Articles | Volume 8, issue 3
https://doi.org/10.5194/esurf-8-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Ingo Hartmeyer
CORRESPONDING AUTHOR
GEORESEARCH Research Institute, Wals, Austria
Robert Delleske
GEORESEARCH Research Institute, Wals, Austria
Markus Keuschnig
GEORESEARCH Research Institute, Wals, Austria
Michael Krautblatter
Chair of Landslide Research, Technical University of Munich, Munich, Germany
Andreas Lang
Department of Geography and Geology, University of Salzburg, Salzburg, Austria
Lothar Schrott
Department of Geography, University of Bonn, Bonn, Germany
Jan-Christoph Otto
Department of Geography and Geology, University of Salzburg, Salzburg, Austria
Related authors
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, Maike Offer, and Stephan Peth
Earth Surf. Dynam., 13, 473–493, https://doi.org/10.5194/esurf-13-473-2025, https://doi.org/10.5194/esurf-13-473-2025, 2025
Short summary
Short summary
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of critical importance for natural hazard management (e.g., rock avalanches) and construction (foundation stability) in mountain permafrost regions. We report the first analytical heat transport model for simulating ALT based on near-surface temperature in permafrost rock walls. Our results show that the ALT will likely increase by more than 50 % by 2050 at 3000 m a.s.l. in the European Alps.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Ingo Hartmeyer and Jan-Christoph Otto
DEUQUA Spec. Pub., 5, 3–12, https://doi.org/10.5194/deuquasp-5-3-2024, https://doi.org/10.5194/deuquasp-5-3-2024, 2024
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, Maike Offer, and Stephan Peth
Earth Surf. Dynam., 13, 473–493, https://doi.org/10.5194/esurf-13-473-2025, https://doi.org/10.5194/esurf-13-473-2025, 2025
Short summary
Short summary
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of critical importance for natural hazard management (e.g., rock avalanches) and construction (foundation stability) in mountain permafrost regions. We report the first analytical heat transport model for simulating ALT based on near-surface temperature in permafrost rock walls. Our results show that the ALT will likely increase by more than 50 % by 2050 at 3000 m a.s.l. in the European Alps.
Benjamin Jacobs, Mohamed Ismael, Mostafa Ezzy, Markus Keuschnig, Alexander Mendler, Johanna Kieser, Michael Krautblatter, Christian U. Grosse, and Hany Helal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2007, https://doi.org/10.5194/egusphere-2025-2007, 2025
Short summary
Short summary
The Mortuary Temple of Hatshepsut is one of the key heritage sites in Egypt but potentially threatened by rockfalls from a 100 m high limestone cliff. We transferred established monitoring techniques from mountainous (alpine) environments to this major cultural heritage site and test their performance in a historically sensitive desert environment. Our study shows the first event and impact analysis of rockfalls at the Temple of Hatshepsut, providing vital data towards future risk assessment.
Ikram Zangana, Rainer Bell, Lucian Drăguţ, Flavius Sîrbu, and Lothar Schrott
EGUsphere, https://doi.org/10.5194/egusphere-2025-2139, https://doi.org/10.5194/egusphere-2025-2139, 2025
Short summary
Short summary
Mapping landslides is essential for understanding hazards and risk assessment. This study used a geographic object-based image analysis (GEOBIA) approach with high-resolution lidar data to map forest-covered historical landslides in Jena, Germany. Optimizing the moving-window size for lidar derivatives improved accuracy, detecting more landslides and reducing errors. This method showcases the potential of lidar-based approaches for global landslide inventory and hazard assessment.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025, https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Short summary
Despite the critical role of water in alpine regions, its presence in bedrock is frequently neglected. This research examines the dynamics of water in fractures using 1 decade of measurements from a tunnel 50 m underground. We provide new insights into alpine groundwater dynamics, revealing that up to 800 L d-1 can flow in one fracture during extreme events. These quantities can saturate the fractures, enhance hydraulic conductivity, and generate pressures that destabilize slopes.
