Articles | Volume 10, issue 1
https://doi.org/10.5194/esurf-10-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
Yizhang Wei
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Yining Chen
Second Institute of Oceanography, Ministry of Natural Resources,
Hangzhou, 310012, China
Jufei Qiu
East Sea Marine Environmental Investigating and Surveying Centre,
State Oceanic Administration of China, Shanghai, 310115, China
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Jiangsu Key Laboratory of Coast Ocean Resources Development and
Environment Security, Hohai University, Nanjing, 210098, China
Peng Yao
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Qin Jiang
Jiangsu Key Laboratory of Coast Ocean Resources Development and
Environment Security, Hohai University, Nanjing, 210098, China
Zheng Gong
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Giovanni Coco
Faculty of Science, University of Auckland, Private Bag 92019,
Auckland, New Zealand
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Ian Townend
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Ocean and Earth Sciences, University of Southampton, Southampton SO17 1BJ, UK
Changkuan Zhang
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Related authors
No articles found.
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292, https://doi.org/10.5194/egusphere-2025-2292, 2025
Short summary
Short summary
This study evaluates the performance of an early warning system for coastal flooding operating at a beach scale. The system is found to effectively capture total water level exceedances based on predefined morphological thresholds and trigger timely warnings, particularly under energetic sea conditions. Its forecasts are found to align well with selected overwash/flood events of varying magnitude and duration, captured by an on-site coastal video monitoring station.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Xue Chen, Zeng Zhou, Qiang He, Heyue Zhang, Tjeerd Bouma, Zheng Gong, Ian Townend, and Changkuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-280, https://doi.org/10.5194/egusphere-2022-280, 2022
Preprint withdrawn
Short summary
Short summary
We carry out a two-year continuous observation in the northern Jiangsu Coast. Our results show that: The distribution of crab burrows was unimodal across the shore in cold seasons, and bimodal in warm seasons. The density of crab burrows was lower in sites with stronger hydrodynamics and lower suspended sediment concentration. The governing factors of crab burrow distribution in cold seasons were organic matter content and soil salinity, while in warm seasons water content also played a role.
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75, https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Overtide is a shallow water tidal component and its interaction with astronomical tides induces tidal wave deformation, which is an important process that controls sediment transport. We use a numerical tidal model to examine overtide changes in estuaries under varying river discharges and find spatially nonlinear changes and the threshold of an intermediate river that benefits maximal overtide generation. The findings inform management of sediment transport and flooding risk in estuaries.
Cited articles
Andriani, G. F. and Walsh, N.: Rocky coast geomorphology and erosional
processes: a case study along the Murgia coastline South of Bari,
Apulia–SE Italy, Geomorphology, 87, 224–238, 2007.
Chen, F., Liu, W., Chen, R., Lin, R., Xu, Q., Chen, Y., Qiu, H., and Zhou,
D.: Gulf records of China, Volume 8, Ocean Press, 310–343, ISBN 7502725954, 1993.
Chen, Y., Li, Y., Thompson, C., Wang, X., Cai, T., and Chang, Y.:
Differential sediment trapping abilities of mangrove and saltmarsh
vegetation in a subtropical estuary, Geomorphology, 318, 270–282,
https://doi.org/10.1016/j.geomorph.2018.06.018, 2018.
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and
Townend, I.: Morphodynamics of tidal networks: Advances and challenges, Mar.
Geol., 346, 1–16, https://doi.org/10.1016/j.margeo.2013.08.005,
2013.
D'Alpaos, A.: Tidal network ontogeny: Channel initiation and early
development, J. Geophys. Res., 110, F02001,
https://doi.org/10.1029/2004jf000182, 2005.
D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A.: On the tidal
prism–channel area relations, J. Geophys. Res., 115, F01003,
https://doi.org/10.1029/2008jf001243, 2010.
Dastgheib, A., Roelvink, J. A., and Wang, Z. B.: Long-term process-based
morphological modeling of the Marsdiep Tidal Basin, Mar. Geol., 256, 90–100,
https://doi.org/10.1016/j.margeo.2008.10.003, 2008.
Deltares: Delft3D Source Code 5169, Zenodo [code], https://doi.org/10.5281/zenodo.5817721, 2013.
de Swart, H. E. and Zimmerman, J. T. F.: Morphodynamics of Tidal Inlet
Systems, Annu. Rev. Fluid. Mech., 41, 203–229,
https://doi.org/10.1146/annurev.fluid.010908.165159, 2009.
Dissanayake, D. M. P. K., Ranasinghe, R., and Roelvink, J. A.: The
morphological response of large tidal inlet/basin systems to relative sea
level rise, Climatic Change, 113, 253–276,
https://doi.org/10.1007/s10584-012-0402-z, 2012.
