Articles | Volume 8, issue 3
https://doi.org/10.5194/esurf-8-729-2020
https://doi.org/10.5194/esurf-8-729-2020
Research article
 | Highlight paper
 | 
11 Sep 2020
Research article | Highlight paper |  | 11 Sep 2020

Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls

Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto

Related authors

Pressurised water flow in fractured permafrost rocks revealed by joint electrical resistivity monitoring and borehole temperature analysis
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
EGUsphere, https://doi.org/10.5194/egusphere-2024-893,https://doi.org/10.5194/egusphere-2024-893, 2024
Short summary
Modelling active layer thickness in mountain permafrost based on an analytical solution of the heat transport equation, Kitzsteinhorn, Hohe Tauern Range, Austria
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, and Stephan Peth
EGUsphere, https://doi.org/10.5194/egusphere-2023-3006,https://doi.org/10.5194/egusphere-2023-3006, 2024
Short summary
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021,https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
A 6-year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020,https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Fracture dynamics in an unstable, deglaciating headwall, Kitzsteinhorn, Austria
Andreas Ewald, Ingo Hartmeyer, Markus Keuschnig, Andreas Lang, and Jan-Christoph Otto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-42,https://doi.org/10.5194/tc-2019-42, 2019
Preprint withdrawn
Short summary

Related subject area

Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023,https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Modeling deadwood for rockfall mitigation assessments in windthrow areas
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022,https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021,https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021,https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020,https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary

Cited articles

Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., and Asensio, E.: Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain), Nat. Hazards Earth Syst. Sci., 11, 829–841, https://doi.org/10.5194/nhess-11-829-2011, 2011. 
Akca, D.: Least squares 3-D surface matching, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 2007. 
Allen, S. K., Cox, S. C., and Owens, I. F.: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts, Landslides, 8, 33–48, 2010. 
Auer, I., Foelsche, U., Böhm, R., Chimani, B., Haimberger, L., Kerschner, H., Koinig, K. A., Nicolussi, K., and Spötl, C.: Vergangene Klimaänderung in Österreich, in: Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14), edited by: Kromp-Kolb, H., Nakicenovic, N., Steininger, K., Gobiet, A., Formayer, H., Köppl, A, Prettenthaler, F., Stötter, J., and Schneider, J., Verlag der Österreichischen Akademie der Wissenschaften, Vienna, Austria, 227–300, 2014. 
Augustinus, P. C.: Glacial valley cross-profile development: the influence of in situ rock stress and rock mass strength, with examples from the Southern Alps, New Zealand, Geomorphology, 14, 87–97, 1995. 
Download
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.