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Ingo Hartmeyer and Jan-Christoph Otto
DEUQUA Spec. Pub., 5, 3–12, https://doi.org/10.5194/deuquasp-5-3-2024, https://doi.org/10.5194/deuquasp-5-3-2024, 2024
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Cited articles
Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., and Asensio, E.: Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain), Nat. Hazards Earth Syst. Sci., 11, 829–841, https://doi.org/10.5194/nhess-11-829-2011, 2011.
Akca, D.:
Least squares 3-D surface matching,
Ph.D. thesis,
Swiss Federal Institute of Technology, Zurich, 2007.
Allen, S. K., Cox, S. C., and Owens, I. F.:
Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts,
Landslides,
8, 33–48, 2010.
Auer, I., Foelsche, U., Böhm, R., Chimani, B., Haimberger, L., Kerschner, H., Koinig, K. A., Nicolussi, K., and Spötl, C.:
Vergangene Klimaänderung in Österreich,
in: Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14),
edited by: Kromp-Kolb, H., Nakicenovic, N., Steininger, K., Gobiet, A., Formayer, H., Köppl, A, Prettenthaler, F., Stötter, J., and Schneider, J.,
Verlag der Österreichischen Akademie der Wissenschaften, Vienna, Austria, 227–300, 2014.
Augustinus, P. C.:
Glacial valley cross-profile development: the influence of in situ rock stress and rock mass strength, with examples from the Southern Alps, New Zealand,
Geomorphology,
14, 87–97, 1995.
Ballantyne, C. K.:
Paraglacial geomorphology,
Quaternary Sci. Rev.,
21, 1935–2017, 2002.
Ballantyne, C. K., Sandeman, G. F., Stone, J. O., and Wilson, P.:
Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain,
Quaternary Sci. Rev.,
86, 144–157, 2014.
Barlow, J., Lim, M., Rosser, N., Petley, D., Brain, M., Norman, E., and Geer, M.:
Modeling cliff erosion using negative power law scaling of rockfalls,
Geomorphology,
139–140, 416–424, 2012.
Barnhart, T. B. and Crosby, B. T.:
Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska,
Remote Sens.-Basel,
5, 2813–2837, 2013.
Battle, W. R. B. and Lewis, W. V.:
Temperature observations in bergschrunds and their relationship to cirque erosion,
J. Geol.,
59, 537–545, 1951.
Besl, P. J. and McKay, N. D.:
A method for registration of 3-D shapes,
IEEE T. Pattern. Anal.,
14, 239–256, 1992.
Böhm, R.:
Changes of regional climate variability in central Europe during the past 250 years,
Eur. Phys. J. Plus,
127, 54, https://doi.org/10.1140/epjp/i2012-12054-6, 2012.
Chen, Y. and Medioni, G.:
Object modelling by registration of multiple range images,
Image Vision Comput.,
10, 145–155, 1992.
Church, M. and Ryder, J.:
Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation,
Geol. Soc. Am. Bull.,
83, 3059–3072, 1972.
Cook, K.:
An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection,
Geomorphology,
278, 195–208, 2017.
Cornelius, H. and Clar, E.:
Erläuterungen zur geologischen Karte des Glocknergebietes,
Geologische Bundesanstalt, Vienna, 32 pp., 1935.
Cossart, E., Braucher, R., Fort, M., Bourlès, D. L., and Carcaillet, J.:
Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): Evidence from field data and 10Be cosmic ray exposure ages,
Geomorphology,
95, 3–26, 2008.
Davidson, G. P. and Nye, J. F.:
A photoelastic study of ice pressure in rock cracks,
Cold Reg. Sci. Technol.,
11, 141–153, 1985.
Davies, M. C. R., Hamza, O., and Harris, C.:
The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities,
Permafrost Periglac.,
12, 137–144, 2001.
de Haas, T., Conway, S. J., and Krautblatter, M.:
Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully alcoves,
J. Geophys. Res.-Planet.,
120, 2169–2189, 2015.
Deline, P., Kirkbride, M. P., Ravanel, L., and Ravello, M.:
The Trê-la-Tête rockfall onto the Glacier de la Lex Blanche, Mont Blanc Massif, Italy, in September 2008,
Geogr. Fis. Din. Quat.,
31, 251–254, 2008.
