Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-933-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-933-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Invited contribution by Eva P. S. Eibl, recipient of the EGU Seismology Division Outstanding Early Career Scientists Award 2021.
Kristin S. Vogfjörd
Icelandic Meteorological Office, Bústaðavegi 7–9, 108 Reykjavik, Iceland
Benedikt G. Ófeigsson
Icelandic Meteorological Office, Bústaðavegi 7–9, 108 Reykjavik, Iceland
Matthew J. Roberts
Icelandic Meteorological Office, Bústaðavegi 7–9, 108 Reykjavik, Iceland
Christopher J. Bean
Geophysics Section, School of Cosmic Physics, Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
Morgan T. Jones
Centre for Planetary Habitability (PHAB), Department of Geosciences, University of Oslo, P.O. Box 1028, Blindern 0315, Oslo, Norway
Bergur H. Bergsson
Icelandic Meteorological Office, Bústaðavegi 7–9, 108 Reykjavik, Iceland
Sebastian Heimann
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Thoralf Dietrich
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
Maria R. P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
Nat. Hazards Earth Syst. Sci., 24, 4075–4089, https://doi.org/10.5194/nhess-24-4075-2024, https://doi.org/10.5194/nhess-24-4075-2024, 2024
Short summary
Short summary
We assessed the performance of permutation entropy (PE), phase permutation entropy (PPE), and instantaneous frequency (IF), which are estimated from a single seismic station, to detect changes before, during, and after the 2014–2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-eruptive and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
Emilio José Marcelo Criado-Sutti, Andrés Olivar-Castanio, Frank Krüger, Carolina Montero-López, Germán Aranda-Viana, Martin Zeckra, and Sebastian Heimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2979, https://doi.org/10.5194/egusphere-2025-2979, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We studied the deep structure beneath the Lerma Valley in northwestern Argentina to better understand how the Earth's crust behaves in this active but little-studied region of the Andes. Using data from local and teleseismic earthquakes, we mapped layers within the crust and found major contrasts between the northern and southern areas. Our results shed new light on how this region formed and evolved, offering important insights into earthquake risks and mountain-building processes.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Maria R. P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
Nat. Hazards Earth Syst. Sci., 24, 4075–4089, https://doi.org/10.5194/nhess-24-4075-2024, https://doi.org/10.5194/nhess-24-4075-2024, 2024
Short summary
Short summary
We assessed the performance of permutation entropy (PE), phase permutation entropy (PPE), and instantaneous frequency (IF), which are estimated from a single seismic station, to detect changes before, during, and after the 2014–2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-eruptive and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Kristján Jónasson, Bjarni Bessason, Ásdís Helgadóttir, Páll Einarsson, Gunnar B. Guðmundsson, Bryndís Brandsdóttir, Kristín S. Vogfjörd, and Kristín Jónsdóttir
Nat. Hazards Earth Syst. Sci., 21, 2197–2214, https://doi.org/10.5194/nhess-21-2197-2021, https://doi.org/10.5194/nhess-21-2197-2021, 2021
Short summary
Short summary
Local information on epicentres and Mw magnitudes from international catalogues have been combined to compile a catalogue of earthquakes in and near Iceland in the years 1900–2019. The magnitudes are either moment-tensor modelled or proxy values obtained with regression on Ms or exceptionally on mb. The catalogue also covers the northern Mid-Atlantic Ridge with less accurate locations but similarly harmonised magnitudes.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Cited articles
