Articles | Volume 5, issue 3
https://doi.org/10.5194/esurf-5-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Usumacinta–Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation
Kees Nooren
CORRESPONDING AUTHOR
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Wim Z. Hoek
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Tim Winkels
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Annika Huizinga
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Hans Plicht
Groningen University, Centre for Isotope Research, 9747 AG
Groningen, the Netherlands
Leiden University, Faculty of Archaeology, 2333 CC Leiden, the Netherlands
Remke L. Dam
Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG),
Department of Civil Engineering, CEP 30510-000, Belo Horizonte,
Brazil
Michigan State University, Department of Earth and Environmental
Sciences, East Lansing, MI 48824, USA
Queensland University of Technology, Science and Engineering Faculty,
Institute for Future Environments, Brisbane, QLD 4001, Australia
Sytze Heteren
TNO – Geological Survey of the Netherlands, Geomodelling Department,
3584 CB Utrecht, the Netherlands
Manfred J. Bergen
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Maarten A. Prins
Vrije Universiteit, Faculty of Earth and Life Sciences, 1081 HV
Amsterdam, the Netherlands
Tony Reimann
Wageningen University, Soil Geography and Landscape Group & Netherlands
Centre for Luminescence Dating, 6708 PB Wageningen, the Netherlands
Jakob Wallinga
Wageningen University, Soil Geography and Landscape Group & Netherlands
Centre for Luminescence Dating, 6708 PB Wageningen, the Netherlands
Kim M. Cohen
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
TNO – Geological Survey of the Netherlands, Geomodelling Department,
3584 CB Utrecht, the Netherlands
Deltares, Department of Applied Geology and Geophysics, 3584 BK Utrecht, the Netherlands
Philip Minderhoud
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Hans Middelkoop
Utrecht University, Faculty of Geosciences, 3584 CS Utrecht, the Netherlands
Related authors
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Katharina Seeger, Philip Simon Johannes Minderhoud, Andreas Peffeköver, Anissa Vogel, Helmut Brückner, Frauke Kraas, Nay Win Oo, and Dominik Brill
EGUsphere, https://doi.org/10.5194/egusphere-2022-1425, https://doi.org/10.5194/egusphere-2022-1425, 2023
Short summary
Short summary
Low-lying deltas are prone to relative sea level rise (SLR) and flooding, making accurate elevation data essential for flood risk assessment. We assess the land elevation of the Ayeyarwady Delta (Myanmar) in relation to local mean sea level (MSL) by generating a new, local DEM based on topographical map elevation data, and analysing the performance of 10 global DEMs, referenced to local MSL. We identify deltaic areas prone to SLR and monsoon flooding and interpret their relation to topography.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-934, https://doi.org/10.5194/egusphere-2022-934, 2022
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, that simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through the simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and study how soil, landscapes and the geochronometers change under complex boundary conditions such as intensive land management.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Short summary
We developed a model to simulate long-term development of soils and landscapes under varying rainfall and land-use conditions to quantify the temporal variation of soil patterns. In natural landscapes, rainfall amount was the dominant factor influencing soil variation, while for agricultural landscapes, landscape position became the dominant factor due to tillage erosion. Our model shows potential for simulating past and future developments of soils in various landscapes and climates.
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Philip S. J. Minderhoud, Ivana Hlavacova, Jan Kolomaznik, and Olaf Neussner
Proc. IAHS, 382, 327–332, https://doi.org/10.5194/piahs-382-327-2020, https://doi.org/10.5194/piahs-382-327-2020, 2020
Short summary
Short summary
The populous and low-lying Vietnamese Mekong delta is facing accelerating subsidence rates and effective mitigation strategies are urgently needed to save-guard the future sustainability of the delta. This paper gathers results from existing measurements and estimates of subsidence in the Mekong delta and presents new, delta-wide estimates of subsidence based on satelite measures. We outline a planned approach to advance towards improved quantitation of individual subsidence drivers.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Geert-Jan Vis, Erik van Linden, Ronald van Balen, and Kim Cohen
Proc. IAHS, 382, 201–205, https://doi.org/10.5194/piahs-382-201-2020, https://doi.org/10.5194/piahs-382-201-2020, 2020
Short summary
Short summary
In the coal mining districts of the Netherlands, Belgium and Germany, we identified 662 previously unidentified depressions at the land surface using laser elevation measurements from an aircraft. The timing of their formation based on historical maps and landowner reports, suggest that they mostly formed during the period 1920–1970, the peak of mining activity. Based on their position, density and age, we link the formation of depressions to the coal-mining activities in the region.
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Jalal Samia, Arnaud Temme, Arnold Bregt, Jakob Wallinga, Fausto Guzzetti, and Francesca Ardizzone
Nat. Hazards Earth Syst. Sci., 20, 271–285, https://doi.org/10.5194/nhess-20-271-2020, https://doi.org/10.5194/nhess-20-271-2020, 2020
Short summary
Short summary
For the Collazzone study area in Italy, we quantified how much landslides follow others using Ripley's K function, finding that susceptibility is increased within 60 m and 17 years after a previous landslide. We then calculated the increased susceptibility for every pixel and for the 17-time-slice landslide inventory. We used these as additional explanatory variables in susceptibility modelling. Model performance increased substantially with this landslide history component included.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Elizabeth L. Chamberlain and Jakob Wallinga
Earth Surf. Dynam., 7, 723–736, https://doi.org/10.5194/esurf-7-723-2019, https://doi.org/10.5194/esurf-7-723-2019, 2019
Short summary
Short summary
Sand and mud may take many different pathways within a river as they travel from inland to the coast. During the trip, grains may be exposed to daylight, resetting a signal trapped within certain minerals. The signal can be measured in a laboratory to estimate the time since last light exposure. Here, we measure the trapped signal of sand and mud grains from the Mississippi River and its banks. We use this information to infer sediment pathways. Such knowledge is useful for delta management.
Jasper H. J. Candel, Maarten G. Kleinhans, Bart Makaske, Wim Z. Hoek, Cindy Quik, and Jakob Wallinga
Earth Surf. Dynam., 6, 723–741, https://doi.org/10.5194/esurf-6-723-2018, https://doi.org/10.5194/esurf-6-723-2018, 2018
Short summary
Short summary
In this study we show how the Overijsselse Vecht river changed from a laterally stable to a meandering river ca. 500 years ago. We developed a methodology to reconstruct the historical discharge and found that the change in river style was caused by an increase in peak discharges. This increase was likely caused by the Little Ice Age and land use changes in the catchment (peat reclamation and exploitation). This study shows how river style changes as a result of discharge regime changes.
