Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-289-2020
https://doi.org/10.5194/esurf-8-289-2020
Research article
 | 
27 Apr 2020
Research article |  | 27 Apr 2020

Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic 21Ne

Michal Ben-Israel, Ari Matmon, Alan J. Hidy, Yoav Avni, and Greg Balco

Related authors

Krypton-85 chronometry of spent nuclear fuel
Greg Balco, Andrew J. Conant, Dallas D. Reilly, Dallin Barton, Chelsea D. Willett, and Brett H. Isselhardt
Geochronology, 6, 571–584, https://doi.org/10.5194/gchron-6-571-2024,https://doi.org/10.5194/gchron-6-571-2024, 2024
Short summary
The Laurentide Ice Sheet in southern New England and New York during and at the end of the Last Glacial Maximum: a cosmogenic-nuclide chronology
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
Clim. Past, 20, 2167–2190, https://doi.org/10.5194/cp-20-2167-2024,https://doi.org/10.5194/cp-20-2167-2024, 2024
Short summary
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024,https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-18,https://doi.org/10.5194/gchron-2024-18, 2024
Revised manuscript accepted for GChron
Short summary

Related subject area

Cross-cutting themes: establish timing and rates of Earth surface processes by applying geochronology
Cosmogenic nuclide-derived downcutting rates of canyons within large limestone plateaus of southern Massif Central (France) reveal a different regional speleogenesis of karst networks
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024,https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship
Yuntao Tian, Lili Pan, Guihong Zhang, and Xinbo Yao
Earth Surf. Dynam., 12, 477–492, https://doi.org/10.5194/esurf-12-477-2024,https://doi.org/10.5194/esurf-12-477-2024, 2024
Short summary
Bias and error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene erosion rate
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021,https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Evaluating optically stimulated luminescence rock surface exposure dating as a novel approach for reconstructing coastal boulder movement on decadal to centennial timescales
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021,https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Modelling the effects of ice transport and sediment sources on the form of detrital thermochronological age probability distributions from glacial settings
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020,https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary

Cited articles

Allen, P. A.: From landscapes into geological history, Nature, 451, 274–276, https://doi.org/10.1038/nature06586, 2008. 
Amit, R., Enzel, Y., and Sharon, D.: Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems, Geology, 34, 509–512, https://doi.org/10.1130/G22354.1, 2006. 
Anderson, R. S., Repka, J. L., and Dick, G. S.: Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al, Geology, 24, 47–51, https://doi.org/10.1130/0091-7613(1996)024<0047:ETOIID>2.3.CO;2, 1996. 
Avni, Y., Bartov, Y., Ginat, H., and Ginata, H.: The Arava Formation – A Pliocene sequence in the Arava Valley and its western margin, southern Israel, Isr. J. Earth Sci., 50, 101–120, https://doi.org/10.1092/5U6A-RM5E-M8E3-QXM7 https://doi.org/10.1560/W8WL-JU3Y-KM7W-8LX4, 2001. 
Avni, Y., Segev, A., and Ginat, H.: Oligocene regional denudation of the northern Afar dome: Pre- and syn-breakup stages of the Afro-Arabian plate, Bull. Geol. Soc. Am., 124, 1871–1897, https://doi.org/10.1130/B30634.1, 2012. 
Download
Short summary
Early-to-mid Miocene erosion rates were inferred using cosmogenic 21Ne measured in chert pebbles transported by the Miocene Hazeva River (~ 18 Ma). Miocene erosion rates are faster compared to Quaternary rates in the region. Faster Miocene erosion rates could be due to a response to topographic changes brought on by tectonic uplift, wetter climate in the region during the Miocene, or a combination of both.