Allen, R.: Automatic phase pickers: Their present use and future prospects,
B. Seismol. Soc. Am., 72, S225–S242, https://doi.org/10.1785/BSSA07206B0225, 1982. a
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: Ordering
points to identify the clustering structure, Sigmod. Rec., 28, 49–60,
https://doi.org/10.1145/304181.304187, 1999. a
Ármannsson, H.: The fluid geochemistry of Icelandic high temperature
geothermal areas, Appl. Geochem., 66, 14–64,
https://doi.org/10.1016/j.apgeochem.2015.10.008, 2016. a
Arnórsson, S. and Andrésdóttir, A.: Processes controlling
the distribution of boron and chlorine in natural waters in Iceland,
Geochim. Cosmochim. Ac., 59, 4125–4146,
https://doi.org/10.1016/0016-7037(95)00278-8, 1995. a
Bean, C. J. and Vogfjörd, K. S.: Seismic array data for monitoring and
tracking tremor sources during subglacial floods and volcanic eruptions at
Vatnajökull (Vatna Glacier), Iceland, GFZ Data Services,
https://doi.org/10.14470/0Y7568667884, 2020. a, b
Behm, M., Walter, J. I., Binder, D., Cheng, F., Citterio, M., Kulessa, B.,
Langley, K., Limpach, P., Mertl, S., Schöner, W., Tamstorf, M., and
Weyss, G.: Seismic characterization of a rapidly-rising jökulhlaup
cycle at the A.P. Olsen Ice Cap, NE-Greenland, J. Glaciol., 66,
329–347, https://doi.org/10.1017/jog.2020.9, 2020. a, b, c, d, e, f
Benediktsdóttir, Á., Gudmundsson, Ó., Li, K. L., and
Brandsdóttir, B.: Volcanic tremor of the 2010 Eyjafjallajökull
eruption, Geophys. J. Int., 228, 1015–1037,
https://doi.org/10.1093/gji/ggab378, 2021. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology,
Seismol. Res. Lett.,
81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a
Björnsson, H.: Marginal and supraglacial lakes in Iceland,
Jökull, 26, 40–51, 1976. a
Björnsson, H.: Jökulhlaups in Iceland: prediction, characteristics and simulation, Ann. Glaciol., 16, 95–106,
https://doi.org/10.3189/1992AoG16-1-95-10, 1992. a
Björnsson, H.: Understanding jökulhlaups: from tale to theory,
J. Glaciol., 56, 1002–1010, https://doi.org/10.3189/002214311796406086,
2010. a, b
Böðvarsson, R. and Lund, B.: The SIL seismological data acquisition
system – As operated in Iceland and in Sweden –, in: Methods and Applications
of Signal Processing in Seismic Network Operations, 660, 131–148,
Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/BFb0117700,
2003. a
Böðvarsson, R., Rögnvaldsson, S. T., Jakobsdóttir, S. S.,
Slunga, R., and Stefánsson, R.: The SIL Data Acquisition and
Monitoring System, Seismol. Res. Lett., 67, 35–46,
https://doi.org/10.1785/gssrl.67.5.35, 1996. a
Böðvarsson, R., Rögnvaldsson, S. T., Slunga, R., and Kjartansson,
E.: The SIL data acquisition system-at present and beyond year 2000,
Phys. Earth Planet. In., 113, 89–101,
https://doi.org/10.1016/S0031-9201(99)00032-1, 1999. a
Burtin, A., Bollinger, L., Vergne, J., Cattin, R., and Nábělek,
J. L.: Spectral analysis of seismic noise induced by rivers: A new tool to
monitor spatiotemporal changes in stream hydrodynamics,
J. Geophys. Res.-Sol. Ea., 113, 1–14, https://doi.org/10.1029/2007JB005034,
2008. a
Burtin, A., Cattin, R., Bollinger, L., Vergne, J., Steer, P., Robert, A.,
Findling, N., and Tiberi, C.: Towards the hydrologic and bed load monitoring
from high-frequency seismic noise in a braided river: The “torrent de St
Pierre”, French Alps, J. Hydrol., 408, 43–53,
https://doi.org/10.1016/j.jhydrol.2011.07.014, 2011. a
Capon, J.: High-resolution frequency-wavenumber spectrum analysis,