Cindy Quik and Jakob Wallinga
Earth Surf. Dynam., 6, 705–721, https://doi.org/10.5194/esurf-6-705-2018, https://doi.org/10.5194/esurf-6-705-2018, 2018
Short summary
Short summary
Identifying contemporary river migration rates is often based on aerial photos or recent topographical maps. Here, we propose to use river sediments as an archive to look further back in time using optically stimulated luminescence (OSL) dating and develop a modelling procedure for the joint analysis of dating results and historical maps. The procedure is applied to the Overijsselse Vecht river in The Netherlands, and we show that the river migrated with 0.9–2.6 m yr−1 between 1400 and 1900 CE.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Eveline Christien van der Deijl, Marcel van der Perk, and Hans Middelkoop
Earth Surf. Dynam., 6, 187–201, https://doi.org/10.5194/esurf-6-187-2018, https://doi.org/10.5194/esurf-6-187-2018, 2018
Short summary
Short summary
To study the effectiveness of river delta restoration, we used field observations and elevation data to quantify the magnitude and spatial patterns of aggradation and erosion in a restored wetland in the Rhine-Meuse delta. Erosion and aggradation rates decrease over time, but aggradation compensates for sea-level rise and soil subsidence. Channels in the centre had aggraded, whereas the inlet and outlet eroded. Furthermore, sediment is in general uniformly distributed over the intertidal area.
Sjoerd Kluiving, Tim de Ridder, Marcel van Dasselaar, Stan Roozen, and Maarten Prins
SOIL, 2, 271–285, https://doi.org/10.5194/soil-2-271-2016, https://doi.org/10.5194/soil-2-271-2016, 2016
Short summary
Short summary
In medieval times the city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Maas, the Merwede, and the Vlaarding. Combined research on the history and soil of this city was initiated by an archaeological research question, following Dutch legislation. The start of fluvial system 2 in AD 600 correlates with evidence of the church that was present at least in AD 726/727. Results record the period before and after the flooding in AD 1170.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Short summary
This study combined fieldwork, geochronology and modelling to get a better understanding of Arctic soil development on a landscape scale. Main processes are aeolian deposition, physical and chemical weathering and silt translocation. Discrepancies between model results and field observations showed that soil and landscape development is not as straightforward as we hypothesized. Interactions between landscape processes and soil processes have resulted in a complex soil pattern in the landscape.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
F. Schuurman, M. G. Kleinhans, and H. Middelkoop
Earth Surf. Dynam., 4, 25–45, https://doi.org/10.5194/esurf-4-25-2016, https://doi.org/10.5194/esurf-4-25-2016, 2016
Short summary
Short summary
We studied the propagation of natural and human-induced perturbations in large braided sand-bed rivers using a physics-based 3-D model. The results show that the perturbations not only affect the local morphology but their effects amplify while propagating through the braided network. This occurs by destabilization of bifurcations in combination with reshaping of bars and branches. These results could have a major impact on the assessment of engineering measures in large braided sand-bed rivers.
J. M. van Mourik, D. J. G. Braekmans, M. Doorenbosch, W. J. Kuijper, and J. van der Plicht
SOIL Discuss., https://doi.org/10.5194/soil-2015-82, https://doi.org/10.5194/soil-2015-82, 2016
Manuscript not accepted for further review
Short summary
Short summary
Paleoecological studies of mardels could not solve the problem concerning the geological versus anthropogenic genesis of mardels.
The results of archaeometrical tests show that colluvial clay, excavated from mardels has been used in Roman Time to produce ceramics.
Mardels are initially natural depressions, filled with pre Roman colluvial clay, excavated in the Roam Time and refilled with clay after the Roman Time.
P. S. J. Minderhoud, G. Erkens, V. H. Pham, B. T. Vuong, and E. Stouthamer
Proc. IAHS, 372, 73–76, https://doi.org/10.5194/piahs-372-73-2015, https://doi.org/10.5194/piahs-372-73-2015, 2015
Short summary
Short summary
Land subsidence rates of ~1-4 cm yr-1 are measured in the low-lying Vietnamese Mekong Delta. These relatively high subsidence rates are attributed to groundwater extraction, which has increased drastically over the past decades. There is an urgent need to go from measurements to predictions to test future groundwater management scenarios and reduce subsidence. In this study, we present an approach to build a 3D geo-hydrological model to determine the subsidence potential of the Mekong Delta.
A. C. Cunningham, J. Wallinga, N. Hobo, A. J. Versendaal, B. Makaske, and H. Middelkoop
Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, https://doi.org/10.5194/esurf-3-55-2015, 2015
Short summary
Short summary
Rivers transport sediment from mountains to coast, but on the way sediment is trapped and re-eroded multiple times. We looked at Rhine river sediments to see if they preserve evidence of how geomorphic variables have changed over time. We found that measured signals potentially relate to water level and river management practices. These relationships can be treated as hypotheses to guide further research, and our statistical approach will increase the utility of research in this field.