Deline, P.:
Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene,
Quaternary Sci. Rev.,
28, 1070–1083, 2009.
Draebing, D. and Krautblatter, M.:
The efficacy of frost weathering processes in alpine rockwalls,
Geophys. Res. Lett.,
46, 6516–6524, 2019.
Draebing, D., Krautblatter, M., and Dikau, R.:
Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach,
Geomorphology,
226, 226–235, 2014.
Draebing, D., Krautblatter, M., and Hoffmann, T.:
Thermo-cryogenic controls of fracture kinematics in permafrost rockwalls,
Geophys. Res. Lett.,
44, 3535–3544, 2017.
Duca, S., Occhiena, C., Mattone, M., Sambuelli, L., and Scavia, C.:
Feasibility of ice segregation location by acoustic emission detection: A laboratory test in gneiss,
Permafrost Periglac.,
25, 208–219, 2014.
Dussauge-Peisser, C., Helmstetter, A., Grasso, J.-R., Hantz, D., Desvarreux, P., Jeannin, M., and Giraud, A.: Probabilistic approach to rock fall hazard assessment: potential of historical data analysis, Nat. Hazards Earth Syst. Sci., 2, 15–26, https://doi.org/10.5194/nhess-2-15-2002, 2002.
Esposito, G., Salvini, R., Matano, F., Sacchi, M., Danzi, M., Somma, R., and Troise, C.:
Multitemporal monitoring of a coastal landslide through SfM-derived point cloud comparison,
Photogramm. Rec.,
32, 459–479, 2017.
Evans, I. S.:
Process and form in the erosion of glaciated mountains,
in: Process and Form in Geomorphology,
edited by: Stoddart, D. R.,
Routledge, London, 145–174, 1997.
Ewald, A., Hartmeyer, I., Keuschnig, M., Lang, A., and Otto, J.-C.:
Fracture dynamics in an unstable, deglaciating headwall, Kitzsteinhorn, Austria,
EGU General Assembly, Vienna, Austria, 7–12 April 2019, EGU2019-3055, 2019.
Fischer, A., Olefs, M., and Abermann, J.:
Glaciers, snow and ski tourism in Austria's changing climate,
Ann. Glaciol.,
52, 89–96, 2011.
Fischer, L., Eisenbeiss, H., Kääb, A., Huggel, C., and Haeberli, W.:
Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps,
Permafrost Periglac.,
22, 140–152, 2011.
Gardner, J. S.:
Evidence for headwall weathering zones, Boundary Glacier, Canadian Rocky Mountains,
J. Glaciol.,
33, 60–67, 1987.
Girard, L., Gruber, S., Weber, S., and Beutel, J.:
Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock,
Geophys. Res. Lett.,
40, 1748–1753, 2013.
Gischig, V. S., Moore, J. R., Evans, K. F., Amann, F., and Loew, S.:
Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope,
J. Geophys. Res.-Earth,
116, F04010, https://doi.org/10.1029/2011JF002006, 2011.
Grämiger, L., Moore, J. R., Gischig, V. S., Ivy-Ochs, S., and Loew, S.:
Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles,
J. Geophys. Res.-Earth,
122, 1004–1036, 2017.
Grämiger, L., Moore, J. R., Gischig, V. S., and Loew, S.:
Thermomechanical stresses drive damage of alpine valley rock walls during repeat glacial cycles,
J. Geophys. Res.-Earth,
123, 2620–2646, 2018.
Grant, D., Bethel, J., and Crawford, M.:
Point-to-plane registration of terrestrial laser scans,
ISPRS J. Photogramm.,
72, 16–26, 2012.
Gruber, S., Hoelzle, M., and Haeberli, W.:
Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences,
Permafrost Periglac.,
15, 299–307, 2004.