Adaptive Antennas for Wireless Communications, 57, 146–156,
https://doi.org/10.1109/9780470544075.ch2, 2009. a
Chapp, E., Bohnenstiehl, D. R., and Tolstoy, M.: Sound-channel observations of ice-generated tremor in the Indian Ocean, Geochem. Geophy. Geosy., 6, Q06003, https://doi.org/10.1029/2004GC000889, 2005. a
Driedger, C. L. and Fountain, A. G.: Glacier outburst floods at Mount Rainier,
Washington State, USA, Ann. Glaciol., 13, 51–55, 1989. a
Eibl, E. P., Bean, C. J., Vogfjörd, K. S., Ying, Y., Lokmer, I.,
Möllhoff, M., O'Brien, G. S., and Pálsson, F.: Tremor-rich
shallow dyke formation followed by silent magma flow at Bárdarbunga in
Iceland, Nat. Geosci., 10, 299–304, https://doi.org/10.1038/ngeo2906,
2017a. a, b
Eibl, E. P. S., Bean, C. J., Jónsdóttir, I., Höskuldsson, A.,
Thordarson, T., Coppola, D., Witt, T., and Walter, T. R.: Multiple
coincident eruptive seismic tremor sources during the 2014-2015 eruption at
Holuhraun, Iceland, J. Geophys. Res.-Sol. Ea., 122,
2972–2987, https://doi.org/10.1002/2016JB013892, 2017b. a, b
Eibl, E. P. S., Vogfjörd, K., Dietrich, T., Heimann, S., and Bean, C. J.: Event catalogs of seismic events accompanying the 30 September to 5 October 2015 Skaftá flood, https://doi.org/10.5880/fidgeo.2023.023, 2023. a
Einarsson, B., Jóhannesson, T., Thorsteinsson, T., Gaidos, E., and
Zwinger, T.: Subglacial flood path development during a rapidly rising
jökulhlaup from the western Skaftá cauldron, Vatnajökull,
Iceland, J. Glaciol., 63, 670–682, https://doi.org/10.1017/jog.2017.33,
2017. a, b, c, d
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.: High
Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central
Greenland, Science, 294, 2338–2342, https://doi.org/10.1126/science.1065370, 2001. a
Galeczka, I., Eiriksdottir, E. S., Hardardottir, J., Oelkers, E. H.,
Torssander, P., and Gislason, S. R.: The effect of the 2002 glacial flood on
dissolved and suspended chemical fluxes in the Skaftá river, Iceland,
J. Volcanol. Geoth. Res., 301, 253–276,
https://doi.org/10.1016/j.jvolgeores.2015.05.008, 2015. a
Gimbert, F., Tsai, V. C., and Lamb, M. P.: A physical model for seismic noise
generation by turbulent flow in rivers,
J. Geophys. Res.-Earth, 119, 2209–2238, https://doi.org/10.1002/2014JF003201, 2014. a
Grinsted, A., Hvidberg, C. S., Campos, N., and Dahl-Jensen, D.: Periodic
outburst floods from an ice-dammed lake in East Greenland, Sci. Rep., 7, 9966, https://doi.org/10.1038/s41598-017-07960-9, 2017. a
Gudmundsson, M. T. and Björnsson, H.: Eruptions in
Grímsvötn, Vatnajökull, Iceland, 1934–1991, Jökull,
41, 21–45, 1991. a
Gudmundsson, M. T., Sigmundsson, F., and Björnsson, H.: Ice–volcano
interaction of the 1996 Gjalp subglacial eruption, Vatnajökull,
Iceland, Nature, 389, 954–957, https://doi.org/10.1038/40122, 1997. a
Gudmundsson, M. T., Jónsdóttir, K., Hooper, A., Holohan, E. P.,
Halldórsson, S. A., Ófeigsson, B. G., Cesca, S., Vogfjörd,
K. S., Sigmundsson, F., Högnadóttir, T., Einarsson, P.,
Sigmarsson, O., Jarosch, A. H., Jónasson, K., Magnússon, E.,
Hreinsdóttir, S., Bagnardi, M., Parks, M. M.,
Hjörleifsdóttir, V., Pálsson, F., Walter, T. R.,
Schöpfer, M. P. J., Heimann, S., Reynolds, H. I., Dumont, S., Bali, E.,
Gudfinnsson, G. H., Dahm, T., Roberts, M. J., Hensch, M., Belart, J. M. C.,
Spaans, K., Jakobsson, S., Gudmundsson, G. B., Fridriksdóttir, H. M.,
Drouin, V., Dürig, T., Adalgeirsdóttir, G., Riishuus, M. S.,
Pedersen, G. B. M., Van Boeckel, T., Oddsson, B., Pfeffer, M. A., Barsotti,
S., Bergsson, B., Donovan, A., Burton, M. R., and Aiuppa, A.: Gradual
caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral
magma outflow, Science, 353, 262, https://doi.org/10.1126/science.aaf8988, 2016. a