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
Exploring the transition between water- and wind-dominated landscapes in Deep Springs, California, as an analog for transitioning landscapes on Mars
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Entrainment and deposition of boulders in a gravel bed river
Coupling between downstream variations of channel width and local pool–riffle bed topography
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Response of modern fluvial sediments to regional tectonic activity along the upper Min River, eastern Tibet
Geophysical evidence of massive hyperconcentrated push waves with embedded toma hills caused by the Flims rockslide, Switzerland
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Episodic sediment supply to alluvial fans: implications for fan incision and morphometry
Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China
Exploring exogenous controls on short- versus long-term erosion rates globally
The effects of late Cenozoic climate change on the global distribution of frost cracking
Transitional rock glaciers at sea level in northern Norway
Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Quantification of post-glacier bedrock surface erosion in the European Alps using 10Be and optically stimulated luminescence exposure dating
A comparison of 1D and 2D bedload transport functions under high excess shear stress conditions in laterally constrained gravel-bed rivers: a laboratory study
Back to pristine levels: a meta-analysis of suspended sediment transport in large German river channels
The story of a summit nucleus: Hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
Effect of debris-flow sediment grain-size distribution on fan morphology
Controls on earthflow formation in the Teanaway River basin, central Washington State, USA
Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation
The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers
Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century
Theoretical and numerical considerations of rivers in a tectonically inactive foreland
Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria
A multi-proxy assessment of terrace formation in the lower Trinity River valley, Texas
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
Initial shape reconstruction of a volcanic island as a tool for quantifying long-term coastal erosion: the case of Corvo Island (Azores)
Arctic Delta Reduced Complexity Model and its Reproduction of Key Geomorphological Structures
Constraints on long-term cliff retreat and intertidal weathering at weak rock coasts using cosmogenic 10Be, nearshore topography and numerical modelling
Spatio-temporal variability and controlling factors for postglacial denudation rates in the Dora Baltea catchment (western Italian Alps)
Continuous measurements of valley floor width in mountainous landscapes
Development of the morphodynamics on LIA lateral moraines in ten glacier forefields of the Eastern Alps since the 1950s
Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain
Estuarine morphodynamics and development modified by floodplain formation
Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
A geomorphic-process-based cellular automata model of colluvial wedge morphology and stratigraphy
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index
Rapid Holocene bedrock canyon incision of Beida River, North Qilian Shan, China
The landslide velocity
An analytical model for beach erosion downdrift of groins: case study of Jeongdongjin Beach, Korea
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
From apex to shoreline: fluvio-deltaic architecture for the Holocene Rhine–Meuse delta, the Netherlands
Haojie Huang
Earth Surf. Dynam., 11, 167–181, https://doi.org/10.5194/esurf-11-167-2023, https://doi.org/10.5194/esurf-11-167-2023, 2023
Short summary
Short summary
Straw checkerboard barriers (SCBs) have been widely used in anti-desertification projects. However, research on this mechanism and its laying length are still lacking. The significance of our work is to analyze some results, which seem simple but lack a theoretical basis from the perspective of turbulence through this model. This study may provide theoretical support for the minimum laying length of SCBs in anti-desertification projects.
Taylor Dorn and Mackenzie Day
Earth Surf. Dynam., 11, 149–165, https://doi.org/10.5194/esurf-11-149-2023, https://doi.org/10.5194/esurf-11-149-2023, 2023
Short summary
Short summary
Planetary surfaces are shaped by both wind and water, and their resulting surface features are commonly observed by aerial images. Deep Springs playa, CA, provides a comparable wet-to-dry-transitioning landscape as experienced in Mars' past. Our results, made through collected weather data and drone footage, show that some features, when observed solely by aerial imagery, might be interpreted as being formed by wind when in fact other processes were more influential in their formation.
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023, https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Short summary
Scarpland formation produced low-inclined slopes susceptible to deep-seated landsliding on geological scales. These landslide-affected slopes are often used for forestry activities today, and interaction between geology and vegetation controls shallow landsliding. Our data show that Feuerletten clays control deep-seated landsliding processes that can be reactivated. When trees are sufficiently dense to provide lateral root cohesion, trees can prevent the occurrence of shallow landslides.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
Yan Yan, Yifei Cui, Xinghui Huang, Jiaojiao Zhou, Wengang Zhang, Shuyao Yin, Jian Guo, and Sheng Hu
Earth Surf. Dynam., 10, 1233–1252, https://doi.org/10.5194/esurf-10-1233-2022, https://doi.org/10.5194/esurf-10-1233-2022, 2022
Short summary
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Wei Shi, Hanchao Jiang, Hongyan Xu, Siyuan Ma, Jiawei Fan, Siqi Zhang, Qiaoqiao Guo, and Xiaotong Wei
Earth Surf. Dynam., 10, 1195–1209, https://doi.org/10.5194/esurf-10-1195-2022, https://doi.org/10.5194/esurf-10-1195-2022, 2022
Short summary
Short summary
Alpine valleys reduce the preservation potential of Quaternary sediment in bedrock valley regions, which seriously hinders the study of modern tectonic activity. We report a new method to reveal regional tectonic activity by analyzing fluvial sediments in tectonically active regions. Our analyses identify three segments of different tectonic activities along the upper Min River, eastern Tibet. This method provides a key framework to reveal tectonic activity in other regions of the world.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Anya S. Leenman and Brett C. Eaton
Earth Surf. Dynam., 10, 1097–1114, https://doi.org/10.5194/esurf-10-1097-2022, https://doi.org/10.5194/esurf-10-1097-2022, 2022
Short summary
Short summary
The supply of sediment (sand and gravel) carried by a stream out of a steep mountain valley is widely thought to control the gradient of the fan-shaped landforms that streams often build where they leave their valley. We tested this idea in a set of
sandboxexperiments with oscillating high and low sediment supply. Even though the average sediment supply never changed, longer oscillations built flatter fans, indicating how wetter climates might affect these mountain landforms.
Shanbai Wu, Ruihua Zhao, Liping Liao, Yunchuan Yang, Yao Wei, and Wenzhi Wei
Earth Surf. Dynam., 10, 1079–1096, https://doi.org/10.5194/esurf-10-1079-2022, https://doi.org/10.5194/esurf-10-1079-2022, 2022
Short summary
Short summary
Granite residual soil landslides are widely distributed in southeastern Guangxi Province, China. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The research provides valuable references for the prevention and early warning of granite residual soil landslide in the southeast of Guangxi.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
David L. Adams and Brett C. Eaton
Earth Surf. Dynam., 10, 895–907, https://doi.org/10.5194/esurf-10-895-2022, https://doi.org/10.5194/esurf-10-895-2022, 2022
Short summary
Short summary
Channel processes under flood conditions are important for river science and management as they involve high volumes of sediment transport and erosion. However, these processes remain poorly understood as the data are difficult to collect. Using a physical model of a river, we found that simple equations based on the mean shear stress and median grain size predicted sediment transport as accurately as ones that accounted for the full range of shear stresses.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan Blöthe, and Peter Fiener
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-45, https://doi.org/10.5194/esurf-2022-45, 2022
Preprint under review for ESurf
Short summary
Short summary
We analysed more than 440.000 measurements from the suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly decline by 50 % between 1990 and 2010. We argue that SSC achieves the natural back ground concentrations, due to reduced sediment supply. There is simple explanation for this decline, but effects of reduced supply from headwater streams are most likely the cause for declining SSC in large rivers.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-619, https://doi.org/10.5194/egusphere-2022-619, 2022
Short summary
Short summary
We investigate the effect of fractures on the location of hills and valleys in bedrock landscapes, by comparing erosion rates of unfractured bedrock versus soil. Unfractured bedrock erodes slower, and soil, which likely overlies fractured bedrock, erodes faster. We also find that streams generally follow the orientations of faults. Together, our data show that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022, https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022, https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water with probability arguments. Our major conclusions are that (1) sediment transport can be phrased in terms of the movements of individual sediment grains, (2) transport rates in river channels are inherently uncertain, and (3) sediment transport in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in air.
