netherlands, for the period ad 1631–present, Earth Surf. Proc. Land., 39,
1301–1318, 2014.
Hoffmann, T., Lang, A., and Dikau, R.: Holocene river activity: analysing
14C-dated fluvial and colluvial sediments from Germany, Quaternary Sci. Rev.,
27, 2031–2040, 2008.
Holden, J., Chapman, P., and Labadz, J.: Artificial drainage of peatlands:
hydrological and hydrochemical process and wetland restoration, Prog. Phys.
Geog., 28, 95–123, 2004.
Holden, J., Evans, M., Burt, T., and Horton, M.: Impact of land drainage on
peatland hydrology, J. Environ. Qual., 35, 1764–1778, 2006.
Huisink, M.: Changing river styles in response to Weichselian climate changes
in the Vecht valley, eastern Netherlands, Sediment. Geol., 133, 115–134,
2000.
Janssens, M. M., Kasse, C., Bohncke, S. J. P., Greaves, H., K. M. Cohen, N.,
Wallinga, J., and Hoek, W. Z.: Climate-driven fluvial development and valley
abandonment at the last glacial-interglacial transition (Oude IJssel-Rhine,
Germany), Neth. J. Geosci., 91, 37–62, 2012.
Kadaster: Topographische en Militaire Kaart van het Koninkrijk der
Nederlanden, 1:50.000, map sheet 22 (publication date 1859), Kadaster,
Apeldoorn, Digital file, 2018.
Kasse, C., Hoek, W. Z., Bohncke, S. J. P., Konert, M., Weijers, J. W. H.,
Cassee, M. L., and Van Der Zee, R. M.: Late Glacial fluvial response of the
Niers-Rhine (western Germany) to climate and vegetation change, J. Quaternary
Sci., 20, 377–394, 2005.
Kasse, C., Van Balen, R., Bohncke, S., Wallinga, J., and Vreugdenhil, M.:
Climate and base-level controlled fluvial system change and incision during
the last glacial–interglacial transition, Roer river, The
Netherlands–western Germany, Neth. J. Geosci., 96, 71–92, 2016.
Kleinhans, M. G.: Sorting out river channel patterns, Prog. Phys. Geog., 34,
287–326, 2010.
Kleinhans, M. G. and Van den Berg, J. H.: River channel and bar patterns
explained and predicted by an empirical and a physics-based method, Earth
Surf. Proc. Land., 36, 721–738, 2011.
Kleinhans, M. G., Schuurman, F., Bakx, W., and Markies, H.: Meandering
channel dynamics in highly cohesive sediment on an intertidal mud flat in the
Westerschelde estuary, the Netherlands, Geomorphology, 105, 261–276, 2009.
Kondolf, G. M., Piégay, H., and Landon, N.: Channel response to increased
and decreased bedload supply from land use change: contrasts between two
catchments, Geomorphology, 45, 35–51, 2002.
Koster, E. A., Castel, I. I., and Nap, R. L.: Genesis and sedimentary
structures of late Holocene aeolian drift sands in northwest Europe, Geol.
Soc. Spec. Publ., 72, 247–267, 1993.
Leeder, M.: Fluviatile fining-upwards cycles and the magnitude of
palaeochannels, Geol. Mag., 110, 265–276, 1973.
Lenke, W.: Das Klima Ende des 16. und Anfang des 17. Jahrhunderts nach
Beobachtungen von Tycho de Brahe auf Hven im Sund DK, Leopold III, Treutwein
in Fiirstenfeld Oberbayern und David Fabricius in Ostfriesland, Berichte des
Dt. Wetterdienstes, 15, 1968.
Leopold, L. B. and Wolman, M. G.: River channel patterns: braided,
meandering, and straight, USGS Professional Paper, 1957, 39–86, 1957.
Lespez, L., Viel, V., Rollet, A., and Delahaye, D.: The anthropogenic nature
of present-day low energy rivers in western France and implications for
current restoration projects, Geomorphology, 251, 64–76, 2015.