Heeszel, D. S., Walter, F., and Kilb, D. L.: Humming glaciers, Geology, 42,
1099–1102, https://doi.org/10.1130/G35994.1, 2014. a
Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F.,
Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H.,
Vasyura-Bathke, H., Willey, T., and Dahm, T.: Pyrocko – An open-source
seismology toolbox and library. V. 0.3, Tech. rep., GFZ,
https://doi.org/10.5880/GFZ.2.1.2017.001, 2017. a
Herring, T. A., King, R. W., Mcclusky, S. C., and Sciences, P.: Introduction
to GAMIT/GLOBK, Tech. Rep. June 2015, Mass. Instit. Tech.,
http://www-gpsg.mit.edu/~simon/gtgk (last access: December 2017), 2015. a
Hsu, L., Finnegan, N. J., and Brodsky, E. E.: A seismic signature of river
bedload transport during storm events, Geophys. Res. Lett., 38,
1–6, https://doi.org/10.1029/2011GL047759, 2011. a
Jóhannesson, T.: Propagation of a subglacial flood wave during the
initiation of a jökulhlaup, Hydrolog. Sci. J., 47,
417–434, https://doi.org/10.1080/02626660209492944, 2002. a, b
Jóhannesson, T., Thorsteinsson, T., Stefánsson, A., Gaidos, E. J.,
and Einarsson, B.: Circulation and thermodynamics in a subglacial geothermal
lake under the Western Skaftá cauldron of the Vatnajökull ice
cap, Iceland, Geophys. Res. Lett., 34, 1–6,
https://doi.org/10.1029/2007GL030686, 2007. a, b, c
Jones, M. T., Galeczka, I. M., Gkritzalis-Papadopoulos, A., Palmer, M. R.,
Mowlem, M. C., Vogfjörð, K., Jónsson, T., and Gislason, S. R.:
Monitoring of jökulhlaups and element fluxes in proglacial Icelandic
rivers using osmotic samplers, J. Volcanol. Geoth. Res., 291, 112–124, https://doi.org/10.1016/j.jvolgeores.2014.12.018, 2015. a, b
Kennett, B. L. N.: Stacking three-component seismograms, Geophys. J. Int.,
141, 263–269, 2000. a
Krueger, F. and Weber, M.: The effect of low-velocity sediments on the
mislocation vectors of the GRF array, Geophys. J. Int.,
108, 387–393, https://doi.org/10.1111/j.1365-246X.1992.tb00866.x, 1992. a
Leet, R. C.: Saturated and subcooled hydrothermal boiling in groundwater flow
channels as a source of harmonic tremor, J. Geophys. Res.,
93, 4835, https://doi.org/10.1029/JB093iB05p04835, 1988. a
Lipovsky, B. P. and Dunham, E. M.: Tremor during ice-stream stick slip, The Cryosphere, 10, 385–399, https://doi.org/10.5194/tc-10-385-2016, 2016. a, b
Livingstone, S. J., Sole, A. J., Storrar, R. D., Harrison, D., Ross, N., and Bowling, J.: Brief communication: Subglacial lake drainage beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects, The Cryosphere, 13, 2789–2796, https://doi.org/10.5194/tc-13-2789-2019, 2019. a
Loose, B., Naveira Garabato, A. C., Schlosser, P., Jenkins, W. J., Vaughan,
D., and Heywood, K. J.: Evidence of an active volcanic heat source beneath
the Pine Island Glacier, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-04421-3, 2018. a
MacAyeal, D. R., Okal, E. A., Aster, R. C., and Bassis, J. N.: Seismic and
hydroacoustic tremor generated by colliding Icebergs, J. Geophys. Res.-Earth, 113, 1–10, https://doi.org/10.1029/2008JF001005, 2008. a, b, c
Magnússon, E., Gudmundsson, M. T., Roberts, M. J., Sigurdsson, G.,
Höskuldsson, F., and Oddsson, B.: Ice-volcano interactions during the
2010 Eyjafjallajkull eruption, as revealed by airborne imaging radar,
J. Geophys. Res.-Sol. Ea., 117, 1–17,
https://doi.org/10.1029/2012JB009250, 2012. a
Magnússon, E., Pálsson, F., Gudmundsson, M. T., Högnadóttir, T., Rossi, C., Thorsteinsson, T., Ófeigsson, B. G., Sturkell, E., and Jóhannesson, T.: Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland, The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, 2021. a
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J.:
ObsPy – what can it do for data centers and observatories?,