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam., 10, 775–796, https://doi.org/10.5194/esurf-10-775-2022, https://doi.org/10.5194/esurf-10-775-2022, 2022
Short summary
Short summary
To assess the effects of differences in grain-size distribution within debris flows on the morphology of debris-flow fans, fan morphologies were modeled experimentally. Even if debris flows exhibited similar flow properties, their runout distance differed in response to differences in their grain-size distribution. Differences in runout distance were responsible for variations in the direction of the descending flow that resulted in different debris-flow fan morphology.
Sarah A. Schanz and A. Peyton Colee
Earth Surf. Dynam., 10, 761–774, https://doi.org/10.5194/esurf-10-761-2022, https://doi.org/10.5194/esurf-10-761-2022, 2022
Short summary
Short summary
We mapped and dated 187 earthflows to determine controls on earthflow formation and resulting topographic changes in the Teanaway basin, central Washington State, USA. Using a new relative dating technique and absolute dating, we find that 25 % of earthflows were active in the last ~500 years. Earthflows are lithologically controlled, actively narrow valleys, and increase sediment loads.
Jeongyeon Han and Wonsuck Kim
Earth Surf. Dynam., 10, 743–759, https://doi.org/10.5194/esurf-10-743-2022, https://doi.org/10.5194/esurf-10-743-2022, 2022
Short summary
Short summary
A levee-building model is presented to investigate the effects of flood on levee slope and river behaviors. Coarser grains that cause steep levee slopes lead to frequent switchings of river paths, but higher overflow velocity has an opposite effect. High levee slopes lead to more reoccupations of abandoned old river paths than low levee slopes when rivers switch their locations. The study helps us to assess flood hazards with river-path switching.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Hima J. Hassenruck-Gudipati, Thaddeus Ellis, Timothy A. Goudge, and David Mohrig
Earth Surf. Dynam., 10, 635–651, https://doi.org/10.5194/esurf-10-635-2022, https://doi.org/10.5194/esurf-10-635-2022, 2022
Short summary
Short summary
During the late Pleistocene, the incision of the Trinity River valley left behind terraces. Elevation data and measurements of abandoned channels preserved on terraces are used to evaluate how terraces formed. We find a transition in the style of terraces with age from those associated with external environmental forcings to those produced by internal river migration changes. This result shows the importance of several indicators (i.e., channel bends, elevations) in determining terrace form.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-18, https://doi.org/10.5194/esurf-2022-18, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
This study presents a method to calculate the retreat of the sea-cliffs and the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea-cliffs is mainly due to the moderate and most frequent waves.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-25, https://doi.org/10.5194/esurf-2022-25, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature seen in all Arctic deltas, and simulate its future under a warming climate. This can impact the future of Arctic deltas and the carbon release they moderate.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-28, https://doi.org/10.5194/esurf-2022-28, 2022
Preprint under review for ESurf
Short summary
Short summary
Here we use two different datasets to inform a process-based model to study coastal cliff retreat rates across the past 7000 years at four different chalk coast sites across the south coast of England. Our results demonstrate how a simplified model can not only capture long-term trends in cliff retreat rates, which are linked to the rate of sea level rise, but also identify key erosion processes at real-world sites with contrasting rock types.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022, https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography and show that our method can be used to test common models of river widening.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-24, https://doi.org/10.5194/esurf-2022-24, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
The geomorphic activity of LIA-lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal DEMs from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Xingyu Chen, Marwan A. Hassan, and Xudong Fu
Earth Surf. Dynam., 10, 349–366, https://doi.org/10.5194/esurf-10-349-2022, https://doi.org/10.5194/esurf-10-349-2022, 2022
Short summary
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.
Harrison J. Gray, Christopher B. DuRoss, Sylvia R. Nicovich, and Ryan D. Gold
Earth Surf. Dynam., 10, 329–348, https://doi.org/10.5194/esurf-10-329-2022, https://doi.org/10.5194/esurf-10-329-2022, 2022
Short summary
Short summary
Some types of big earthquakes create small cliffs or
fault scarps∼1–3 m in height, where sediments can pile up and create deposits we call
colluvial wedges. Geologists will look at colluvial wedges and use them to understand how often big earthquakes occur. Here we made a computer simulation to find out if the way we think colluvial wedges form works with physics. We found that it does in theory, but there are conditions in which it may be more complicated than we expected.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022, https://doi.org/10.5194/esurf-10-247-2022, 2022
Short summary
Short summary
Channel behaviour is a qualitative aspect of river research that needs development to produce a framework of analysis between and within types of channels. We seek to produce a quantitative metric that can capture how a channel changes using a pair of experiments and collecting easy to obtain data. We demonstrate that this new technique is capable of discerning between river types and may provide a new tool with which we may describe channel behaviour.