Gruber, S. and Haeberli, W.:
Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change,
J. Geophys. Res.-Earth,
112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Haberkorn, A., Phillips, M., Kenner, R., Rhyner, H., Bavay, M., Galos, S. P., and Hoelzle, M.:
Thermal regime of rock and its relation to snow cover in steep alpine rock walls: Gemsstock, Central Swiss Alps,
Geogr. Ann. A,
97, 579–597, 2015.
Haeberli, W., Hoelzle, M., Paul, F., and Zemp, M.:
Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps,
Ann. Glaciol.,
46, 150–160, 2007.
Hales, T. C. and Roering, J. J.:
A frost “buzzsaw” mechanism for erosion of the eastern Southern Alps, New Zealand,
Geomorphology,
107, 241–253, 2009.
Hall, K.:
The role of thermal stress fatigue in the breakdown of rock in cold regions,
Geomorphology,
31, 47–63, 1999.
Hallet, B., Walder, J. S., and Stubbs, C. W.:
Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions,
Permafrost Periglac.,
2, 283–300, 1991.
Hartmeyer, I., Keuschnig, M., and Schrott, L.:
A scale-oriented approach for the long-term monitoring of ground thermal conditions in permafrost-affected rock faces, Kitzsteinhorn, Hohe Tauern Range, Austria,
Austrian J. Earth Sci.,
105, 128–139, 2012.
Hartmeyer, I., Keuschnig, M., Delleske, R.,
Krautblatter, M., Lang, A., Schrott, L., Prasicek, G., and Otto, J.-C.:
A 6-year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques, Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, 2020a.
Hartmeyer, I., Delleske, R., Keuschnig, M., and Krautblatter, M.: Rockfall Source Areas, Kitzsteinhorn, Austria (2011–2017), mediaTUM, https://doi.org/10.14459/2020mp1540134, 2020b.
Hasler, A., Gruber, S., Font, M., and Dubois, A.:
Advective heat transport in frozen rock clefts: Conceptual model, laboratory experiments and numerical simulation,
Permafrost Periglac.,
22, 378–389, 2011.
Hasler, A., Gruber, S., and Beutel, J.:
Kinematics of steep bedrock permafrost,
J. Geophys. Res.-Earth,
117, F01016, https://doi.org/10.1029/2011JF001981, 2012.
Hodge, R. A.:
Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces,
ISPRS J. Photogramm.,
65, 227–240, 2010.
Hoeck, V., Pestal, G., Brandmaier, P., Clar, E., Cornelius, H., Frank, W., Matl, H., Neumayr, P., Petrakakis, K., Stadlmann, T., and Steyrer, H.:
Geologische Karte der Republik Österreich, Blatt 153 Großglockner,
Geologische Bundesanstalt, Vienna, 1994.
Holm, K., Bovis, M., and Jakob, M.:
The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia,
Geomorphology,
57, 201–216, 2004.
Holzhauser, H., Magny, M. J., Zumbühl, H. J.:
Glacier and lake-level variations in west-central Europe over the last 3500 years,
Holocene,
15, 789–801, 2005.
Hooke, R. L.:
Positive feedbacks associated with erosion of glacial cirques and overdeepenings,
Geol. Soc. Am. Bull.,
103, 1104–1108, 1991.
James, M. R., Robson, S., and Smith, M. W.:
3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys,
Earth Surf. Proc. Land.,
42, 1769–1788, 2017.
Joerin, U. E., Stocker, T. F., and Schlüchter, C.:
Multicentury glacier fluctuations in the Swiss Alps during the Holocene,
Holocene,
16, 697–704, 2006.
Joerin, U. E., Nicolussi, K., Fischer, A., Stocker, T. F., and Schlüchter, C.:
Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps,
Quaternary Sci. Rev.,
27, 337–350, 2008.
Jia, H., Xiang, W., and Krautblatter, M.:
Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles,
Permafrost Periglac.,
26, 368–377, 2015.
Jia, H., Leith, K., and Krautblatter, M.:
Path-dependent frost-wedging experiments in fractured, low-permeability granite,
Permafrost Periglac.,
28, 698–709, 2017.
Johnson, W. D.:
The profile of maturity in alpine glacial erosion,
J. Geol.,
12, 569–578, 1904.
