Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-679-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-679-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cosmogenic nuclide-derived downcutting rates of canyons within large limestone plateaus of southern Massif Central (France) reveal a different regional speleogenesis of karst networks
Oswald Malcles
CORRESPONDING AUTHOR
Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
Philippe Vernant
Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
David Fink
Australian Nuclear Science and Technology Organisation, Sydney, Australia
Gaël Cazes
Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
Jean-François Ritz
Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
Toshiyuki Fujioka
Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
Jean Chéry
Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
Related authors
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, https://doi.org/10.5194/esurf-13-629-2025, 2025
Short summary
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Jean Chéry, Michel Peyret, Cedric Champollion, and Bijan Mohammadi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3421, https://doi.org/10.5194/egusphere-2025-3421, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
While early scientists believed forests attract rain, later research provided conflicting views, and modern climate models remain inconclusive on natural forests' role in regional pluviometry. Using a parsimony model, we show that continental forests strongly enhance pluviometry if they are connected to underground aquifers. We conclude that natural afforestation should be an efficient way to reactivate precipitation and aquifers recharge.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, https://doi.org/10.5194/esurf-13-629-2025, 2025
Short summary
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Romain Le Roux-Mallouf, Matthieu Ferry, Rodolphe Cattin, Jean-François Ritz, Dowchu Drukpa, and Phuntsho Pelgay
Solid Earth, 11, 2359–2375, https://doi.org/10.5194/se-11-2359-2020, https://doi.org/10.5194/se-11-2359-2020, 2020
Short summary
Short summary
The chronology of historical earthquakes (from historical documents and geological evidence) is still poorly constrained in the western Himalaya. We carried out a field investigation in SW Bhutan along the India–Bhutan border. Our analysis reveals that Bhutan has experienced at least five great earthquakes during the last 2600 years. Coseismic slip values along the Main Himalayan Thrust for most events reach at least 13 m and suggest that associated magnitudes are in the range of Mw 8.5–9.
Cited articles
Alabouvette, B., Arrondeau, J. P., Aubague, M., Bodeur, Y., Dubois, P., Mattei, J., Paloc, H., and Rancon, J. Ph.: Carte Géologique de la France à Le Caylar, Edition BRGM, http://ficheinfoterre.brgm.fr/Notices/0962N.pdf (last access: 23 April 2024), 1988.
Audra, P. and Palmer, A. N.: 6.17 The Vertical Dimension of Karst: Controls of Vertical Cave Pattern, in: Treatise on Geomorphology, Elsevier, 186–206, https://doi.org/10.1016/B978-0-12-374739-6.00098-1, 2013.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017.
Balco, G. and Rovey, C. W.: An isochron method for cosmogenic-nuclide dating of buried soils and sediments, Am. J. Sci., 308, 1083–1114, https://doi.org/10.2475/10.2008.02, 2008.
Braucher, R., Bourlès, D., Merchel, S., Vidal Romani, J., Fernadez-Mosquera, D., Marti, K., Léanni, L., Chauvet, F., Arnold, M., Aumaître, G., and Keddadouche, K.: Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides, Nucl. Instrum. Meth. B, 294, 484–490, https://doi.org/10.1016/j.nimb.2012.05.023, 2013.
Camus, H.: Vallée et réseaux karstiques de la bordure carbonatée sud-cévenole, Relation avec la surrection, le volcanisme et les 45 paléoclimats, Thèse de doctorat, Université Bordeaux, Bordeaux, 3, 692 pp., 2003.
Child, D., Elliott, G., Mifsud, C., Smith, A. M., and Fink, D.: Sample processing for earth science studies at ANTARES, Nucl. Instrum. Meth. B, 172, 856–860, https://doi.org/10.1016/S0168-583X(00)00198-1, 2000.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Dubois, C., Quinif, Y., Baele, J. M., Barriquand, L., Bini, A., Bruxelles, L., Dandurand, G., Havron, C., Kaufmann, O., Lans, B., Maire, R., Martin, J., Rodet, J., Rowberry, M. D., Tognini, P., and Vergari, A.: The process of ghost-rock karstification and its role in the formation of cave systems, Earth Sci. Rev., 131, 116–148, https://doi.org/10.1016/j.earscirev.2014.01.006, 2014.
Dubois, C., Bini, A., and Quinif, Y.: Karst morphologies and ghostrock karstification, Geomorphologie, 28, 13–31, https://doi.org/10.4000/geomorphologie.16327, 2022.
Dandurand, G., Quinif, Y., Guendon, J.-L., and Gruneisen, A.: Sources vauclusiennes et fantômes de roche, Karstologia, 74, 31–46, 2019.
Dunai, T. J.: Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, 198 pp., ISBN 10 0511804512, 2010.
Ford, D. and Williams, P.: Karst Hydrogeology and Geomorphology, Ford/Karst Hydrogeology and Geomorphology, West Sussex, England, John Wiley & Sons Ltd., https://doi.org/10.1002/9781118684986, 2007.
Granger, D. E. and Muzikar, P. F.: Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations, Earth Planet. Sc. Lett., 188, 269–281, https://doi.org/10.1016/S0012-821X(01)00309-0, 2001.
Granger, D. E., Kirchner, J. W., and Finkel, R. C.: Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium, Geology, 25, 107, https://doi.org/10.1130/0091-7613(1997)025<0107:QDROTN>2.3.CO;2, 1997.
Granger, D. E., Fabel, D., and Palmer, A. N.: Pliocene−Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments, GSA Bulletin, 113, 825–836, 2001.
