Articles | Volume 4, issue 3
Earth Surf. Dynam., 4, 549–566, 2016
https://doi.org/10.5194/esurf-4-549-2016
Earth Surf. Dynam., 4, 549–566, 2016
https://doi.org/10.5194/esurf-4-549-2016
Research article
20 Jul 2016
Research article | 20 Jul 2016

A reduced-complexity model for sediment transport and step-pool morphology

Matteo Saletti et al.

Related authors

Experimental study of sediment supply control on step formation, evolution, and stability
Matteo Saletti and Marwan A. Hassan
Earth Surf. Dynam., 8, 855–868, https://doi.org/10.5194/esurf-8-855-2020,https://doi.org/10.5194/esurf-8-855-2020, 2020
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022,https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022,https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Effect of debris-flow sediment grain-size distribution on fan morphology
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam., 10, 775–796, https://doi.org/10.5194/esurf-10-775-2022,https://doi.org/10.5194/esurf-10-775-2022, 2022
Short summary
Controls on earthflow formation in the Teanaway River basin, central Washington State, USA
Sarah A. Schanz and A. Peyton Colee
Earth Surf. Dynam., 10, 761–774, https://doi.org/10.5194/esurf-10-761-2022,https://doi.org/10.5194/esurf-10-761-2022, 2022
Short summary
Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation
Jeongyeon Han and Wonsuck Kim
Earth Surf. Dynam., 10, 743–759, https://doi.org/10.5194/esurf-10-743-2022,https://doi.org/10.5194/esurf-10-743-2022, 2022
Short summary

Cited articles

Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-Pool Streams: Adjustment to Maximum Flow Resistance, Water Resour. Res., 31, 2593–2602, https://doi.org/10.1029/95WR01957, 1995.
Ancey, C. and Heymann, J.: A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates, J. Fluid Mech., 744, 129–168, https://doi.org/10.1017/jfm.2014.74, 2014.
Armanini, A., Cavedon, V., and Righetti, M.: A probabilistic/deterministic approach for the prediction of the sediment transport rate, Adv. Water Resour., 81, 10–18, https://doi.org/10.1016/j.advwatres.2014.09.008, 2015.
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364–374, https://doi.org/10.1103/PhysRevA.38.364, 1988.
Download
Short summary
This study presents a new reduced-complexity model with few parameters linked to basic physical processes, which aims to reproduce the transport of sediment as bed load and the formation and stability of channel morphology in steep mountain streams. The model is able to simulate the formation and stability of steps, bed structures commonly encountered in steep channels, by assuming that their formation is due to intense sediment transport during high flows causing jamming of particles.