Articles | Volume 5, issue 3
https://doi.org/10.5194/esurf-5-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Usumacinta–Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation
Kees Nooren
CORRESPONDING AUTHOR
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Wim Z. Hoek
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Tim Winkels
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Annika Huizinga
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Hans Van der Plicht
Groningen University, Centre for Isotope Research, 9747 AG
Groningen, the Netherlands
Leiden University, Faculty of Archaeology, 2333 CC Leiden, the Netherlands
Remke L. Van Dam
Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG),
Department of Civil Engineering, CEP 30510-000, Belo Horizonte,
Brazil
Michigan State University, Department of Earth and Environmental
Sciences, East Lansing, MI 48824, USA
Queensland University of Technology, Science and Engineering Faculty,
Institute for Future Environments, Brisbane, QLD 4001, Australia
Sytze Van Heteren
TNO – Geological Survey of the Netherlands, Geomodelling Department,
3584 CB Utrecht, the Netherlands
Manfred J. Van Bergen
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Maarten A. Prins
Vrije Universiteit, Faculty of Earth and Life Sciences, 1081 HV
Amsterdam, the Netherlands
Tony Reimann
Wageningen University, Soil Geography and Landscape Group & Netherlands
Centre for Luminescence Dating, 6708 PB Wageningen, the Netherlands
Jakob Wallinga
Wageningen University, Soil Geography and Landscape Group & Netherlands
Centre for Luminescence Dating, 6708 PB Wageningen, the Netherlands
Kim M. Cohen
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
TNO – Geological Survey of the Netherlands, Geomodelling Department,
3584 CB Utrecht, the Netherlands
Deltares, Department of Applied Geology and Geophysics, 3584 BK Utrecht, the Netherlands
Philip Minderhoud
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Hans Middelkoop
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Related authors
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
Katharina Seeger, Philip S. J. Minderhoud, Andreas Peffeköver, Anissa Vogel, Helmut Brückner, Frauke Kraas, Nay Win Oo, and Dominik Brill
Hydrol. Earth Syst. Sci., 27, 2257–2281, https://doi.org/10.5194/hess-27-2257-2023, https://doi.org/10.5194/hess-27-2257-2023, 2023
Short summary
Short summary
Accurate elevation data is essential for flood risk assessment. We assess land elevation to local mean sea level of the Ayeyarwady Delta with a new, local DEM based on geodetic data and evaluate the performance of 10 global DEMs in an SLR impact assessment. Our study reveals major differences in performance between global DEMs and consequentially introduced uncertainty in SLR impact assessments, indicating potential similar uncertainties for other data-poor coastal lowlands around the world.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Short summary
We developed a model to simulate long-term development of soils and landscapes under varying rainfall and land-use conditions to quantify the temporal variation of soil patterns. In natural landscapes, rainfall amount was the dominant factor influencing soil variation, while for agricultural landscapes, landscape position became the dominant factor due to tillage erosion. Our model shows potential for simulating past and future developments of soils in various landscapes and climates.
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Philip S. J. Minderhoud, Ivana Hlavacova, Jan Kolomaznik, and Olaf Neussner
Proc. IAHS, 382, 327–332, https://doi.org/10.5194/piahs-382-327-2020, https://doi.org/10.5194/piahs-382-327-2020, 2020
Short summary
Short summary
The populous and low-lying Vietnamese Mekong delta is facing accelerating subsidence rates and effective mitigation strategies are urgently needed to save-guard the future sustainability of the delta. This paper gathers results from existing measurements and estimates of subsidence in the Mekong delta and presents new, delta-wide estimates of subsidence based on satelite measures. We outline a planned approach to advance towards improved quantitation of individual subsidence drivers.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Geert-Jan Vis, Erik van Linden, Ronald van Balen, and Kim Cohen
Proc. IAHS, 382, 201–205, https://doi.org/10.5194/piahs-382-201-2020, https://doi.org/10.5194/piahs-382-201-2020, 2020
Short summary
Short summary
In the coal mining districts of the Netherlands, Belgium and Germany, we identified 662 previously unidentified depressions at the land surface using laser elevation measurements from an aircraft. The timing of their formation based on historical maps and landowner reports, suggest that they mostly formed during the period 1920–1970, the peak of mining activity. Based on their position, density and age, we link the formation of depressions to the coal-mining activities in the region.