Yiran Wang, Michael E. Oskin, Youli Li, and Huiping Zhang
Earth Surf. Dynam., 10, 191–208, https://doi.org/10.5194/esurf-10-191-2022, https://doi.org/10.5194/esurf-10-191-2022, 2022
Short summary
Short summary
Beida River has an over-steepened reach presently located 10 km upstream of the North Qilian mountain front. It was formed because river incising into the bedrocks inside the mountain cannot keep up with river incising into the soft sediment in the basin. We suggest this over-steepened reach represents a fast incision period 3–4 kyr ago, deepening the canyon for ~35 m within ~700 years. The formation of this reach corresponds to a humid period related to strong Southeast Asian Monsoon influence.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Changbin Lim, Soonmi Hwang, and Jung Lyul Lee
Earth Surf. Dynam., 10, 151–163, https://doi.org/10.5194/esurf-10-151-2022, https://doi.org/10.5194/esurf-10-151-2022, 2022
Short summary
Short summary
Recently, along the east coast of South Korea, seasonal beach erosion has been induced by structures which severely block the supply of sand from the upstream side. This study proposes a coastal solution that can predict the maximum indentation point in downdrift erosion formed downstream of groins by applying a parabolic bay shape equation (PBSE).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Marc J. P. Gouw and Marc P. Hijma
Earth Surf. Dynam., 10, 43–64, https://doi.org/10.5194/esurf-10-43-2022, https://doi.org/10.5194/esurf-10-43-2022, 2022
Short summary
Short summary
If you were to navigate an entire delta by boat, you would clearly see that the general characteristics of the channels change throughout the delta. The drivers behind these changes have been studied extensively. Field studies encompassing the entire delta are rare but give important insights into these drivers that can help other researchers. The most important drivers are channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width.
Cited articles
Aagaard, T., Davidson-Arnott, R., Greenwood, B., and Nielsen, J.: Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution, Geomorphology, 60, 205–224, 2004.
Administración Portuaria Integral de Dos Bocas S. A. de C. V.: Manifestación de Impacto Ambiental Modalidad Particular; Construcción de Escolleras y del Dragado del Canal de Acceso del Puerto de Frontera, Tabasco. Administración Portuaria Integral de Dos Bocas S. A. de C. V., Paraíso, Tabasco, México, 258 pp., 2005.
Aguayo, J. E., Gutiérrez-Estrada, M. A., Araujo-Mendieta, J., Sandoval-Ochoa, J. H., and Vázquez-Gutiérrez, F.: Geodinámica Holocénica y reciente del sistema fluvio deltáico Grijalva-Usumacinta, suroeste del Golfo de México, Revista de la Sociedad Mexicana de Historia Natural, 49, 29–44, 1999.
Aitken, M. J.: An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence, Oxford University Press, Oxford, 267 pp., 1998.
Ashton, A. D. and Giosan, L.: Wave-angle control of delta evolution, Geophys. Res. Lett., 38, L13405, https://doi.org/10.1029/2011GL047630, 2011.
Ayala-Castañares, A. and Guttiérrez-Estrada, M.: Morfología y sedimentos superficiales de la plataforma continental frente a Tabasco y Campeche, México, Anales del Instituto de Ciencias del Mar y Limnología, 17, 163–190, 1990.
Ballarini, M., Wallinga, J., Murray, A. S., Van Heteren, S., Oost, A. P., Bos, A. J. J., and Van Eijk, C. W. E.: Optical dating of young coastal dunes on a decadal time scale, Quaternary Sci. Rev., 22, 1011–1017, 2003.
Balsillie, J. H.: William F. Tanner on Environmental Clastic Granulometry, Special Publication 40, Geological Survey, Quaternary Science Reviews, Tallahassee, Florida, 145 pp., 1995.
Banco Nacional de Datos de Aguas Superficiales: available at: http://www.conagua.gob.mx/conagua07/contenido/documentos/portada bandas.htm, last access: January 2017.
Blott, S. J. and Pye, K.: Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Blum, M. D., Sivers, A. E., Zayac, T., and Goble, R. J.: Middle Holocene Sea-Level and Evolution of the Gulf of Mexico Coast, Gulf Coast Association of Geological Societies Transactions, Baton Rouge, Louisiana, 53, 64–77, 2003.
Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.: Developments in radiation, stimulation and observation facilities in luminescence measurement, Radiat. Meas., 37, 535–541, 2003.
Bristow, C. S. and Pucillo, K.: Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia, Sedimentology, 53, 769–788, 2006.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, 2009.
Bronk Ramsey, C.: Oxcal 4.2., available at: http://c14.arch.ox.ac.uk/oxcal.html (last access: January 2017), 2016.
Brooke, B., Ryan, D., Pietsch, T., Olley, J., Douglas, G., Packett, R., Radke, L., and Flood, P.: Influence of climate fluctuations and changes in catchment land use on Late Holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia, Mar. Geol., 251, 195–208, 2008a.
Brooke, B., Lee, R., Cox, M., Olley, J., and Pietsch, T.: Rates of shoreline progradation during the last 1700 years at Beachmere, Southeastern Queensland, Australia, based on optically stimulated luminescence dating of beach ridges, J. Coastal Res., 24, 640–648, 2008b.
Cabadas-Báez, H. V., Solís-Castillo, B., Solleiro-Rebolledo, E., Sedov, S., Leonard, D., and Teranishi-Castillo, K.: Reworked volcaniclastic deposits from the Usumacinta river, Mexico: a serendipitous source of volcanic glass in Maya ceramics, Geoarchaeology, 32, 382–399, 2017.
Carter, R. W. G.: The morphodynamics of beach-ridge formation: Magilligan, Northern Ireland, Mar. Geol., 73, 191–214, 1986.
Castillo, S., Pompa, J., and Moreno-Casasola, P.: Coastal sand dune vegetation of Tabasco and Campeche, Mexico, J. Veg. Sci., 2, 73–88, 1991.
Cleveringa, J.: Reconstruction and modelling of Holocene coastal evolution of the western Netherlands, PhD thesis, Utrecht University, Utrecht, the Netherlands, 2000.
Cunningham, A. C. and Wallinga, J.: Selection of integration time-intervals for quartz OSL decay curves, Quat. Geochronol., 5, 657–666, 2010.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial archives using robust OSL chronologies, Quat. Geochronol., 12, 98–106, 2012.
Curray, J. R., Emmel, F. J., and Crampton, P. J. S.: Holocene history of a strand plain, lagoonal coast, Nayarit, Mexico, in: Lagunas Costeras, UN Symposium, edited by: Ayala-Casteñares, A. and Phleger, F. B., UNAM-UNESCO, Mexico, DF, 63–100, 1969.
Dogan, M., Van Dam, R. L., Bohling, G. C., Butler, J. J., and Hyndman, D. W.: Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push hydraulic profiling, Geophys. Res. Lett., 38, L06405, https://doi.org/10.1029/2010GL046439, 2011.
Donnelly, J. P. and Giosan, L.: Tempestuous highs and lows in the Gulf of Mexico, Geology, 36, 751–752, 2008.
