Articles | Volume 9, issue 4
Earth Surf. Dynam., 9, 1013–1044, 2021
Earth Surf. Dynam., 9, 1013–1044, 2021
Research article
26 Aug 2021
Research article | 26 Aug 2021

Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data

Thomas G. Bernard et al.

Related authors

Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141,,, 2022
Short summary
Investigation of stochastic-threshold incision models across a climatic and morphological gradient
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492,,, 2022
Short summary
M. Letard, A. Collin, D. Lague, T. Corpetti, Y. Pastol, and A. Ekelund
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 463–470,,, 2022
Size, shape and orientation matter: fast and automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
EGUsphere,,, 2022
Short summary
LAPS v1.0.0: Lagrangian Advection of Particles at Sea, a Matlab program to simulate the displacement of particles in the ocean
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss.,,, 2021
Preprint withdrawn
Short summary

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Drainage reorganization induces deviations in the scaling between valley width and drainage area
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894,,, 2022
Short summary
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815,,, 2022
Short summary
Rockfall trajectory reconstruction: A flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam. Discuss.,,, 2022
Revised manuscript under review for ESurf
Short summary
Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar)
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227,,, 2022
Short summary
Coastal change patterns from time series clustering of permanent laser scan data
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103,,, 2021
Short summary

Cited articles

Aerial Surveys: Aerial photographs derived from two surveys of the study area carried out in 2014 to 2015 and in 2016 to 2017, Aerial Surveys Ltd, 2017. 
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change: error propagation and the role of thresholding, Earth Surf. Proc. Land., 44, 1015–1033,, 2019. 
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS, ACM SIGMOD Rec., 28, 49–60,, 1999. 
Aryal, A., Brooks, B. A., Reid, M. E., Bawden, G. W., and Pawlak, G. R.: Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy, J. Geophys. Res.-Earth, 117, 1–15,, 2012. 
Barlow, J., Barisin, I., Rosser, N., Petley, D., Densmore, A., and Wright, T.: Seismically-induced mass movements and volumetric fluxes resulting from the 2010 Mw= 7.2 earthquake in the Sierra Cucapah, Mexico, Geomorphology, 230, 138–145,, 2015. 
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.