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Jalal Samia, Arnaud Temme, Arnold Bregt, Jakob Wallinga, Fausto Guzzetti, and Francesca Ardizzone
Nat. Hazards Earth Syst. Sci., 20, 271–285, https://doi.org/10.5194/nhess-20-271-2020, https://doi.org/10.5194/nhess-20-271-2020, 2020
Short summary
Short summary
For the Collazzone study area in Italy, we quantified how much landslides follow others using Ripley's K function, finding that susceptibility is increased within 60 m and 17 years after a previous landslide. We then calculated the increased susceptibility for every pixel and for the 17-time-slice landslide inventory. We used these as additional explanatory variables in susceptibility modelling. Model performance increased substantially with this landslide history component included.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Elizabeth L. Chamberlain and Jakob Wallinga
Earth Surf. Dynam., 7, 723–736, https://doi.org/10.5194/esurf-7-723-2019, https://doi.org/10.5194/esurf-7-723-2019, 2019
Short summary
Short summary
Sand and mud may take many different pathways within a river as they travel from inland to the coast. During the trip, grains may be exposed to daylight, resetting a signal trapped within certain minerals. The signal can be measured in a laboratory to estimate the time since last light exposure. Here, we measure the trapped signal of sand and mud grains from the Mississippi River and its banks. We use this information to infer sediment pathways. Such knowledge is useful for delta management.
Jasper H. J. Candel, Maarten G. Kleinhans, Bart Makaske, Wim Z. Hoek, Cindy Quik, and Jakob Wallinga
Earth Surf. Dynam., 6, 723–741, https://doi.org/10.5194/esurf-6-723-2018, https://doi.org/10.5194/esurf-6-723-2018, 2018
Short summary
Short summary
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a meandering river ca. 500 years ago. We developed a methodology to reconstruct the historical discharge and found that the change in river style was caused by an increase in peak discharges. This increase was likely caused by the Little Ice Age and land use changes in the catchment (peat reclamation and exploitation). This study shows how river style changes as a result of discharge regime changes.
Cindy Quik and Jakob Wallinga
Earth Surf. Dynam., 6, 705–721, https://doi.org/10.5194/esurf-6-705-2018, https://doi.org/10.5194/esurf-6-705-2018, 2018
Short summary
Short summary
Identifying contemporary river migration rates is often based on aerial photos or recent topographical maps. Here, we propose to use river sediments as an archive to look further back in time using optically stimulated luminescence (OSL) dating and develop a modelling procedure for the joint analysis of dating results and historical maps. The procedure is applied to the Overijsselse Vecht river in The Netherlands, and we show that the river migrated with 0.9–2.6 m yr−1 between 1400 and 1900 CE.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Eveline Christien van der Deijl, Marcel van der Perk, and Hans Middelkoop
Earth Surf. Dynam., 6, 187–201, https://doi.org/10.5194/esurf-6-187-2018, https://doi.org/10.5194/esurf-6-187-2018, 2018
Short summary
Short summary
To study the effectiveness of river delta restoration, we used field observations and elevation data to quantify the magnitude and spatial patterns of aggradation and erosion in a restored wetland in the Rhine-Meuse delta. Erosion and aggradation rates decrease over time, but aggradation compensates for sea-level rise and soil subsidence. Channels in the centre had aggraded, whereas the inlet and outlet eroded. Furthermore, sediment is in general uniformly distributed over the intertidal area.
Sjoerd Kluiving, Tim de Ridder, Marcel van Dasselaar, Stan Roozen, and Maarten Prins
SOIL, 2, 271–285, https://doi.org/10.5194/soil-2-271-2016, https://doi.org/10.5194/soil-2-271-2016, 2016
Short summary
Short summary
In medieval times the city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Maas, the Merwede, and the Vlaarding. Combined research on the history and soil of this city was initiated by an archaeological research question, following Dutch legislation. The start of fluvial system 2 in AD 600 correlates with evidence of the church that was present at least in AD 726/727. Results record the period before and after the flooding in AD 1170.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Short summary
This study combined fieldwork, geochronology and modelling to get a better understanding of Arctic soil development on a landscape scale. Main processes are aeolian deposition, physical and chemical weathering and silt translocation. Discrepancies between model results and field observations showed that soil and landscape development is not as straightforward as we hypothesized. Interactions between landscape processes and soil processes have resulted in a complex soil pattern in the landscape.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
F. Schuurman, M. G. Kleinhans, and H. Middelkoop
Earth Surf. Dynam., 4, 25–45, https://doi.org/10.5194/esurf-4-25-2016, https://doi.org/10.5194/esurf-4-25-2016, 2016
Short summary
Short summary
We studied the propagation of natural and human-induced perturbations in large braided sand-bed rivers using a physics-based 3-D model. The results show that the perturbations not only affect the local morphology but their effects amplify while propagating through the braided network. This occurs by destabilization of bifurcations in combination with reshaping of bars and branches. These results could have a major impact on the assessment of engineering measures in large braided sand-bed rivers.
J. M. van Mourik, D. J. G. Braekmans, M. Doorenbosch, W. J. Kuijper, and J. van der Plicht
SOIL Discuss., https://doi.org/10.5194/soil-2015-82, https://doi.org/10.5194/soil-2015-82, 2016
Manuscript not accepted for further review
Short summary
Short summary
Paleoecological studies of mardels could not solve the problem concerning the geological versus anthropogenic genesis of mardels.
The results of archaeometrical tests show that colluvial clay, excavated from mardels has been used in Roman Time to produce ceramics.