Drexler, J. W., Rose, W. I., Sparks, R. S. J., and Ledbetters, M. T.: The Los Chocoyos Ash, Guatemala: a major stratigraphic marker in middle America and in three ocean basins, Quaternary Res., 13, 327–345, 1980.
Duller, G. A. T.: Distinguishing quartz and feldspar in single grain luminescence measurements, Radiat. Meas., 37, 161–165, 2003.
FitzGerald, D. M., Buynevich, I. V., Fenster, M. S., and McKinlay, P. A.: Sand dynamics at the mouth of a rock-bound, tide-dominated estuary, Sediment. Geol., 131, 25–49, 2000.
Folk, R. L. and Ward, W. C.: Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Petrol., 27, 3–26, 1957.
Forrest, B. M.: Evolution of the Beach Ridge Strandplain on St. Vincent Island, Florida, Thesis, Florida State University, Tallahassee, 269 pp., 2007.
Forsyth, A. J., Nott, J., and Bateman, M. D.: Beach ridge plain evidence of a variable late-Holocene tropical cyclone climate, North Queensland, Australia, Palaeogeogr. Palaeocl., 297, 707–716, 2010.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part I, experimental design and statistical models, Archaeometry, 41, 339–364, 1999.
Gallego-Fernández, J. B. and Martínez, M. L.: Environmental filtering and plant functional types on Mexican foredunes along the Gulf of Mexico, Ecoscience, 18, 52–62, 2011.
Garrison Jr., J. R., Mestas-Nuñez, A. M., Williams, J. R., and Lumb, L. M.: Can beach dune ridges of the Texas Gulf Coast preserve climate signals?, Geo-Mar. Lett., 32, 241–250, 2012.
Garrity, C. P. and Soller, D. R.: Database of the Geologic Map of North America, adapted from the map by J. C. Reed, Jr., and others (2005), US Geological Survey Data Series 424, available at: https://pubs.usgs.gov/ds/424/ (last access: January 2017), 2009.
Gischler, E. and Hudson, J. H.: Holocene development of the Belize barrier reef, Sediment. Geol., 164, 223–236, 2004.
Guedes, C. C. F., Giannini, P. C. F., Nascimento Jr., D. R. Sawakuchi, A. O., Tanaka, A. P. B., and Rossi, M. G.: Controls of heavy minerals and grain size in a holocene regressive barrier (Ilha Comprida, southeastern Brazil), J. S. Am. Earth Sci., 31, 110–123, 2011.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors: update, Ancient TL, 29, 5–8, 2011.
Harp, E. L., Wilson, R. C., and Wieczorek, G. F.: Landslides from the February 4, 1976, Guatemala earthquake, Prof. Paper 1024-A, US Geological Survey, Washington, 1981.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Hinojosa, C., Nooren, K., Solleiro-Rebolledo, E., Sedov, S., Salazar, O.: Soil development on a beach ridge chronosequence in the Gulf of Mexico coastal plain and its relation to the ancient land use, Quatern. Int., 418, 180–194, 2016.
Hodell, D. A., Curtis, J. H., and Brenner, M.: Possible role of climate in the collapse of Classic Maya civilization, Nature, 375, 391–394, 1995.
Instituto Geográfico Nacional: Mapa Geológico de Guatemala a escala 1 : 500,000, Guatemala City, 1970.
Jol, H. M., Smith, D. G., and Meyers, R. A.: Digital ground penetrating radar (GPR): a new geophysical tool for coastal barrier research (examples from the Atlantic, Gulf and Pacific Coasts, USA), J. Coastal Res., 12, 960–968, 1996.
Jom Morán, S. A.: Medición batimétrica para determinar el volumen de material sedimentado acumulado durante el tiempo de servicio del embalse Pueblo Viejo, de la central hidroeléctrica Chixoy, Msc thesis, Universidad de San Carlos de Guatemala, Guatemala City, 2010.
Keijsers, J. G. S., Poortinga, A., Riksen, M. J. P. M., and Maroulis, J.: Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography, PLoS ONE, 9, e91115, https://doi.org/10.1371/journal.pone.0091115, 2014.
Koch, A. J. and McLean, H.: Pleistocene tephra and ash-flow deposits in the volcanic highlands of Guatemala, Geol. Soc. Am. Bull., 86, 529–541, 1975.
Komar, P. D.: The entrainment, transport and sorting of heavy minerals by waves and currents, Dev. Sedimentol., 58, 3–48, 2007.
Kossin, J. P., Camargo, S. J., and Sitkowski, M.: Climate modulation of North Atlantic Hurricane tracks, J. Climate, 23, 3057–3076, 2010.
Kutterolf, S., Freundt, A., Peréz, W., Mörz, T., Schacht, U., Wehrmann, H., and Schmincke, H.-U.: Pacific offshore record of plinian arc volcanism in Central America: 1. Along-arc correlations, Geochem. Geophy. Geosy., 9, Q02S01, https://doi.org/10.1029/2007GC001631, 2008.
López, G. I. and Rink, W. J.: New quartz optical stimulated luminescence ages for beach ridges on the St. Vincent Island Holocene strand plain, Florida, US, J. Coastal Res., 24, 49–62, 2008.
May, J. H., Wells, S. G., Cohen, T. J., Marx, S. K., Nanson, G. C., and Baker, S. E.: A soil chronosequence on Lake Mega-Frome beach ridges and its implications for late Quaternary pedogenesis and paleoenvironmental conditions in the drylands of southern Australia, Quaternary Res., 83, 150–165, 2015.
McCave, I. N.: Grain-size trends and transport along beaches: example from eastern England, Mar. Geol., 28, M43–M51, 1978.
Milana, J. P., Conforti Ferreira Guedes, C., and Valdez Buso, V.: The coastal ridge sequence at Rio Grande do Sul: a new geoarchive for past climate events of the Atlantic coast of southern Brazil since the mid Holocene, Quatern. Int., 438, 187–199, 2017.
Milliken, K. T., Anderson, J. B., and Rodriguez, A. B.: A New Composite Holocene Sea-level Curve for the Northern Gulf of Mexico, Special Paper 443, The Geological Society of America, Boulder, 1–11, 2008.
Minderhoud, P., Cohen, K. M., Toonen, W. H. J., Erkens, G., and Hoek, W. Z.: Improving age-depth models of fluvio-lacustrine deposits using sedimentary proxies for accumulation rates, Quat. Geochronol., 33, 35–45, 2016.
