Articles | Volume 6, issue 4
https://doi.org/10.5194/esurf-6-933-2018
https://doi.org/10.5194/esurf-6-933-2018
Research article
 | 
25 Oct 2018
Research article |  | 25 Oct 2018

Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach

Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal

Related authors

On the relative role of abiotic and biotic controls in channel network development: insights from scaled tidal flume experiments
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024,https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Estuarine morphodynamics and development modified by floodplain formation
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022,https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020,https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Morphological evolution of bifurcations in tide-influenced deltas
Arya P. Iwantoro, Maarten van der Vegt, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 413–429, https://doi.org/10.5194/esurf-8-413-2020,https://doi.org/10.5194/esurf-8-413-2020, 2020
Short summary
Towards multi-objective optimization of large-scale fluvial landscaping measures
Menno W. Straatsma, Jan M. Fliervoet, Johan A. H. Kabout, Fedor Baart, and Maarten G. Kleinhans
Nat. Hazards Earth Syst. Sci., 19, 1167–1187, https://doi.org/10.5194/nhess-19-1167-2019,https://doi.org/10.5194/nhess-19-1167-2019, 2019
Short summary

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024,https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Evaluating the accuracy of binary classifiers for geomorphic applications
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024,https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024,https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023,https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary

Cited articles

Alho, P., Kukko, A., Hyyppä, H., Kaartinen, H., Hyyppä, J., and Jaakkola, A.: Application of boat-based laser scanning for river survey, Earth Surf. Proc. Land., 34, 1831–1838, https://doi.org/10.1002/esp.1879, 2009. 
ASCE Task Committee on Hydraulics: Bank Mechanics, and Modeling of River Width Adjustment. River width adjustment. I: Processes and mechanisms, J. Hydraul. Eng., 124, 881–902, https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(881), 1998. 
Bailly, J. S., Kinzel, P. J., Allouis, T., Feurer, D., and Le Coarer, Y.: Airborne LiDAR methods applied to riverine environments, in: Fluvial Remote Sensing for Science and Management, edited by: Carbonneau, P. E. and Piegay, H., Wiley-Blackwell, Chichester, UK, 141–161, https://doi.org/10.1002/9781119940791.ch7, 2012. 
Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B., and Jordan, C.: A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers, Geomorphology, 206, 343–361, https://doi.org/10.1016/j.geomorph.2013.10.010, 2014. 
Barker, R., Dixon, L., and Hooke, J.: Use of terrestrial photogrammetry for monitoring and measuring bank erosion, Earth Surf. Proc. Land., 22, 1217–1227, https://doi.org/10.1002/(SICI)1096-9837(199724)22:13<1217::AID-ESP819>3.0.CO;2-U, 1997. 
Download
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.