Mardels are initially natural depressions, filled with pre Roman colluvial clay, excavated in the Roam Time and refilled with clay after the Roman Time.
P. S. J. Minderhoud, G. Erkens, V. H. Pham, B. T. Vuong, and E. Stouthamer
Proc. IAHS, 372, 73–76, https://doi.org/10.5194/piahs-372-73-2015, https://doi.org/10.5194/piahs-372-73-2015, 2015
Short summary
Short summary
Land subsidence rates of ~1-4 cm yr-1 are measured in the low-lying Vietnamese Mekong Delta. These relatively high subsidence rates are attributed to groundwater extraction, which has increased drastically over the past decades. There is an urgent need to go from measurements to predictions to test future groundwater management scenarios and reduce subsidence. In this study, we present an approach to build a 3D geo-hydrological model to determine the subsidence potential of the Mekong Delta.
A. C. Cunningham, J. Wallinga, N. Hobo, A. J. Versendaal, B. Makaske, and H. Middelkoop
Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, https://doi.org/10.5194/esurf-3-55-2015, 2015
Short summary
Short summary
Rivers transport sediment from mountains to coast, but on the way sediment is trapped and re-eroded multiple times. We looked at Rhine river sediments to see if they preserve evidence of how geomorphic variables have changed over time. We found that measured signals potentially relate to water level and river management practices. These relationships can be treated as hypotheses to guide further research, and our statistical approach will increase the utility of research in this field.
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Equilibrium distance from long-range dune interactions
Examination of analytical shear stress predictions for coastal dune evolution
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Width evolution of channel belts as a random walk
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Geometric constraints on tributary fluvial network junction angles
A new dunetracking tool to support input parameter selection and uncertainty analyses using a Monte Carlo approach
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Downstream rounding rate of pebbles in the Himalaya
Automatic detection of instream large wood in videos using deep learning
A physics-based model for fluvial valley width
Sub-surface processes and heat fluxes at coarse-blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
A numerical model for duricrust formation by water table fluctuations
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
Earth Surf. Dynam., 13, 23–39, https://doi.org/10.5194/esurf-13-23-2025, https://doi.org/10.5194/esurf-13-23-2025, 2025
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency, and dune size. This process is controlled by the modification of wind flow over dunes of various shapes, influencing the sediment transport downstream.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2024-2011, https://doi.org/10.5194/egusphere-2024-2011, 2024
Short summary
Short summary
We propose a new mechanism of widespread surficial co-seismic sediment entrainment by seismic motions in subduction earthquakes. Our physical experiments show that shear from sediment-water relative velocities from long-period earthquake motions can mobilize synthetic fine marine sediment. High frequency vertical shaking can enhance this mobilization. According to our results, the largest tsunamigenic earthquakes that rupture to the trench may be distinguishable in the sedimentary record.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Jens Martin Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
EGUsphere, https://doi.org/10.5194/egusphere-2024-2342, https://doi.org/10.5194/egusphere-2024-2342, 2024
Short summary
Short summary
Channel belts comprise the area that is affected by a river due to lateral migration and floods. As a landform, they affect local water resources, flood hazard, and often host unique ecological communities. Here, we develop a model describing the evolution of channel belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems is favourable.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Abhishek Kashyap, Kristen Cook, and Mukunda Dev Behera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1618, https://doi.org/10.5194/egusphere-2024-1618, 2024
Short summary
Short summary
High-mountain floods exhibit a significant geomorphic hazard, often triggered by rapid snowmelt, extreme precipitation, glacial lake outbursts, and natural failures of dams. Such high-magnitude floods can have catastrophic impacts on downstream communities, ecosystems, and infrastructure. These floods demonstrate the significance of understanding the complex interaction of climatic, hydrological, and geological forces in high mountain regions.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Julius Reich and Axel Winterscheid
EGUsphere, https://doi.org/10.5194/egusphere-2024-579, https://doi.org/10.5194/egusphere-2024-579, 2024
Short summary
Short summary
Analysing the geometry and the dynamics of riverine bedforms (so-called dunetracking) is important for various fields of application and contributes to a sound and efficient river and sediment management. We developed a new tool, which enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a test dataset, we show that the selection of input parameters of dunetracking tools can have a significant impact on the results.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1138, https://doi.org/10.5194/egusphere-2024-1138, 2024
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
EGUsphere, https://doi.org/10.5194/egusphere-2024-792, https://doi.org/10.5194/egusphere-2024-792, 2024
Short summary
Short summary
This study presents a novel CNN approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods that can be used on a variety of data sources. Leveraging a database of 15,228 fully labeled images, our model achieved a 67 % weighted mean average precision. Fine-tuning parameters and sampling techniques offer potential for further performance enhancement of more than 10 % in certain cases, promising valuable insights for ecosystem management.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
EGUsphere, https://doi.org/10.5194/egusphere-2024-160, https://doi.org/10.5194/egusphere-2024-160, 2024
Short summary
Short summary
We have developed a new numerical model to represent the formation of ferricretes which are iron-rich, hard layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Cited articles
Aagaard, T., Davidson-Arnott, R., Greenwood, B., and Nielsen, J.: Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution, Geomorphology, 60, 205–224, 2004.