Mook, W. G. and Van der Plicht, J.: Reporting 14C activities and concentrations, Radiocarbon, 41, 227–239, 1999.
Moore, L. J., Durán Vinent, O., and Ruggiero, P.: Vegetation control allows autocyclic formation of multiple dunes on prograding coasts, Geology, 44, 559–562, 2016.
Morton, R. A., Paine, J. G., and Blum, M. D.: Responses of stable bay-margin and barrier-island systems to Holocene sea-level highstands, western Gulf of Mexico, J. Sediment. Res., 70, 478–490, 2000.
Muñoz-Salinas, E. Castillo, M., Sanderson, D., Kinnaird, T., and Cruz-Zaragoza, E.: Using three different approaches of OSL for the study of young fluvial sediments at the coastal plain of the Usumacinta–Grijalva River Basin, southern Mexico, Earth Surf. Proc. Land., 41, 823–834, 2016.
Murray-Wallace, C. V., Banerjee, D., Bourman, R. P., Olley, J. M., and Brooke, B. P.: Optically stimulated luminescence dating of Holocene relict foredunes, Guichen Bay, South Australia, Quaternary Sci. Rev., 21, 1077–1086, 2002.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose protocol: potential for improvements in reliability, Radiat. Meas., 37, 377–381, 2003.
Neal, A.: Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66, 261–330, 2004.
Nielsen, A., Murray, A. S., Pejrup, M., and Elberling, B.: Optically stimulated luminescence dating of a Holocene beach ridge plain in Northern Jutland, Denmark, Quat. Geochronol., 1, 305–312, 2006.
Nielsen, A. H., Elberling, B., and Pejrup, M.: Soil development rates from an optically stimulated luminescence-dated beach ridge sequence in Northern Jutland, Denmark, Can. J. Soil Sci., 90, 295–307, 2010.
Nieuwenhuyse, A. and Kroonenberg, S. B.: Volcanic origin of Holocene beach ridges along the Caribbean coast of Costa Rica, Mar. Geol., 120, 13–26, 1994.
Nooren, C. A. M., Hoek, W. Z., Tebbens, L. A., and Martin Del Pozzo, A. L.: Tephrochronological evidence for the late Holocene eruption history of El Chichón Volcano, Mexico, Geofísica Internacional, 48, 97–112, 2009.
Nooren, K., Hoek, W. Z., Van der Plicht, H., Sigl, M., Van Bergen, M. J., Galop, D., Torrescano-Valle, N., Islebe, G., Huizinga, A., Winkels, T., and Middelkoop, H.: Explosive eruption of El Chichón volcano (Mexico) disrupted 6th century Maya civilization and contributed to global cooling, Geology, 45, 175–178, 2017.
Nott, J., Smithers, S., Walsh, K., and Rhodes, E.: Sand beach ridges record 6000 year history of extreme tropical cyclone activity in northeastern Australia, Quaternary Sci. Rev., 28, 1511–1520, 2009.
Nott, J.: A 6000 year tropical cyclone record from Western Australia, Quaternary Sci. Rev., 30, 713–722, 2011.
Oliver, T. S. N.: Holocene depositional history of three coastal sand ridge plains, southeastern Australia, Doctor of Philosophy thesis, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, Australia, 216 pp., 2016.
Oliver, T. S. N., Dougherty, A. J., Gliganic, L. A., and Woodroffe, C. D.: Towards more robust chronologies of coastal progradation: optically stimulated luminescence ages for the coastal plain at Moruya, south-eastern Australia, Holocene, 25, 536–546, 2015.
Ollerhead, J., Davidson-Arnott, R., Walker, I. J., and Mathew, S.: Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada, Earth Surf. Proc. Land., 38, 284–298, 2013.
Ortíz-Pérez, M. A.: Retroceso reciente de la línea ed costa del frente deltáico del Río San Pedro, Campeche-Tabasco, Investigaciones Geográficas, 25, 7–24, 1992.
Ortíz-Pérez, M. A., Hernández-Santana, J. R., Figueroa Mah Eng, J. M., and Gama Campillo, L.: Tasas del avance transgresivo y regresivo en el frente deltaico tabasqueño: en el período comprendido del año 1995 al 2008, in: Vulnerabilidad en las zonas costeras mexicanas ante el cambio climático, edited by: Botello, A. V., Villanueva-Fragoso, S., Gutiérrez, J., and Rojas Galaviz, J. L., UNAM-INE, Campeche, 305–324, 2010.
Otvos, E. G.: Beach Ridges – definitions and significance, Geomorphology, 32, 83–108, 2000.
Otvos, E. G.: Coastal barriers, Gulf of Mexico: holocene evolution and chronology, J. Coastal Res., 42, 141–163, 2005.
Padilla, R. J. and Sánchez: Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México, B. Soc. Geol. Mex., Tomo LIX, 1, 19–42, 2007.
Pietsch, T. J., Olley, J. M., and Nanson, G. C.: Fluvial transport as a natural luminescence sensitiser of quartz, Quat. Geochronol., 3, 365–376, 2008.
Prescott, J. R. and Hutton, J. T.: Cosmic ray distributions to dose rates for luminescence and ESR dating: large depths and long-term variations, Radiat. Meas., 23, 497–500, 1994.
Psuty, N. P.: Beach ridge development in Tabasco, Mexico, Ann. Am. Assoc. Geogr., 55, 112–124, 1965.
Psuty, N. P.: The Geomorphology of Beach Ridges in Tabasco, Mexico, Coastal Studies Series 18, Louisiana State University Press, Baton Rouge, USA, 51 pp., 1967.
Ramos, J., Marrufo, L., and González, F. J.: Use of lidar data in floodplain risk management planning: the experience of Tabasco 2007 flood, in: Advances in Geoscience and Remote Sensing, edited by: Jedlovec, G., Intech, Rijeka, Croatia, https://doi.org/10.5772/8322, 2009.
Reimann, T., Tsukamoto, S., Harff, J., Osadczuk, K., and Frechen, M.: Reconstruction of Holocene coastal foredune progradation using luminescence dating – An example from the Świna barrier (southern Baltic Sea, NW Poland), Geomorphology, 132, 1–16, 2011.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and Van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Rémillard, A. M., Buylaert, J.-P., Murray, A. S., St-Onge, G., Bernatches, P., and Hetu, B.: Quartz OSL dating of the late Holocene beach ridge from the Magdalen Islands (Quebec, Canada), Quat. Geochronol., 30, 264–269, 2015.