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A.:
Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004,
Geophys. Res. Lett.,
33, L19501, https://doi.org/10.1029/2006GL027511, 2006.
Kenner, R., Phillips, M., Danioth, C., Denier, C., Thee, P., and Zgraggen, A.:
Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps,
Cold Reg. Sci. Technol.,
67, 157–164, 2011.
Keuschnig, M., Hartmeyer, I., Höfer-Öllinger, G., Schober, A., Krautblatter, M., and Schrott, L.:
Permafrost-related mass movements: Implications from a rock slide at the Kitzsteinhorn, Austria,
in: Engineering Geology for Society and Territory, Vol. 1,
edited by: Lollino, G., Manconi, A., Clague, J. Shan, W., and Chiarle, M.,
Springer International Publishing, 255–259, 2015.
Keuschnig, M., Krautblatter, M., Hartmeyer, I., Fuss, C., and Schrott, L.:
Automated electrical resistivity tomography testing for early warning in unstable permafrost rock walls around alpine infrastructure,
Permafrost Periglac.,
28, 158–171, 2016.
Krautblatter, M., Funk, D., and Günzel, F.:
Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space,
Earth Surf. Proc. Land.,
38, 876–887, 2013.
Krautblatter, M. and Moore, J. R.:
Rock slope instability and erosion: toward improved process understanding,
Earth Surf. Proc. Land.,
39, 1273–1278, 2014.
Lague, D., Brodu, N., and Leroux, J.:
Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z),
ISPRS J. Photogramm.,
82, 10–26, 2013.
Land Salzburg:
Waldstandsaufnahme D, Bild 86-88, 24.08.1953,
Salzburger Geographisches Informationssystem, SAGIS, available at: https://www.salzburg.gv.at/sagismobile/sagisonline/map/Basiskarten/Historische Orthofotos (last access: 2 September 2020), Salzburg, Austria, 1953.
Land Salzburg:
Laserscanbefliegung Bundesland Salzburg 2008,
Salzburger Geographisches Informationssystem SAGIS, available at: https://www.salzburg.gv.at/sagismobile/sagisonline (last access: 2 September 2020), Salzburg, Austria, 2008.
Leith, K., Moore, J. R., Amann, F., and Loew, S.:
In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock,
J. Geophys. Res.-Sol. Ea.,
119, 594–615, 2014.
Lewis, W. V.:
A melt-water hypothesis of cirque formation,
Geol. Mag.,
75, 249–265, 1938.
Mair, R. and Kuhn, M.:
Temperature and movement measurements at a bergschrund,
J. Glaciol.,
40, 561–565, 1994.
Manconi, A., Coviello, V., Galletti, M., and Seifert, R.: Short Communication: Monitoring rockfalls with the Raspberry Shake, Earth Surf. Dynam., 6, 1219–1227, https://doi.org/10.5194/esurf-6-1219-2018, 2018.
Martonne, E.:
Sur la formation des cirques,
Ann. Geogr.,
10, 10–16, 1901.
Matsuoka, N. and Murton, J. B.:
Frost weathering: recent advances and future directions,
Permafrost Periglac.,
19, 195–210, 2008.
McColl, S. T.: Paraglacial rock-slope stability, Geomorphology, 153–154, 1–16, 2012.
McColl, S. T. and Davies, T. R. H.:
Large ice-contact slope movements: glacial buttressing, deformation and erosion,
Earth Surf. Proc. Land.,
38, 1102–1115, 2012.
Monserrat, O. and Crosetto, M.:
Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching,
ISPRS J. Photogramm.,
63, 142–154, 2008.
Moore, J. R., Sanders, J. W., Dietrich, W. E., and Glaser, S. D.:
Influence of rock mass strength on the erosion rate of alpine cliffs,
Earth Surf. Proc. Land.,
34, 1339–1352, 2009.
Murton, J. B., Kuras, O., Krautblatter, M., Cane, T., Tschofen, D., Uhlemann, S., Schober, S., and Watson, P.:
Monitoring rock freezing and thawing by novel geoelectrical and acoustic techniques,
J. Geophys. Res.-Earth,
121, 2309–2332, 2016.