Administración Portuaria Integral de Dos Bocas S. A. de C. V.: Manifestación de Impacto Ambiental Modalidad Particular; Construcción de Escolleras y del Dragado del Canal de Acceso del Puerto de Frontera, Tabasco. Administración Portuaria Integral de Dos Bocas S. A. de C. V., Paraíso, Tabasco, México, 258 pp., 2005.
Aguayo, J. E., Gutiérrez-Estrada, M. A., Araujo-Mendieta, J., Sandoval-Ochoa, J. H., and Vázquez-Gutiérrez, F.: Geodinámica Holocénica y reciente del sistema fluvio deltáico Grijalva-Usumacinta, suroeste del Golfo de México, Revista de la Sociedad Mexicana de Historia Natural, 49, 29–44, 1999.
Aitken, M. J.: An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence, Oxford University Press, Oxford, 267 pp., 1998.
Ashton, A. D. and Giosan, L.: Wave-angle control of delta evolution, Geophys. Res. Lett., 38, L13405, https://doi.org/10.1029/2011GL047630, 2011.
Ayala-Castañares, A. and Guttiérrez-Estrada, M.: Morfología y sedimentos superficiales de la plataforma continental frente a Tabasco y Campeche, México, Anales del Instituto de Ciencias del Mar y Limnología, 17, 163–190, 1990.
Ballarini, M., Wallinga, J., Murray, A. S., Van Heteren, S., Oost, A. P., Bos, A. J. J., and Van Eijk, C. W. E.: Optical dating of young coastal dunes on a decadal time scale, Quaternary Sci. Rev., 22, 1011–1017, 2003.
Balsillie, J. H.: William F. Tanner on Environmental Clastic Granulometry, Special Publication 40, Geological Survey, Quaternary Science Reviews, Tallahassee, Florida, 145 pp., 1995.
Banco Nacional de Datos de Aguas Superficiales: available at: http://www.conagua.gob.mx/conagua07/contenido/documentos/portada bandas.htm, last access: January 2017.
Blott, S. J. and Pye, K.: Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Blum, M. D., Sivers, A. E., Zayac, T., and Goble, R. J.: Middle Holocene Sea-Level and Evolution of the Gulf of Mexico Coast, Gulf Coast Association of Geological Societies Transactions, Baton Rouge, Louisiana, 53, 64–77, 2003.
Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.: Developments in radiation, stimulation and observation facilities in luminescence measurement, Radiat. Meas., 37, 535–541, 2003.
Bristow, C. S. and Pucillo, K.: Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia, Sedimentology, 53, 769–788, 2006.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, 2009.
Bronk Ramsey, C.: Oxcal 4.2., available at: http://c14.arch.ox.ac.uk/oxcal.html (last access: January 2017), 2016.
Brooke, B., Ryan, D., Pietsch, T., Olley, J., Douglas, G., Packett, R., Radke, L., and Flood, P.: Influence of climate fluctuations and changes in catchment land use on Late Holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia, Mar. Geol., 251, 195–208, 2008a.
Brooke, B., Lee, R., Cox, M., Olley, J., and Pietsch, T.: Rates of shoreline progradation during the last 1700 years at Beachmere, Southeastern Queensland, Australia, based on optically stimulated luminescence dating of beach ridges, J. Coastal Res., 24, 640–648, 2008b.
Cabadas-Báez, H. V., Solís-Castillo, B., Solleiro-Rebolledo, E., Sedov, S., Leonard, D., and Teranishi-Castillo, K.: Reworked volcaniclastic deposits from the Usumacinta river, Mexico: a serendipitous source of volcanic glass in Maya ceramics, Geoarchaeology, 32, 382–399, 2017.
Carter, R. W. G.: The morphodynamics of beach-ridge formation: Magilligan, Northern Ireland, Mar. Geol., 73, 191–214, 1986.
Castillo, S., Pompa, J., and Moreno-Casasola, P.: Coastal sand dune vegetation of Tabasco and Campeche, Mexico, J. Veg. Sci., 2, 73–88, 1991.
Cleveringa, J.: Reconstruction and modelling of Holocene coastal evolution of the western Netherlands, PhD thesis, Utrecht University, Utrecht, the Netherlands, 2000.
Cunningham, A. C. and Wallinga, J.: Selection of integration time-intervals for quartz OSL decay curves, Quat. Geochronol., 5, 657–666, 2010.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial archives using robust OSL chronologies, Quat. Geochronol., 12, 98–106, 2012.