Rink, W. J. and López, G. I.: OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida, Geomorphology, 123, 330–342, 2010.
Rose, W. I., Newhall, C. G., Bornhorst, T. J., and Self, C.: Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala, J. Volcanol. Geoth. Res., 33, 57–80, 1987.
Salas-de-León, D. A., Monreal-Gómez, M. A., Salas-Monreal, D., Riverón-Enzástiga, M. L., and Sánchez-Santillan, N. L.: Inter-annual sea level variability in the southern Gulf of Mexico (1966–1976), Geophys. Res. Lett., 33, L08610, https://doi.org/10.1029/2006GL025832, 2006.
Salas-de-León, D. A., Monreal-Gómez, M. A., Miguel Díaz-Flores, M. A., Salas-Monreal, D., Velasco-Mendoza, H., Riverón-Enzástiga, M. L., and Ortiz-Zamora, G.: Role of near-bottom currents in the distribution of sediments within the Southern Bay of Campeche, Gulf of Mexico, J. Coastal Res., 24, 1487–1494, 2008.
Sánchez-Núñez, M. M., Macías, J. L., Saucedo, R., Zamorano, J. J., Novelo, D., Mendoza, M. E., and Torres-Hernández, J. R.: Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico, Geomorphology, 230, 1–12, 2015.
Scheffers, A., Engel, M., Scheffers, S., Squire, P., and Kelletat, D.: Beach ridge systems – archives for Holocene coastal events?, Prog. Phys. Geogr., 36, 5–37, 2012.
Shepherd, M. J.: Relict and contemporary foredunes as indicators of coastal processes, in: Applied Quaternary Studies, edited by: Brierley, G. and Chappell, J., Australian National University, Canberra, Australia, 17–24, 1991.
Solís-Castillo, B., Thiel, C., Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedov, S., Terhorst, B., Damm, B., Frechen, M., and Tsukamoto, S.: Holocene sequences in the Mayan Lowlands – A provenance study using heavy mineral distributions, Eiszeitalter und Gegenwart, Quaternary Sci. J., 62, 84–97, 2013.
Stapor, F. W., Jr., Mathews, T. D., and Lindfors-Kearns, F. E.: Barrier-island progradation and holocene sealevel history in southwest Florida, J. Coastal Res., 7, 815–838, 1991.
Tamura, T.: Beach ridges and prograded beach deposits as palaeoenvironment records, Earth-Sci. Rev., 114, 279–297, 2012.
Tamura, T., Murakami, F., and Watanabe, K.: Holocene beach deposits for assessing coastal uplift of the northeastern Boso Peninsula, Pacific coast of Japan, Quaternary Res., 74, 227–234, 2010.
Tanner, W. F.: Late Holocene sea-level changes from grain-size data: evidence from the Gulf of Mexico, Holocene, 2, 249–254, 1992.
Tanner, W. F.: Origin of beach ridges and swales, Mar. Geol., 129, 149–161, 1995.
Taylor, M. J. and Stone, G. W.: Beach-ridges: a review, J. Coastal Res., 12, 612–621, 1996.
Thompson, T. A.: Beach-ridge development and lake-level variation in southern Lake Michigan, Sediment. Geol., 80, 305–318, 1992.
Törnqvist, T. E., Gonzalez, J. L., Newsom, L. A., van der Borg, K., de Jong, A. F. M., and Kurnik, C. W.: Deciphering holocene sea-level history on the U.S. Gulf Coast: a high-resolution record from the Mississippi Delta, Geol. Soc. Am. Bull., 116, 1026–1039, 2004.
Tsukamoto, S., Rink, W. J., and Watanuki, T.: OSL of tephric loess and volcanic quartz in Japan and an alternative procedure for estimating De from a fast OSL component, Rad. Meas., 37, 459–465, 2003.
USGS: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global dataset, available at: https://lta.cr.usgs.gov/SRTM1Arc (last access: January 2017), 2009.
Van Dam, R. L.: Landform characterization using geophysics – recent advances, applications, and emerging tools, Geomorphology, 137, 57–73, 2012.
Van Dam, R. L. and Schlager, W.: Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, 47, 435–449, 2000.
Van der Meene, E. A., Van der Staay, J., and Lay Hock, T.: The Van der Staay suction – corer – a simple apparatus for drilling in sand below groundwater table, Rijks Geologische Dienst, Haarlem, the Netherlands, 1979.
Van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H., and Meijer, H. A. J.: The Groningen AMS facility: status report, Nucl. Instrum. Meth. B, 172, 58–65, 2000.
Van Heteren, S., Fitzgerald, D. M., Mckinlay, P. A., and Buynevich, I. V.: Radar facies of paraglacial barrier systems: coastal New England, USA, Sedimentology, 45, 181–200, 1998.
Van Overmeeren, R. A.: Radar facies of unconsolidated sediments in the Netherlands: a radar stratigraphy interpretation method for hydrogeology, J. Appl. Geophys., 40, 1–18, 1998.
Vespremeanu-Stroe, A., Preoteasa, L., Zăinescu, F., Rotaru, S., Croitoru, L., and Timar-Gabor, A.: Formation of Danube delta beach ridge plains and signatures in morphology, Quatern. Int., 415, 268–285, 2016.
Von Nagy, C.: Of Meandering Rivers and Shifting Towns: Landscape Evolution and Community within the Grijalva delta, PhD thesis, Tulane University, USA, 1640 pp., 2003.
Visher, G. S.: Grain size distributions and depositional processes, J. Sediment. Petrol., 39, 1074–1106, 1969.
Wahl, D., Byrne, R., and Anderson, L.: An 8700 year paleoclimate reconstruction from the southern Maya lowlands, Quaternary Sci. Rev., 103, 19–25, 2014.
Wallinga, J.: Optically stimulated luminescence dating of fluvial deposits: a review, Boreas, 31, 303–322, 2002.
West, R. C., Psuty, N. P., and Thom, B. G.: The Tabasco Lowlands of Southeastern Mexico, Technical Report 70, Louisiana State University, Baton Rouge, USA, 198 pp., 1969.
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an...