Naylor, S. and Gabet, E. J.:
Valley asymmetry and glacial versus nonglacial erosion in the Bitterroot Range, Montana, USA,
Geology,
35, 375–378, 2007.
Noetzli, J., Huggel, C., Hoelzle, M., and Haeberli, W.:
GIS-based modelling of rock-ice avalanches from Alpine permafrost areas,
Computat. Geosci.,
10, 161–178, 2006.
Oskin, M. and Burbank, D. W.:
Alpine landscape evolution dominated by cirque retreat,
Geology,
33, 933–936, 2005.
Pelto, M. S.: Forecasting temperate alpine glacier survival from accumulation zone observations, The Cryosphere, 4, 67–75, https://doi.org/10.5194/tc-4-67-2010, 2010.
Phillips, M., Wolter, A., Lüthi, R., Amann, F., Kenner, R., and Bühler, Y.:
Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014,
Earth Surf. Proc. Land.,
42, 426–438, 2017.
Plaesken, R., Keuschnig, M., and Krautblatter M.:
Systematic derivation of anchoring forces in permafrost-affected bedrock,
EGU General Assembly, Vienna, Austria, 23–28 April 2017, EGU2017-14476, 2017.
Purdie, H.:
Glacier retreat and tourism: Insights from New Zealand,
Mt. Res. Dev.,
33, 463–472, 2013.
Rabatel, A., Deline, P., Jaillet, S., and Ravanel, L.:
Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: A case study in the Mont Blanc area,
Geophys. Res. Lett.,
35, L10502, https://doi.org/10.1029/2008GL033424, 2008.
Ravanel, L. and Deline, P.:
Climate influence on rockfalls in high-alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the “Little Ice Age”,
Holocene,
21, 357–365, 2010.
Ravanel, L., Deline, P., Lambiel, C., and Vincent, C.:
Instability of a high alpine rock ridge: the lower arête des cosmiques, mont blanc massif, France,
Geogr. Ann. A,
95, 51–66, 2013.
Ravanel, L., Magnin, F., and Deline, P.:
Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif,
Sci. Total Environ.,
609, 132–143, 2017.
Richter, E.:
Geomorphologische Untersuchungen in den Hochalpen,
Petermann. Geogr. Mitt.,
29, 1–103, 1900.
Rosser, N. J., Petley, D. N., Lim, M., Dunning, S. A., and Allison, R. J.:
Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion,
Q. J. Eng. Geol. Hydroge.,
38, 363–375, 2005.
Rosser, N. J., Lim, M., Petley, D. N., Dunning, S. A., and Allison, R. J.:
Patterns of precursory rockfall prior to slope failure,
J. Geophys. Res.-Earth,
112, F04014, https://doi.org/10.1029/2006JF000642, 2007.
Sanders, J. W., Cuffey, K. M., Moore, J. R., MacGregor, K. R., and Kavanaugh, J. L.:
Periglacial weathering and headwall erosion in cirque glacier bergschrunds,
Geology,
40, 779–782, 2012.
Sass, O.:
Rock moisture fluctuations during freeze-thaw cycles: Preliminary results from electrical resistivity measurements,
Polar Geography,
28, 13–31, 2004.
Sass, O.:
Spatial patterns of rockfall intensity in the northern Alps,
Z. Geomorphol.,
138, 51–65, 2005.
Scherler, D., Bookhagen, B., and Strecker, M. R.:
Hillslope-glacier coupling: The interplay of topography and glacial dynamics in High Asia,
J. Geophys. Res.-Earth,
116, F02019, https://doi.org/10.1029/2010JF001751, 2011.
Schober, A., Bannwart, C., and Keuschnig, M.:
Rockfall modelling in high alpine terrain – validation and limitations/Steinschlagsimulation in hochalpinem Raum – Validierung und Limitationen,
Geomechanics and Tunnelling,
5, 368–378, 2012.