Curray, J. R., Emmel, F. J., and Crampton, P. J. S.: Holocene history of a strand plain, lagoonal coast, Nayarit, Mexico, in: Lagunas Costeras, UN Symposium, edited by: Ayala-Casteñares, A. and Phleger, F. B., UNAM-UNESCO, Mexico, DF, 63–100, 1969.
Dogan, M., Van Dam, R. L., Bohling, G. C., Butler, J. J., and Hyndman, D. W.: Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push hydraulic profiling, Geophys. Res. Lett., 38, L06405, https://doi.org/10.1029/2010GL046439, 2011.
Donnelly, J. P. and Giosan, L.: Tempestuous highs and lows in the Gulf of Mexico, Geology, 36, 751–752, 2008.
Drexler, J. W., Rose, W. I., Sparks, R. S. J., and Ledbetters, M. T.: The Los Chocoyos Ash, Guatemala: a major stratigraphic marker in middle America and in three ocean basins, Quaternary Res., 13, 327–345, 1980.
Duller, G. A. T.: Distinguishing quartz and feldspar in single grain luminescence measurements, Radiat. Meas., 37, 161–165, 2003.
FitzGerald, D. M., Buynevich, I. V., Fenster, M. S., and McKinlay, P. A.: Sand dynamics at the mouth of a rock-bound, tide-dominated estuary, Sediment. Geol., 131, 25–49, 2000.
Folk, R. L. and Ward, W. C.: Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Petrol., 27, 3–26, 1957.
Forrest, B. M.: Evolution of the Beach Ridge Strandplain on St. Vincent Island, Florida, Thesis, Florida State University, Tallahassee, 269 pp., 2007.
Forsyth, A. J., Nott, J., and Bateman, M. D.: Beach ridge plain evidence of a variable late-Holocene tropical cyclone climate, North Queensland, Australia, Palaeogeogr. Palaeocl., 297, 707–716, 2010.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part I, experimental design and statistical models, Archaeometry, 41, 339–364, 1999.
Gallego-Fernández, J. B. and Martínez, M. L.: Environmental filtering and plant functional types on Mexican foredunes along the Gulf of Mexico, Ecoscience, 18, 52–62, 2011.
Garrison Jr., J. R., Mestas-Nuñez, A. M., Williams, J. R., and Lumb, L. M.: Can beach dune ridges of the Texas Gulf Coast preserve climate signals?, Geo-Mar. Lett., 32, 241–250, 2012.
Garrity, C. P. and Soller, D. R.: Database of the Geologic Map of North America, adapted from the map by J. C. Reed, Jr., and others (2005), US Geological Survey Data Series 424, available at: https://pubs.usgs.gov/ds/424/ (last access: January 2017), 2009.
Gischler, E. and Hudson, J. H.: Holocene development of the Belize barrier reef, Sediment. Geol., 164, 223–236, 2004.
Guedes, C. C. F., Giannini, P. C. F., Nascimento Jr., D. R. Sawakuchi, A. O., Tanaka, A. P. B., and Rossi, M. G.: Controls of heavy minerals and grain size in a holocene regressive barrier (Ilha Comprida, southeastern Brazil), J. S. Am. Earth Sci., 31, 110–123, 2011.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors: update, Ancient TL, 29, 5–8, 2011.
Harp, E. L., Wilson, R. C., and Wieczorek, G. F.: Landslides from the February 4, 1976, Guatemala earthquake, Prof. Paper 1024-A, US Geological Survey, Washington, 1981.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Hinojosa, C., Nooren, K., Solleiro-Rebolledo, E., Sedov, S., Salazar, O.: Soil development on a beach ridge chronosequence in the Gulf of Mexico coastal plain and its relation to the ancient land use, Quatern. Int., 418, 180–194, 2016.
Hodell, D. A., Curtis, J. H., and Brenner, M.: Possible role of climate in the collapse of Classic Maya civilization, Nature, 375, 391–394, 1995.
Instituto Geográfico Nacional: Mapa Geológico de Guatemala a escala 1 : 500,000, Guatemala City, 1970.
Jol, H. M., Smith, D. G., and Meyers, R. A.: Digital ground penetrating radar (GPR): a new geophysical tool for coastal barrier research (examples from the Atlantic, Gulf and Pacific Coasts, USA), J. Coastal Res., 12, 960–968, 1996.
Jom Morán, S. A.: Medición batimétrica para determinar el volumen de material sedimentado acumulado durante el tiempo de servicio del embalse Pueblo Viejo, de la central hidroeléctrica Chixoy, Msc thesis, Universidad de San Carlos de Guatemala, Guatemala City, 2010.
Keijsers, J. G. S., Poortinga, A., Riksen, M. J. P. M., and Maroulis, J.: Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography, PLoS ONE, 9, e91115, https://doi.org/10.1371/journal.pone.0091115, 2014.
Koch, A. J. and McLean, H.: Pleistocene tephra and ash-flow deposits in the volcanic highlands of Guatemala, Geol. Soc. Am. Bull., 86, 529–541, 1975.