Dronkers, J. J., Misdorp, R., and Spradley, J.: Strategies for adaptation to sea level rise, Technical Report, Intergovernmental
Panel on Climate Change, available at: http://papers.risingsea.net/IPCC-1990-Strategies-for-Adaption-to-Sea-Level-Rise.html (last access: 22 September 2021), 1990.
Engelund, F. and Hansen, E.: A monograph on sediment transport in alluvial streams, Technical Report, Teknisk Forlag, available at: http://resolver.tudelft.nl/uuid:81101b08-04b5-4082-9121-861949c336c9 (last access: 30 September 2020), 1967.
Fagherazzi, S. and Wiberg, P. L.: Importance of wind conditions, fetch, and
water levels on wave-generated shear stresses in shallow intertidal basins,
J. Geophys. Res., 114, F03022,
https://doi.org/10.1029/2008jf001139, 2009.
Feola, A., Belluco, E., D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo,
A.: A geomorphic study of lagoonal landforms, Water. Resour. Res., 41,
W06019, https://doi.org/10.1029/2004wr003811, 2005.
FitzGerald, D. M.: Origin and Stability of Tidal Inlets in Massachusetts,
edited by: Aubrey, D. G. and Giese, G. S., American Geophysical Union,
1–61, https://doi.org/10.1029/CE044p0001, 1993.
FitzGerald, D. M. and Miner, M. D.: Tidal Inlets and Lagoons along Siliciclastic Barrier Coasts, edited by: Shroder, J. F. and Sherman, D. J., Academic Press, 149–165, https://doi.org/10.1016/B978-0-12-374739-6.00278-5, 2013.
Ford, K. H.: Seafloor Sediment Composition in Massachusetts Determined Using Point Data, Technical Report, Massachusetts Division of Marine Fisheries,
https://doi.org/10.13140/RG.2.2.23565.33766, 2010.
Friedrichs, C. T.: Stability shear stress and equilibrium cross-sectional
geometry of sheltered tidal channels, J. Coastal. Res., 11, 1062–1074, 1995.
Friedrichs, C. T. and Aubrey, D. G.: Non-linear tidal distortion in shallow
well-mixed estuaries: a synthesis, Estuar. Coast. Shelf. S., 27, 521–545,
https://doi.org/10.1016/0272-7714(88)90082-0, 1988.
Gao, S.: P–A relationships of tidal inlets along the east china sea coast,
Marine Sciences, 1, 15–19, 1988.
Gontz, A. M., Maio, C. V., and Rueda, L.: The Duxbury Sunken
Forest-Constraints for Local, Late Holocene Environmental Changes Resulting
from Marine Transgression, Duxbury Bay, Eastern Massachusetts, USA, J.
Coastal Res., 29, 168–176,
https://doi.org/10.2112/JCOASTRES-D-12-00183.1, 2013.
Guo, L., van der Wegen, M., Roelvink, J. A., and He, Q.: The role of river
flow and tidal asymmetry on 1-D estuarine morphodynamics, J.
Geophys. Res.-Earth, 119, 2315–2334,
https://doi.org/10.1002/2014jf003110, 2014.
Guo, L., van der Wegen, M., Roelvink, D. J. A., Wang, Z. B., and He, Q.:
Long-term, process-based morphodynamic modeling of a fluvio-deltaic system,
part I: The role of river discharge, Cont. Shelf. Res., 109, 95–111,
https://doi.org/10.1016/j.csr.2015.09.002, 2015.
Hayes, M. O.: General morphology and sediment patterns in tidal inlets,
Sediment. Geol., 26, 139–156,
https://doi.org/10.1016/0037-0738(80)90009-3, 1980.
Herrling, G. and Winter, C.: Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions, Earth Surf. Dynam., 2, 363–382, https://doi.org/10.5194/esurf-2-363-2014, 2014.
Jagoutz, O. and Behn, M. D.: Foundering of lower island-arc crust as an
explanation for the origin of the continental Moho, Nature, 504, 131–134,
https://doi.org/10.1038/nature12758, 2013.
Jarrett, J. T.: Tidal Prism – Inlet Area Relationships, GITI Report 3, U.S. Army Coastal Engineering Research Center and U.S. Army Waterways Experiment Station, available at: https://hdl.handle.net/11681/3226 (last access: 10 October 2020), 1976.
Jiang, M. and Meng, Z.: The Massachusetts Bay Hydrodynamic Model: 2005 Simulation, Technical Report, Massachusetts Water Resources Authority, available at: https://www.mwra.com/harbor/enquad/pdf/2008-12.pdf (last access: 25 September 2021), 2008.