Schrott, L., Otto, J.-C., and Keller, F.:
Modelling alpine permafrost distribution in the Hohe Tauern region, Austria,
Austrian J. Earth Sci.,
105, 169–183, 2012.
Slupetzky, H. and Ehgartner, G.:
Glacier mass balances of Stubacher Sonnblickkees, Hohe Tauern Range, Eastern Alps, Austria, 1958/1959 to 2012/2013,
PANGAEA,
https://doi.org/10.1594/PANGAEA.829950, 2014.
Slupetzky, H.:
Die Massenbilanzreihe vom Stubacher Sonnblickkees 1946 bis 2014 und die semidirekte Berechnung des Massenhaushalts von Gletschern,
Zeitschrift für Gletscherkunde und Glazialgeologie,
47, 167–200, 2015.
Solomina, O., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A. N., Nesje, A., Owen, L. A.,Wanner, H., Wiles, G. C., Young, N. E.:
Holocene glacier fluctuations,
Quaternary Sci. Rev.,
111, 9–34, 2015.
Soudarissanane, S., Lindenbergh, R., Menenti, M., and Teunissen, P.:
Scanning geometry: influencing factor on the quality of terrestrial laser scanning points,
ISPRS J. Photogramm.,
66, 389–399, 2011.
Stoffel, M. and Huggel, C.:
Effects of climate change on mass movements in mountain environments,
Prog. Phys. Geog.,
36, 421–439, 2012.
Strunden, J., Ehlers, T. A., Brehm, D., and Nettesheim, M.: Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland, J. Geophys. Res.-Earth, 120, 1251–1273, 2015.
Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S., Keuschnig, M., and Ita, A.:
Geoelectrical monitoring of frozen ground and permafrost in alpine areas: field studies and considerations towards an improved measuring technology,
Near Surf. Geophys.,
12, 93–115, 2014.
Terweh, S.:
Geomorphologische Kartierung am Kitzsteinhorn (Hohe Tauern, Österreich) – Eine raum-zeitliche Analyse geomorphologischer Prozesse im Gletscherumfeld des Schmiedingerkees,
Bachelor Thesis,
University of Bonn, Germany, 67 pp., 2012.
Teza, G., Galgaro, A., Zaltron, N., and Genevois, R.:
Terrestrial laser scanner to detect landslide displacement fields: a new approach,
Int. J. Remote Sens.,
28, 3425–3446, 2007.
van Veen, M., Hutchinson, D. J., Kromer, R., Lato, M., and Edwards, T.:
Effects of sampling interval on the frequency – magnitude relationship of rockfalls detected from terrestrial laser scanning using semi-automated methods,
Landslides,
14, 1579–1592, 2017.
Walder, J. S. and Hallet, B.:
A theoretical model of the fracture of rock during freezing,
Geol. Soc. Am. Bull.,
96, 336–346, 1985.
Walder, J. S. and Hallet, B.:
The physical basis of frost weathering: Toward a more fundamental and unified perspective,
Arctic Alpine Res.,
18, 27–32, 1986.
Weber, S., Beutel, J., Faillettaz, J., Hasler, A., Krautblatter, M., and Vieli, A.: Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH), The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, 2017.
Weber, S., Beutel, J., Da Forno, R., Geiger, A., Gruber, S., Gsell, T., Hasler, A., Keller, M., Lim, R., Limpach, P., Meyer, M., Talzi, I., Thiele, L., Tschudin, C., Vieli, A., Vonder Mühll, D., and Yücel, M.: A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH), Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, 2019.
Wegmann, M., Gudmundsson, G., and Haeberli, W.:
Permafrost changes in rock walls and the retreat of alpine glaciers: a thermal modelling approach,
Permafrost Periglac.,
9, 23–33, 1998.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
WGMS:
Global Glacier Change Bulletin No. 2 (2014–2015),
edited by: Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Huber, J., Machguth, H., Paul, F., and Hoelzle, M.,
ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 244 pp., 2017.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.:
Historically unprecedented global glacier decline in the early 21st century,
J. Glaciol.,
61, 745–762, 2015.
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Climate warming is causing significant ice surface lowering even in the uppermost parts of...