Komar, P. D.: The entrainment, transport and sorting of heavy minerals by waves and currents, Dev. Sedimentol., 58, 3–48, 2007.
Kossin, J. P., Camargo, S. J., and Sitkowski, M.: Climate modulation of North Atlantic Hurricane tracks, J. Climate, 23, 3057–3076, 2010.
Kutterolf, S., Freundt, A., Peréz, W., Mörz, T., Schacht, U., Wehrmann, H., and Schmincke, H.-U.: Pacific offshore record of plinian arc volcanism in Central America: 1. Along-arc correlations, Geochem. Geophy. Geosy., 9, Q02S01, https://doi.org/10.1029/2007GC001631, 2008.
López, G. I. and Rink, W. J.: New quartz optical stimulated luminescence ages for beach ridges on the St. Vincent Island Holocene strand plain, Florida, US, J. Coastal Res., 24, 49–62, 2008.
May, J. H., Wells, S. G., Cohen, T. J., Marx, S. K., Nanson, G. C., and Baker, S. E.: A soil chronosequence on Lake Mega-Frome beach ridges and its implications for late Quaternary pedogenesis and paleoenvironmental conditions in the drylands of southern Australia, Quaternary Res., 83, 150–165, 2015.
McCave, I. N.: Grain-size trends and transport along beaches: example from eastern England, Mar. Geol., 28, M43–M51, 1978.
Milana, J. P., Conforti Ferreira Guedes, C., and Valdez Buso, V.: The coastal ridge sequence at Rio Grande do Sul: a new geoarchive for past climate events of the Atlantic coast of southern Brazil since the mid Holocene, Quatern. Int., 438, 187–199, 2017.
Milliken, K. T., Anderson, J. B., and Rodriguez, A. B.: A New Composite Holocene Sea-level Curve for the Northern Gulf of Mexico, Special Paper 443, The Geological Society of America, Boulder, 1–11, 2008.
Minderhoud, P., Cohen, K. M., Toonen, W. H. J., Erkens, G., and Hoek, W. Z.: Improving age-depth models of fluvio-lacustrine deposits using sedimentary proxies for accumulation rates, Quat. Geochronol., 33, 35–45, 2016.
Mook, W. G. and Van der Plicht, J.: Reporting 14C activities and concentrations, Radiocarbon, 41, 227–239, 1999.
Moore, L. J., Durán Vinent, O., and Ruggiero, P.: Vegetation control allows autocyclic formation of multiple dunes on prograding coasts, Geology, 44, 559–562, 2016.
Morton, R. A., Paine, J. G., and Blum, M. D.: Responses of stable bay-margin and barrier-island systems to Holocene sea-level highstands, western Gulf of Mexico, J. Sediment. Res., 70, 478–490, 2000.
Muñoz-Salinas, E. Castillo, M., Sanderson, D., Kinnaird, T., and Cruz-Zaragoza, E.: Using three different approaches of OSL for the study of young fluvial sediments at the coastal plain of the Usumacinta–Grijalva River Basin, southern Mexico, Earth Surf. Proc. Land., 41, 823–834, 2016.
Murray-Wallace, C. V., Banerjee, D., Bourman, R. P., Olley, J. M., and Brooke, B. P.: Optically stimulated luminescence dating of Holocene relict foredunes, Guichen Bay, South Australia, Quaternary Sci. Rev., 21, 1077–1086, 2002.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose protocol: potential for improvements in reliability, Radiat. Meas., 37, 377–381, 2003.
Neal, A.: Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66, 261–330, 2004.
Nielsen, A., Murray, A. S., Pejrup, M., and Elberling, B.: Optically stimulated luminescence dating of a Holocene beach ridge plain in Northern Jutland, Denmark, Quat. Geochronol., 1, 305–312, 2006.
Nielsen, A. H., Elberling, B., and Pejrup, M.: Soil development rates from an optically stimulated luminescence-dated beach ridge sequence in Northern Jutland, Denmark, Can. J. Soil Sci., 90, 295–307, 2010.
Nieuwenhuyse, A. and Kroonenberg, S. B.: Volcanic origin of Holocene beach ridges along the Caribbean coast of Costa Rica, Mar. Geol., 120, 13–26, 1994.
Nooren, C. A. M., Hoek, W. Z., Tebbens, L. A., and Martin Del Pozzo, A. L.: Tephrochronological evidence for the late Holocene eruption history of El Chichón Volcano, Mexico, Geofísica Internacional, 48, 97–112, 2009.
Nooren, K., Hoek, W. Z., Van der Plicht, H., Sigl, M., Van Bergen, M. J., Galop, D., Torrescano-Valle, N., Islebe, G., Huizinga, A., Winkels, T., and Middelkoop, H.: Explosive eruption of El Chichón volcano (Mexico) disrupted 6th century Maya civilization and contributed to global cooling, Geology, 45, 175–178, 2017.