Lewin, J. and Macklin, M. G.: Floodplain catastrophes in the UK Holocene:
messages for managing climate change, Hydrol. Process., 24, 2900–2911, 2010.
Lewin, J., Davies, B., and Wolfenden, P.: Interactions between channel change
and historic mining sediments, Wiley, New York, 1977.
Liébault, F. and Piégay, H.: Assessment of channel changes due to
long-term bedload supply decrease, Roubion River, France, Geomorphology, 36,
167–186, 2001.
Maas, G.: De Overijsselse Vecht – Geomorfogenetische gesteldheid anno 1890,
DLO – Staring Centrum Wageningen, Wageningen, 1995.
Macklin, M. G., Jones, A. F., and Lewin, J.: River response to rapid Holocene
environmental change: evidence and explanation in British catchments,
Quaternary Sci. Rev., 29, 1555–1576, 2010.
Makaske, B., Smith, D. G., Berendsen, H. J. A., de Boer, A. G., van
Nielen-Kiezebrink, M. F., and Locking, T.: Hydraulic and sedimentary
processes causing anastomosing morphology of the upper Columbia River,
British Columbia, Canada, Geomorphology, 111, 194–205, 2009.
Manley, G.: Snowfall in Britain over the past 300 years, Weather, 24,
428–437, 1969.
Millar, R. G.: Influence of bank vegetation on alluvial channel patterns,
Water Resour. Res., 36, 1109–1118, 2000.
Mudelsee, M., Börngen, M., Tetzlaff, G., and Grünewald, U.: No upward
trends in the occurrence of extreme floods in central Europe, Nature, 425,
166–169, 2003.
Mudelsee, M., Börngen, M., Tetzlaff, G., and Grünewald, U.: Extreme
floods in central Europe over the past 500 years: Role of cyclone pathway
“Zugstrasse Vb”, J. Geophys. Res.-Atmos., 109, D23101,
https://doi.org/10.1029/2004JD005034, 2004.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Radiat. Meas., 37,
377–381, 2003.
Nanson, G. C. and Croke, J. C.: A genetic classification of floodplains,
Geomorphology, 4, 459–486, 1992.
Nanson, G. C. and Knighton, A. D.: Anabranching rivers: their cause,
character and classification, Earth Surf. Proc. Land., 21, 217–239, 1996.
Neal, A.: Ground-penetrating radar and its use in sedimentology: principles,
problems and progress, Earth-Sci. Rev., 66, 261–330, 2004.
Neefjes, J., Brinkkemper, O., Jehee, L., and Van de Griendt, W.:
Cultuur-historische atlas van de Vecht, WBooks, Zwolle, 2011.
Nimmo, J.: Porosity and pore size distribution, in: Encyclopedia of Soils in
the Environment, edited by: Hillel, D., Columbia University, New York, NY,
USA, Elsevier Academic Press, Amsterdam, 3, 295–303, 2004.
Notebaert, B. and Verstraeten, G.: Sensitivity of West and Central European
river systems to environmental changes during the Holocene: A review,
Earth-Sci. Rev., 103, 163–182, 2010.
Notebaert, B., Broothaerts, N., and Verstraeten, G.: Evidences of
anthropogenic tipping points in fluvial dynamics in Europe, Global Planet.
Change, 164, 27–38, 2018.
Oorschot, M. v., Kleinhans, M., Geerling, G., and Middelkoop, H.: Distinct
patterns of interaction between vegetation and morphodynamics, Earth Surf.
Proc. Land., 41, 791–808, 2016.
Parker, G.: Transport of gravel and sediment mixtures, in: Sedimentation
engineering: Processes, measurements, modeling, and practice, edited by:
Garcia, M. H., Am. Soc. of Civ. Eng., New York, 110, 165–252, 2008.
Passmore, D. G., Macklin, M. G., Brewer, P. A., Lewin, J., Rumsby, B. T., and
Newson, M. D.: Variability of late Holocene braiding in Britain, Geol. Soc.
Spec. Publ., 75, 205–229, 1993.