Knebel, H. J., Rendigs, R. R., and Bothner, M. H.: Modern sedimentary
environments in Boston Harbor, Massachusetts, J. Sediment.
Petrol., 61, 791–804, https://doi.org/10.1306/D42677D5-2B26-11D7-8648000102C1865D, 1991.
Lanzoni, S. and Seminara, G.: Long-term evolution and morphodynamic
equilibrium of tidal channels, J. Geophys. Res., 107, 3001–3001,
https://doi.org/10.1029/2000jc000468, 2002.
Leonardi, N., Canestrelli, A., Sun, T., and Fagherazzi, S.: Effect of tides
on mouth bar morphology and hydrodynamics, J. Geophys. Res.-Oceans., 118,
4169–4183, https://doi.org/10.1002/jgrc.20302, 2013.
Le Conte, L. J. and Harts, W. W.: Discussion of “Notes On the Improvement
of River and Harbor Outlets In The United States”, T. Am. Soc. Civ. Eng.,
55, 306–317, 1905.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G.
S.: Development and validation of a three-dimensional morphological model,
Coast. Eng., 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004.
Marciano, R.: Modeling of channel patterns in short tidal basins, J.
Geophys. Res., 110, F01001,
https://doi.org/10.1029/2003jf000092, 2005.
Murray, A. B., Knaapen, M. A. F., Tal, M., and Kirwan, M. L.:
Biomorphodynamics: Physical-biological feedbacks that shape landscapes,
Water. Resour. Res., 44, W11301,
https://doi.org/10.1029/2007wr006410, 2008.
Nahon, A., Bertin, X., Fortunato, A. B., and Oliveira, A.: Process-based 2DH
morphodynamic modeling of tidal inlets: A comparison with empirical
classifications and theories, Mar. Geol., 291–294, 1–11,
https://doi.org/10.1016/j.margeo.2011.10.001, 2012.
O'Brien, M. P.: Estuary tidal prisms related to entrance areas, Civil. Eng.,
1, 738–739, 1931.
Powell, M. A., Thieke, R. J., and Mehta, A. J.: Morphodynamic relationships
for ebb and flood delta volumes at Florida's tidal entrances, Ocean
Dynam., 56, 295–307,
https://doi.org/10.1007/s10236-006-0064-3, 2006.
Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J.,
Stive, M., and Walstra, D. J. C. E.: Morphodynamic upscaling with the MORFAC
approach: Dependencies and sensitivities, Coast. Eng., 58, 806–811,
https://doi.org/10.1016/j.coastaleng.2011.03.010, 2011.
Roelvink, J. A.: Coastal morphodynamic evolution techniques, Coast. Eng.,
53, 277–287, https://doi.org/10.1016/j.coastaleng.2005.10.015,
2006.
Rosen, P. S. and Leach, K.: Sediment Accumulation Forms, Thompson Island, Boston Harbor, Massachusetts, in: Glaciated Coasts, edited by: Fitzgerald, D. M. and Rosen, P. S., Harcourt Brace Jovanovich, 233–250, 1987.
Savenije, H. H. G.: Salt intrusion in alluvial estuaries, in: Salinity and Tides in Alluvial Estuaries, edited by: Savenije, H. H. G, EIsevier, 137–184, https://doi.org/10.1016/B978-0-444-52107-1.X5000-X, 2005.
Signell, R. P. and Butman, B.: Modeling tidal exchange and dispersion in
Boston Harbor, J. Geophys. Res.-Oceans, 97, 15591–15606,
https://doi.org/10.1029/92JC01429, 1992.
Stefanon, L., Carniello, L., D Alpaos, A., and Lanzoni, S.: Experimental
analysis of tidal network growth and development, Cont. Shelf. Res., 30,
950–962, https://doi.org/10.1016/j.csr.2009.08.018, 2010.
Townend, I.: An Examination of Empirical Stability Relationships for UK
Estuaries, J. Coastal. Res., 215, 1042–1053,
https://doi.org/10.2112/03-0066r.1, 2005.
Townend, I., Wang, Z. B., Stive, M., and Zhou, Z.: Development and Extension
of An Aggregated Scale Model: Part 2-Extensions to ASMITA, China Ocean
Engineering, 30, 651–670,
https://doi.org/10.1007/s13344-016-0042-6, 2016.
Townend, I. H.: Hypsometry of estuaries, creeks and breached sea wall sites,
P. I. Civil. Eng.-Mar. En., 161, 23–32,
https://doi.org/10.1680/maen.2008.161.1.23, 2008.