Ann. Geophys., 54, 47–58, https://doi.org/10.4401/ag-4838, 2011. a
Montanaro, C., Scheu, B., Gudmundsson, M. T., Vogfjörd, K., Reynolds,
H. I., Dürig, T., Strehlow, K., Rott, S., Reuschlé, T., and
Dingwell, D. B.: Multidisciplinary constraints of hydrothermal explosions
based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland,
Earth Planet. Sci. Lett., 434, 308–319,
https://doi.org/10.1016/j.epsl.2015.11.043, 2016. a, b, c, d
Müller, C., Schlindwein, V., Eckstaller, A., and Miller, H.: Geophysics:
Singing icebergs, Science, 310, 1299, https://doi.org/10.1126/science.1117145, 2005. a
Old, G. H., Lawler, D. M., and Snorrason, Á.: Discharge and suspended
sediment dynamics during two jökulhlaups in the Skaftá river,
Iceland, Earth Surf. Proc. Land., 30, 1441–1460,
https://doi.org/10.1002/esp.1216, 2005. a
Pálsson, F., Gunnarsson, A., Jónsson, Steinþórsson, S., and
Pálsson, H. S.: Vatnajökull: Mass balance, meltwater drainage
and surface velocity of the glacial year 2012–2013, Tech. rep., http://gogn.lv.is/files/2014/2014-138.pdf (last access: 18 September 2023), 2014. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python,
J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Podolskiy, E. A. and Walter, F.: Cryoseismology, Rev. Geophys., 54,
708–758, https://doi.org/10.1002/2016RG000526, 2016. a, b
Richardson, D.: Glacier outburst floods in the Pacific Northwest, Geological Survey Research, 1968. a
Roberts, M. J.: Jökulhlaups: A reassessment of floodwater flow through
glaciers, Rev. Geophys., 43, 1–21, https://doi.org/10.1029/2003RG000147,
2005. a
Roberts, M. J., Stefánsson, R., Björnsson, H., Russell, A. J.,
Tweed, F. S., Harris, T. D., Fay, H., Knudsen, Ó., and Guðmundsson,
G. B.: Recent jökulhlaups from Western Vatnajökull, Iceland:
Hydrologic insights from seismic tremor measurements and aerial
observations, in: EGS-AGU-EUG Joint Assembly, https://ui.adsabs.harvard.edu/abs/2003EAEJA....12174R/abstract (last access: 18 September 2023), 2003. a
Roberts, M. J., Pálsson, F., Gudmundsson, M. T., Björnsson, H., and
Tweed, F. S.: Ice–water interactions during floods from Grænalón
glacier-dammed lake, Iceland, Ann. Glaciol., 40, 133–138,
https://doi.org/10.3189/172756405781813771, 2005. a
Rögnvaldsson, S. and Slunga, R.: Routine Fault Plane Solutions for Local
Networks: a Test With Synthetic Data,
B. Seismol. Soc. Am., 83, 1232–1247, 1993. a
Röösli, C., Walter, F., Husen, S., Andrews, L. C., Lüthi,
M. P., Catania, G. A., and Kissling, E.: Sustained seismic tremors and
icequakes detected in the ablation zone of the Greenland ice sheet, J. Glaciol., 60, 563–575, https://doi.org/10.3189/2014JoG13J210, 2014. a, b
Röösli, C., Walter, F., Ampuero, J. P., and Kissling, E.: Seismic
moulin tremor, J. Geophys. Res.-Sol. Ea., 121,
5838–5858, https://doi.org/10.1002/2015JB012786, 2016. a
Schmandt, B., Aster, R. C., Scherler, D., Tsai, V. C., and Karlstrom, K.:
Multiple fluvial processes detected by riverside seismic and infrasound
monitoring of a controlled flood in the Grand Canyon, Geophys. Res. Lett., 40, 4858–4863, https://doi.org/10.1002/grl.50953, 2013. a
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.: Evidence
for elevated and spatially variable geothermal flux beneath the West
Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 111, 9070–9072, https://doi.org/10.1073/pnas.1405184111,
2014. a
Schweitzer, J.: Slowness corrections – One way to improve IDC products, Pure Appl. Geophys., 158, 375–396, https://doi.org/10.1007/PL00001165, 2001. a
Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K. S.,
Ófeigsson, B. G., Heimisson, E. R., Dumont, S., Parks, M., Spaans, K.,
Gudmundsson, G. B., Drouin, V., Árnadóttir, T.,