Peakall, J., Ashworth, P. J., and Best, J. L.: Meander-bend evolution,
alluvial architecture, and the role of cohesion in sinuous river channels: a
flume study, J. Sediment. Res., 77, 197–212, 2007.
Quik, C. and Wallinga, J.: Reconstructing lateral migration rates in
meandering systems; a novel Bayesian approach combining OSL dating and
historical maps, Earth Surf. Dynam. Discuss.,
https://doi.org/10.5194/esurf-2018-30, in review, 2018.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.:
IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal
BP, Radiocarbon, 51, 1111–1150, 2013.
Rumsby, B. T. and Macklin, M. G.: River response to the last neoglacial (the
“Little Ice Age”) in northern, western and central Europe, Geol. Soc. Spec.
Publ., 115, 217–233, 1996.
Seminara, G.: Meanders, J. Fluid Mech., 554, 271–297, 2006.
Słowik, M.: Transformation of a lowland river from a meandering and
multi-channel pattern into an artificial canal: retracing a path of river
channel changes (the Middle Obra River, W Poland), Reg. Environ. Change, 13,
1287–1299, 2013.
Słowik, M.: Is history of rivers important in restoration projects? The
example of human impact on a lowland river valley (the Obra River, Poland),
Geomorphology, 251, 50–63, 2015.
Staring, W. C. A. and Stieltjes, T. J.: De Overijsselsche wateren, s.n.,
Zwolle, 1848.
Streefkerk, J. and Casparie, W.: De hydrologie van hoogveen systemen,
Staatsbosbeheer-rapport, 19, 1–119, 1987.
Struiksma, N., Olesen, K., Flokstra, C., and de Vriend, H.: Bed deformation
in curved alluvial channels, J. Hydraul. Res., 23, 57–79, 1985.
Surian, N. and Rinaldi, M.: Morphological response to river engineering and
management in alluvial channels in Italy, Geomorphology, 50, 307–326, 2003.
Talmon, A., Struiksma, N., and Van Mierlo, M.: Laboratory measurements of the
direction of sediment transport on transverse alluvial-bed slopes, J.
Hydraul. Res., 33, 495–517, 1995.
TAUW: Bouwstenen voor een natuurontwikkelingsvisie voor de Overijsselse
Vecht, Directie Natuur, Bos, Landschap en Fauna, nr. 3187381., Deventer,
1992.
Ter Wee, M.: Toelichtingen bij de geologische kaart van Nederland 1:50 000:
blad Steenwijk oost (16 O), Geologische Stichting, 1966.
Toonen, W. H. J., Kleinhans, M. G., and Cohen, K. M.: Sedimentary
architecture of abandoned channel fills, Earth Surf. Proc. Land., 37,
459–472, 2012.
Trimble, S. W. and Mendel, A. C.: The cow as a geomorphic agent – a critical
review, Geomorphology, 13, 233–253, 1995.
Turowski, J. M., Hovius, N., Meng-Long, H., Lague, D., and Men-Chiang, C.:
Distribution of erosion across bedrock channels, Earth Surf. Proc. Land., 33,
353–363, 2008.
Uhden, O.: Niederschlags-und Abflußbeobachtungen auf unberührten,
vorentwässerten und kultivierten Teilen eines nordwestdeutschen
Hochmoores, der Esterweger Dose am Küstenkanal bei Papenburg, Verlag
Wasser und Boden, Hamburg, 1967.
Van Beek, R. and Groenewoudt, B.: An Odyssey along the River Vecht in the
Dutch-German border area: A Regional Analysis of Roman-period Sites in
Germania Magna, Germania, 89, 157–190, 2011.
Van Beek, R., Gouw-Bouman, M., and Bos, J.: Mapping regional vegetation
developments in Twente (the Netherlands) since the Late Glacial and
evaluating contemporary settlement patterns, Neth. J. Geosci., 94, 229–255,
2015a.