Tubman, M. W.: Boston Harbor navigation channel improvement project, field data collection program final report, Technical Report, Coastal and Hydraulics Laboratory (U.S.), available at: https://hdl.handle.net/11681/7692 (last access: 25 September 2021), 2007.
van der Wegen, M.: Numerical modeling of the impact of sea level rise on
tidal basin morphodynamics, J. Geophys. Res.-Earth., 118, 447–460, https://doi.org/10.1002/jgrf.20034, 2013.
van der Wegen, M. and Roelvink, J. A.: Long-term morphodynamic evolution of
a tidal embayment using a two-dimensional, process-based model, J. Geophys.
Res., 113, p. 16, https://doi.org/10.1029/2006jc003983, 2008.
van der Wegen, M. and Roelvink, J. A.: Reproduction of estuarine bathymetry
by means of a process-based model: Western Scheldt case study, the
Netherlands, Geomorphology, 179, 152–167,
https://doi.org/10.1016/j.geomorph.2012.08.007, 2012.
van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A.:
Long-term morphodynamic evolution and energy dissipation in a coastal plain,
tidal embayment, J. Geophys. Res., 113, F03001,
https://doi.org/10.1029/2007jf000898, 2008.
van der Wegen, M., Dastgheib, A., and Roelvink, J. A.: Morphodynamic
modeling of tidal channel evolution in comparison to empirical PA
relationship, Coast. Eng., 57, 827–837,
https://doi.org/10.1016/j.coastaleng.2010.04.003, 2010.
van Maanen, B., Coco, G., and Bryan, K. R.: Modelling the effects of tidal
range and initial bathymetry on the morphological evolution of tidal
embayments, Geomorphology, 191, 23–34,
https://doi.org/10.1016/j.geomorph.2013.02.023, 2013a.
van Maanen, B., Coco, G., Bryan, K. R., and Friedrichs, C. T.: Modeling the
morphodynamic response of tidal embayments to sea-level rise, Ocean. Dynam.,
63, 1249–1262, https://doi.org/10.1007/s10236-013-0649-6,
2013b.
Vivoni, E. R., Di Benedetto, F., Grimaldi, S., and Eltahir, E. A. B.:
Hypsometric control on surface and subsurface runoff, Water. Resour. Res.,
44, 181–198, https://doi.org/10.1029/2008wr006931, 2008.
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A.,
Athanasiou, P., Luijendijk, A., and Feyen, L.: Sandy coastlines under threat
of erosion, Nat. Clim. Change, 10, 260–263,
https://doi.org/10.1038/s41558-020-0697-0, 2020.
Wang, Z. B., Hoekstra, P., Burchard, H., Ridderinkhof, H., De Swart, H. E.,
and Stive, M. J. F.: Morphodynamics of the Wadden Sea and its barrier island
system, Ocean. Coast. Manage., 68, 39–57,
https://doi.org/10.1016/j.ocecoaman.2011.12.022, 2012.
Webb, A. P. and Kench, P. S.: The dynamic response of reef islands to
sea-level rise: Evidence from multi-decadal analysis of island change in the
Central Pacific, Global. Planet. Change, 72, 234–246,
https://doi.org/10.1016/j.gloplacha.2010.05.003, 2010.
Wei, Y.: The role of geological mouth islands on the morphodynamics of
back-barrier tidal basins, Zenodo [data set],
https://doi.org/10.5281/zenodo.5508801, 2021.
Zhou, Z., Coco, G., Jiménez, M., Olabarrieta, M., van der Wegen, M., and
Townend, I.: Morphodynamics of river-influenced back-barrier tidal basins:
The role of landscape and hydrodynamic settings, Water. Resour. Res., 50,
9514–9535, https://doi.org/10.1002/2014wr015891, 2014a.
Zhou, Z., Olabarrieta, M., Stefanon, L., D'Alpaos, A., Carniello, L., and
Coco, G.: A comparative study of physical and numerical modeling of tidal
network ontogeny, J. Geophys. Res.-Earth., 119, 892–912,
https://doi.org/10.1002/2014jf003092, 2014b.
Zhou, Z., van der Wegen, M., Jagers, B., and Coco, G.: Modelling the role of
self-weight consolidation on the morphodynamics of accretional mudflats,
Environ. Modell. Softw., 76, 167–181,
https://doi.org/10.1016/j.envsoft.2015.11.002, 2016.
Zhou, Z., Coco, G., Townend, I., Olabarrieta, M., van der Wegen, M., Gong,
Z., D Alpaos, A., Gao, S., Jaffe, B. E., Gelfenbaum, G., He, Q., Wang, Y.,
Lanzoni, S., Wang, Z., Winterwerp, H., and Zhang, C.: Is “Morphodynamic
Equilibrium” an oxymoron?, Earth-Sci. Rev., 165, 257–267,
https://doi.org/10.1016/j.earscirev.2016.12.002, 2017.
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These...