Nott, J., Smithers, S., Walsh, K., and Rhodes, E.: Sand beach ridges record 6000 year history of extreme tropical cyclone activity in northeastern Australia, Quaternary Sci. Rev., 28, 1511–1520, 2009.
Nott, J.: A 6000 year tropical cyclone record from Western Australia, Quaternary Sci. Rev., 30, 713–722, 2011.
Oliver, T. S. N.: Holocene depositional history of three coastal sand ridge plains, southeastern Australia, Doctor of Philosophy thesis, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, Australia, 216 pp., 2016.
Oliver, T. S. N., Dougherty, A. J., Gliganic, L. A., and Woodroffe, C. D.: Towards more robust chronologies of coastal progradation: optically stimulated luminescence ages for the coastal plain at Moruya, south-eastern Australia, Holocene, 25, 536–546, 2015.
Ollerhead, J., Davidson-Arnott, R., Walker, I. J., and Mathew, S.: Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada, Earth Surf. Proc. Land., 38, 284–298, 2013.
Ortíz-Pérez, M. A.: Retroceso reciente de la línea ed costa del frente deltáico del Río San Pedro, Campeche-Tabasco, Investigaciones Geográficas, 25, 7–24, 1992.
Ortíz-Pérez, M. A., Hernández-Santana, J. R., Figueroa Mah Eng, J. M., and Gama Campillo, L.: Tasas del avance transgresivo y regresivo en el frente deltaico tabasqueño: en el período comprendido del año 1995 al 2008, in: Vulnerabilidad en las zonas costeras mexicanas ante el cambio climático, edited by: Botello, A. V., Villanueva-Fragoso, S., Gutiérrez, J., and Rojas Galaviz, J. L., UNAM-INE, Campeche, 305–324, 2010.
Otvos, E. G.: Beach Ridges – definitions and significance, Geomorphology, 32, 83–108, 2000.
Otvos, E. G.: Coastal barriers, Gulf of Mexico: holocene evolution and chronology, J. Coastal Res., 42, 141–163, 2005.
Padilla, R. J. and Sánchez: Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México, B. Soc. Geol. Mex., Tomo LIX, 1, 19–42, 2007.
Pietsch, T. J., Olley, J. M., and Nanson, G. C.: Fluvial transport as a natural luminescence sensitiser of quartz, Quat. Geochronol., 3, 365–376, 2008.
Prescott, J. R. and Hutton, J. T.: Cosmic ray distributions to dose rates for luminescence and ESR dating: large depths and long-term variations, Radiat. Meas., 23, 497–500, 1994.
Psuty, N. P.: Beach ridge development in Tabasco, Mexico, Ann. Am. Assoc. Geogr., 55, 112–124, 1965.
Psuty, N. P.: The Geomorphology of Beach Ridges in Tabasco, Mexico, Coastal Studies Series 18, Louisiana State University Press, Baton Rouge, USA, 51 pp., 1967.
Ramos, J., Marrufo, L., and González, F. J.: Use of lidar data in floodplain risk management planning: the experience of Tabasco 2007 flood, in: Advances in Geoscience and Remote Sensing, edited by: Jedlovec, G., Intech, Rijeka, Croatia, https://doi.org/10.5772/8322, 2009.
Reimann, T., Tsukamoto, S., Harff, J., Osadczuk, K., and Frechen, M.: Reconstruction of Holocene coastal foredune progradation using luminescence dating – An example from the Świna barrier (southern Baltic Sea, NW Poland), Geomorphology, 132, 1–16, 2011.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and Van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Rémillard, A. M., Buylaert, J.-P., Murray, A. S., St-Onge, G., Bernatches, P., and Hetu, B.: Quartz OSL dating of the late Holocene beach ridge from the Magdalen Islands (Quebec, Canada), Quat. Geochronol., 30, 264–269, 2015.
Rink, W. J. and López, G. I.: OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida, Geomorphology, 123, 330–342, 2010.
Rose, W. I., Newhall, C. G., Bornhorst, T. J., and Self, C.: Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala, J. Volcanol. Geoth. Res., 33, 57–80, 1987.
Salas-de-León, D. A., Monreal-Gómez, M. A., Salas-Monreal, D., Riverón-Enzástiga, M. L., and Sánchez-Santillan, N. L.: Inter-annual sea level variability in the southern Gulf of Mexico (1966–1976), Geophys. Res. Lett., 33, L08610, https://doi.org/10.1029/2006GL025832, 2006.
Salas-de-León, D. A., Monreal-Gómez, M. A., Miguel Díaz-Flores, M. A., Salas-Monreal, D., Velasco-Mendoza, H., Riverón-Enzástiga, M. L., and Ortiz-Zamora, G.: Role of near-bottom currents in the distribution of sediments within the Southern Bay of Campeche, Gulf of Mexico, J. Coastal Res., 24, 1487–1494, 2008.
Sánchez-Núñez, M. M., Macías, J. L., Saucedo, R., Zamorano, J. J., Novelo, D., Mendoza, M. E., and Torres-Hernández, J. R.: Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico, Geomorphology, 230, 1–12, 2015.