Harmand, D., Adamson, K., Rixhon, G., Jaillet, S., Losson, B., Devos, A., Hez, G., Calvet, M., and Audra, P.: Relationships between fluvial evolution and karstification related to climatic, tectonic and eustatic forcing in temperate regions, Quaternary Sci. Rev., 166, 38–56, https://doi.org/10.1016/j.quascirev.2017.02.016, 2017.
Haeuselmann, P., Granger, D. E., Jeannin, P.-Y., and Lauritzen, S.-E.: Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland, Geology, 35, 143–146, https://doi.org/10.1130/G23094A, 2007.
Karst3D Team: KARST3D, OSU OREME [data set], https://doi.org/10.15148/940c2882-49f1-49db-a97e-12303cace752, 2019.
Klimchouk, A.: Speleogenesis, Hypogenic, in: Encyclopedia of Caves, Elsevier, 748–765, https://doi.org/10.1016/B978-0-12-383832-2.00110-9, 2012.
Klimchouk, A.: The Karst Paradigm: Changes, Trends and Perspectives, Acta Carsologica/Karsoslovni Zbornik, 44, 289–313, https://doi.org/10.3986/ac.v44i3.2996, 2015.
Klimchouk, A.: Types and Settings of Hypogene Karst, in: Hypogene Karst Regions and Caves of the World, edited by: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., and Audra, P., Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-53348-3, 2017.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, Ch., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Kuhn, T. S.: he structure of scientific revolutions, University of Chicago, Chicago, 4 Edn., ISBN 13 978-0-226-45812-0, 1962.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
Malcles, O., Vernant, P., Chéry, J., Camps, P., Cazes, G., Ritz, J.-F., and Fink, D.: Determining the Plio-Quaternary uplift of the southern French Massif Central; a new insight for intraplate orogen dynamics, Solid Earth, 11, 241–258, https://doi.org/10.5194/se-11-241-2020, 2020a.
Malcles, O., Vernant, P., Chéry, J., Ritz, J.-F., Cazes, G., and Fink, D.: Âges d'enfouissement, fantômes de roches et structuration karstique, cas de la vallée de la Vis (Sud de la France), Géomorphologie: relief, processus, environnement, 26, 255–264, https://doi.org/10.4000/geomorphologie.15043, 2020b.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl. Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Palmer, A. N.: Cave Geology, Cave Books, Revised edition, 454 pp., ISBN 13 978-0939748815, 2017.
Quinif, Y.: Fantômes de roche et fantômisation: essai sur un nouveau paradigme en karstogénèse, edited by: Quinif, Y., Mons, 190 pp., ISBN 13 978-2-87509-016-4, 2010.
Quinif, Y., and Bruxelles, L.: L'altération de type “fantôme de roche”: processus, évolution et implications pour la karstification, Géomorphologie: relief, processus, environnement, 17, 349–358, https://doi.org/10.4000/geomorphologie.9555, 2011.
Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., and Mathot, E.: Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France, Commun. Earth Environ., 1, 10, https://doi.org/10.1038/s43247-020-0012-z, 2020.
Rodet, J.: The primokarst, former stages of karstification, or how solution caves can born, Geologic Belgica, 17, 58–65, 2014.
Sartégou, A., Mialon, A., Thomas, S., Giordani, A., Lacour, Q., Jacquet, A., André, D., Calmels, L., Bourlès, D., Bruxelles, L., Braucher, R., Leanni, L., and Aster Team: When TCN meet high school students: deciphering western Cévennes landscape evolution (Lozère, France) using TCN on karstic networks, 4th Nordic Workshop on Cosmogenic Nuclides, 4–6 June 2018, https://doi.org/10.13140/RG.2.2.17907.37921, 2018.
Schmidt, V. A.: The paleohydrology of Laurel Caverns, Pennsylvania, Proceedings of the 4th Conference on Karst Geology and Hydrology, Morgantown, edited by: Rauch, H. W. and Werner, E., West Virginia Geological and Economic Survey, 123–128, 1974.
Séranne, M., Camus, H., Lucazeau, F., Barbarand, J., and Quinif, Y.: Polyphased uplift and erosion of the Cévennes (southern France). An example of slow morphogenesis, B. Soc. Géol. Fr., 173, 97–112, https://doi.org/10.2113/173.2.97, 2002.
Stock, G. M., Granger, D. E., Sasowsky, I. D., Anderson, R. S., and Finkel, R. C.: Comparison of U–Th, paleomagnetism, and cosmogenic burial methods for dating caves: Implications for landscape evolution studies, Earth Planet. Sc. Lett., 236, 388–403, https://doi.org/10.1016/j.epsl.2005.04.024, 2005.
Vernet, J., Mercier, N., Bazile, F., and Brugal, J.: Travertins et terrasses de la moyenne vallée du Tarn à Millau (Sud du Massif Central, Aveyron, France): datations OSL, contribution à la chronologie et aux paléoenvironnements, Quaternaire, 19, 3–10, https://doi.org/10.4000/quaternaire.1422, 2008.
Wells, D. L. and Coppersmith, Kevin, J.: New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Wilcken, K. M., Fujioka, T., Fink, D., Fülöp, R. H., Codilean, A. T., Simon, K., Mifsud, C., and Kotevski, S.: SIRIUS Performance: 10Be, 26Al and 36Cl measurements at ANSTO, Nucl. Instrum. Meth. B, 455, 300–304, https://doi.org/10.1016/j.nimb.2019.02.009, 2019.
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
In the Grands Causses area (Southern France), we study the relationship between the evolution of...