Jónsdóttir, K., Gudmundsson, M. T., Högnadóttir, T.,
Fridriksdóttir, H. M., Hensch, M., Einarsson, P., Magnússon, E.,
Samsonov, S., Brandsdóttir, B., White, R. S.,
Ágústsdóttir, T., Greenfield, T., Green, R. G.,
Hjartardóttir, Á. R., Pedersen, R., Bennett, R. A., Geirsson, H.,
la Femina, P. C., Björnsson, H., Pálsson, F., Sturkell, E., Bean,
C. J., Möllhoff, M., Braiden, A. K., and Eibl, E. P. S.: Segmented
lateral dyke growth in a rifting event at Bárðarbunga volcanic system,
Iceland, Nature, 517, 191–195, https://doi.org/10.1038/nature14111, 2014. a
Stefansson, R., Bodvarsson, R., Slunga, R., Einarsson, P., Jakobsdottir, S.,
Bungum, H., Gregersen, S., Havskov, J., Hjelme, J., and Korhonen, H.:
Earthquake prediction research in the South Iceland Seismic Zone and the SIL
Project, B. Seismol. Soc. Am., 83, 696–716,
1993. a
Sturkell, E., Einarsson, P., Roberts, M. J., Geirsson, H., Gudmundsson, M. T.,
Sigmundsson, F., Pinel, V., Gudmundsson, G. B., Ólafsson, H., and
Stefánsson, R.: Seismic and geodetic insights into magma accumulation
at Katla subglacial volcano, Iceland: 1999 to 2005, J. Geophys. Res.-Sol. Ea., 113, 1–17, https://doi.org/10.1029/2006JB004851, 2008. a
Tómasson, H. and Vilmundardóttir, E. G.: Nokkrar athuganir við
Langasjó [Several observations at lake Langasjór], National
Energy Authority, report 10385, National Energy Authority, 1967. a
Vogfjörd, K. and Langston, C.: Characteristics of short-period wave
propagation in regions of Fennoscandia, with emphasis on Lg,
B. Seismol. Soc. Am., 86, 1873–1895, 1996. a
Vore, M. E., Bartholomaus, T. C., Winberry, J. P., Walter, J. I., and Amundson,
J. M.: Seismic Tremor Reveals Spatial Organization and Temporal Changes of
Subglacial Water System, J. Geophys. Res.-Earth,
124, 1–20, https://doi.org/10.1029/2018jf004819, 2019. a, b
Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse,
A., Mares, R., Oguchi, K., Sato, H., Stöcker, I., Sifner, O., Takaishi,
Y., Tanishita, I., Trübenbach, J., and Willkommen, T.: The IAPWS
Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam, Tech. Rep. 1, Erlangen, Germany, https://doi.org/10.1115/1.483186, 2000. a
Waythomas, C. F., Pierson, T. C., Major, J. J., and Scott, W. E.: Voluminous
ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt
Volcano, Alaska, J. Volcanol. Geoth. Res., 259,
389–413, https://doi.org/10.1016/j.jvolgeores.2012.05.012, 2013. a
Werder, M. A. and Funk, M.: Dye tracing a jökulhlaup: II. Testing a
jökulhlaup model against flow speeds inferred from measurements,
J. Glaciol., 55, 899–908, https://doi.org/10.3189/002214309790152375, 2009. a
Winberry, J. P., Anandakrishnan, S., and Alley, R. B.: Seismic observations of
transient subglacial water-flow beneath MacAyeal Ice Stream, West
Antarctica, Geophys. Res. Lett., 36, L11502,
https://doi.org/10.1029/2009GL037730, 2009. a, b, c
Winberry, J. P., Anandakrishnan, S., Wiens, D. A., and Alley, R. B.:
Nucleation and seismic tremor associated with the glacial earthquakes of
Whillans Ice Stream, Antarctica, Geophys. Res. Lett., 40, 312–315,
https://doi.org/10.1002/grl.50130, 2013. a
Ying, Y., Eibl, E. P. S., Bean, C. J., Vogfjörd, K., and Pálsson,
F.: Full Wavefield Numerical Simulations of Sub-glacial Seismic Tremor at
Vatnajökull Glacier, Iceland, in: EGU General Assembly Conference
Abstracts, vol. 17, https://ui.adsabs.harvard.edu/abs/2015EGUGA..1714488Y/abstract (last access: 18 September 2023), 2015. a
Þórarinsson, S. and Rist, S.: Skaftárhlaup í september 1955
[Jökulhlaup in Skaftá in September 1955], Jökull, 5,
37–40, 1955. a
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Floods draining beneath an ice cap are hazardous events that generate six different short- or...