Scheffers, A., Engel, M., Scheffers, S., Squire, P., and Kelletat, D.: Beach ridge systems – archives for Holocene coastal events?, Prog. Phys. Geogr., 36, 5–37, 2012.
Shepherd, M. J.: Relict and contemporary foredunes as indicators of coastal processes, in: Applied Quaternary Studies, edited by: Brierley, G. and Chappell, J., Australian National University, Canberra, Australia, 17–24, 1991.
Solís-Castillo, B., Thiel, C., Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedov, S., Terhorst, B., Damm, B., Frechen, M., and Tsukamoto, S.: Holocene sequences in the Mayan Lowlands – A provenance study using heavy mineral distributions, Eiszeitalter und Gegenwart, Quaternary Sci. J., 62, 84–97, 2013.
Stapor, F. W., Jr., Mathews, T. D., and Lindfors-Kearns, F. E.: Barrier-island progradation and holocene sealevel history in southwest Florida, J. Coastal Res., 7, 815–838, 1991.
Tamura, T.: Beach ridges and prograded beach deposits as palaeoenvironment records, Earth-Sci. Rev., 114, 279–297, 2012.
Tamura, T., Murakami, F., and Watanabe, K.: Holocene beach deposits for assessing coastal uplift of the northeastern Boso Peninsula, Pacific coast of Japan, Quaternary Res., 74, 227–234, 2010.
Tanner, W. F.: Late Holocene sea-level changes from grain-size data: evidence from the Gulf of Mexico, Holocene, 2, 249–254, 1992.
Tanner, W. F.: Origin of beach ridges and swales, Mar. Geol., 129, 149–161, 1995.
Taylor, M. J. and Stone, G. W.: Beach-ridges: a review, J. Coastal Res., 12, 612–621, 1996.
Thompson, T. A.: Beach-ridge development and lake-level variation in southern Lake Michigan, Sediment. Geol., 80, 305–318, 1992.
Törnqvist, T. E., Gonzalez, J. L., Newsom, L. A., van der Borg, K., de Jong, A. F. M., and Kurnik, C. W.: Deciphering holocene sea-level history on the U.S. Gulf Coast: a high-resolution record from the Mississippi Delta, Geol. Soc. Am. Bull., 116, 1026–1039, 2004.
Tsukamoto, S., Rink, W. J., and Watanuki, T.: OSL of tephric loess and volcanic quartz in Japan and an alternative procedure for estimating De from a fast OSL component, Rad. Meas., 37, 459–465, 2003.
USGS: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global dataset, available at: https://lta.cr.usgs.gov/SRTM1Arc (last access: January 2017), 2009.
Van Dam, R. L.: Landform characterization using geophysics – recent advances, applications, and emerging tools, Geomorphology, 137, 57–73, 2012.
Van Dam, R. L. and Schlager, W.: Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, 47, 435–449, 2000.
Van der Meene, E. A., Van der Staay, J., and Lay Hock, T.: The Van der Staay suction – corer – a simple apparatus for drilling in sand below groundwater table, Rijks Geologische Dienst, Haarlem, the Netherlands, 1979.
Van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H., and Meijer, H. A. J.: The Groningen AMS facility: status report, Nucl. Instrum. Meth. B, 172, 58–65, 2000.
Van Heteren, S., Fitzgerald, D. M., Mckinlay, P. A., and Buynevich, I. V.: Radar facies of paraglacial barrier systems: coastal New England, USA, Sedimentology, 45, 181–200, 1998.
Van Overmeeren, R. A.: Radar facies of unconsolidated sediments in the Netherlands: a radar stratigraphy interpretation method for hydrogeology, J. Appl. Geophys., 40, 1–18, 1998.
Vespremeanu-Stroe, A., Preoteasa, L., Zăinescu, F., Rotaru, S., Croitoru, L., and Timar-Gabor, A.: Formation of Danube delta beach ridge plains and signatures in morphology, Quatern. Int., 415, 268–285, 2016.
Von Nagy, C.: Of Meandering Rivers and Shifting Towns: Landscape Evolution and Community within the Grijalva delta, PhD thesis, Tulane University, USA, 1640 pp., 2003.
Visher, G. S.: Grain size distributions and depositional processes, J. Sediment. Petrol., 39, 1074–1106, 1969.
Wahl, D., Byrne, R., and Anderson, L.: An 8700 year paleoclimate reconstruction from the southern Maya lowlands, Quaternary Sci. Rev., 103, 19–25, 2014.
Wallinga, J.: Optically stimulated luminescence dating of fluvial deposits: a review, Boreas, 31, 303–322, 2002.
West, R. C., Psuty, N. P., and Thom, B. G.: The Tabasco Lowlands of Southeastern Mexico, Technical Report 70, Louisiana State University, Baton Rouge, USA, 198 pp., 1969.
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an...