Van Beek, R., Maas, G. J., and van den Berg, E.: Home Turf: an
interdisciplinary exploration of the long-term development, use and
reclamation of raised bogs in the Netherlands, Landscape History, 36, 5–34,
2015b.
Van de Lageweg, W. I., van Dijk, W. M., Box, D., and Kleinhans, M. G.:
Archimetrics: a quantitative tool to predict three-dimensional meander belt
sandbody heterogeneity, The Depositional Record, 2, 22–46, 2016.
Van de Meene, E., Van der Staay, J., and Teoh, L. H.: The Van der Staay
suction-corer: a simple apparatus for drilling in sand below groundwater
table, Rijks Geologische Dienst, 1979.
Van den Berg, J. H. and Gelder, A.: Prediction of suspended bed material
transport in flows over silt and very fine sand, Water Resour. Res., 29,
1393–1404, 1993.
Van den Berg, J. H.: Prediction of alluvial channel pattern of perennial
rivers, Geomorphology, 12, 259–279, 1995.
Van der Linden, J. A.: Topographische en Militaire kaart van het Koningrijk
der Nederlanden, Fibula-Van Dischoeck, 1973.
Van der Schaaf, S.: Analysis of the hydrology of raised bogs in the Irish
Midlands: a case study of Raheenmore Bog and Clara Bog, PhD, Wageningen
Agricultural University, Wageningen, 1999.
Van Dijk, W., Lageweg, W., and Kleinhans, M.: Experimental meandering river
with chute cutoffs, J. Geophys. Res.-Earth, 117, F03023,
https://doi.org/10.1029/2011JF002314, 2012.
Van Engelen, A. F., Buisman, J., and Ijnsen, F.: A millennium of weather,
winds and water in the low countries, In: History and Climate, Springer,
2001.
Van Heerd, R. and Van't Zand, R.: Productspecificatie Actueel Hoogtebestand
Nederland, Rijkswaterstaat Meetkundige Dienst, Delft, 1999.
Van Heteren, S., Fitzgerald, D. M., Mckinlay, P. A., and Buynevich, I. V.:
Radar facies of paraglacial barrier systems: coastal New England, USA,
Sedimentology, 45, 181–200, 1998.
Vandenberghe, J.: Timescales, climate and river development, Quaternary Sci.
Rev., 14, 631–638, 1995.
Vandenberghe, J.: The relation between climate and river processes, landforms
and deposits during the Quaternary, Quaternary Int., 91, 17–23, 2002.
Vandenberghe, J., Kasse, C., Bohncke, S., and Kozarski, S.: Climate-related
river activity at the Weichselian-Holocene transition: a comparative study of
the Warta and Maas rivers, Terra Nova, 6, 476–485, 1994.
Vargas-Luna, A., Crosato, A., Hoitink, A., Groot, J., and Uijttewaal, W.:
Effects of riparian vegetation development in a restored lowland stream, in:
River Flow 2016, CRC Press, 2016.
Vos, P., Bazelmans, J., Weerts, H., and Van der Meulen, M.: Atlas van
Nederland in het Holoceen, Bakker, Amsterdam, 2011.
Williams, G. P.: River meanders and channel size, J. Hydrol., 88, 147–164,
1986.
Wolfert, H. and Maas, G.: Downstream changes of meandering styles in the
lower reaches of the River Vecht, the Netherlands, Neth. J. Geosci., 86,
257–271, 2007.
Wolfert, H. P., Maas, G., and Dirkx, G.: Het meandergedrag van de
Overijsselse Vecht: historische morfodynamiek en kansrijkdom voor
natuurontwikkeling, DLO-Staring Centrum, 1996.
Wolman, M. G. and Miller, J. P.: Magnitude and frequency of forces in
geomorphic processes, J. Geol., 68, 54–74, 1960.
Short summary
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a meandering river ca. 500 years ago. We developed a methodology to reconstruct the historical discharge and found that the change in river style was caused by an increase in peak discharges. This increase was likely caused by the Little Ice Age and land use changes in the catchment (peat reclamation and exploitation). This study shows how river style changes as a result of discharge regime changes.
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a...