Articles | Volume 9, issue 4
https://doi.org/10.5194/esurf-9-1013-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1013-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data
Thomas G. Bernard
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Dimitri Lague
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Philippe Steer
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Related authors
No articles found.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025, https://doi.org/10.5194/essd-17-2963-2025, 2025
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Marine Le Minor, Dimitri Lague, Jamie Howarth, and Philippe Davy
EGUsphere, https://doi.org/10.5194/egusphere-2025-1271, https://doi.org/10.5194/egusphere-2025-1271, 2025
Short summary
Short summary
In natural rivers, flow variability and sediment heterogeneity affect how sediment grains are transported. A unique law that predicts the total amount of sediment transportable by a river for a wide range of sediment mixtures and flow conditions exist but unclear trends remain. Two improvements of this law, a standardized onset of sediment transport and a common reference transport height across all sizes, appear to be critical to have a functional multi grain-size total sediment load.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
M. Letard, A. Collin, D. Lague, T. Corpetti, Y. Pastol, and A. Ekelund
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 463–470, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, 2022
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Cited articles
Aerial Surveys: Aerial photographs derived from two surveys of the study
area carried out in 2014 to 2015 and in 2016 to 2017, Aerial Surveys Ltd,
2017.
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change:
error propagation and the role of thresholding, Earth Surf. Proc.
Land., 44, 1015–1033, https://doi.org/10.1002/esp.4551, 2019.
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS, ACM
SIGMOD Rec., 28, 49–60, https://doi.org/10.1145/304181.304187, 1999.
Aryal, A., Brooks, B. A., Reid, M. E., Bawden, G. W., and Pawlak, G. R.:
Displacement fields from point cloud data: Application of particle imaging
velocimetry to landslide geodesy, J. Geophys. Res.-Earth, 117,
1–15, https://doi.org/10.1029/2011JF002161, 2012.
Barlow, J., Barisin, I., Rosser, N., Petley, D., Densmore, A., and Wright,
T.: Seismically-induced mass movements and volumetric fluxes resulting from
the 2010 Mw = 7.2 earthquake in the Sierra Cucapah, Mexico, Geomorphology,
230, 138–145, https://doi.org/10.1016/j.geomorph.2014.11.012, 2015.
Behling, R., Roessner, S., Kaufmann, H., and Kleinschmit, B.: Automated
spatiotemporal landslide mapping over large areas using rapideye time series
data, Remote Sens., 6, 8026–8055, https://doi.org/10.3390/rs6098026, 2014.
Behling, R., Roessner, S., Golovko, D., and Kleinschmit, B.: Derivation of
long-term spatiotemporal landslide activity – A multi-sensor time series
approach, Remote Sens. Environ., 186, 88–104,
https://doi.org/10.1016/j.rse.2016.07.017, 2016.
Bellugi, D. G., Milledge, D. G., Cuffey, K. M., Dietrich, W. E., and Larsen,
L. G.: Controls on the size distributions of shallow landslides, P. Natl.
Acad. Sci. USA, 118, e2021855118, https://doi.org/10.1073/pnas.2021855118, 2021.
Benjamin, J., Rosser, N. J., and Brain, M. J.: Emergent characteristics of
rockfall inventories captured at a regional scale, Earth Surf. Proc.
Land., 45, 2773–2787, https://doi.org/10.1002/esp.4929, 2020.
Bernard, T. G.: 3D landslide detection, GitHub [code], available at: https://github.com/Thomas-Brd/3D_landslide_detection, last access: 19 August 2021.
Bernard, T. G. and Steer, P.: 3D landslide detection V2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.5220611, 2021.
Bernard, T. G., Lague, D., and Steer, P.: Landslide inventories from Bernard et al. (2021), Zenodo [data set], https://doi.org/10.5281/zenodo.5113770, 2021.
Besl, P. J. and McKay, N. D.: A Method for Registration of 3-D Shapes, IEEE
T. Pattern Anal., 14, 239–256, https://doi.org/10.1109/34.121791,
1992.
Borradaile, G. J.: Statistics of earth science data: their distribution in
space, time, and orientation, Springer-Verlag, New York, 2003.
Brardinoni, F. and Church, M.: Representing the landslide
magnitude-frequency relation: Capilano River basin, British Columbia, Earth
Surf. Proc. Land., 29, 115–124, https://doi.org/10.1002/esp.1029, 2004.
Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M.: The
balanced accuracy and its posterior distribution, Proc. – Int. Conf. Pattern
Recognit., 3121–3124, https://doi.org/10.1109/ICPR.2010.764, 2010.
Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of complex
natural scenes using a multi-scale dimensionality criterion: Applications in
geomorphology, ISPRS J. Photogramm. Remote Sens., 68, 121–134,
https://doi.org/10.1016/j.isprsjprs.2012.01.006, 2012.
Brunetti, M. T., Guzzetti, F., and Rossi, M.: Probability distributions of landslide volumes, Nonlin. Processes Geophys., 16, 179–188, https://doi.org/10.5194/npg-16-179-2009, 2009.
Bull, J. M., Miller, H., Gravley, D. M., Costello, D., Hikuroa, D. C. H., and
Dix, J. K.: Assessing debris flows using LIDAR differencing: 18 May 2005
Matata event, New Zealand, Geomorphology, 124, 75–84,
https://doi.org/10.1016/j.geomorph.2010.08.011, 2010.
Carrea, D., Abellan, A., Derron, M.-H., Gauvin, N. and Jaboyedoff, M.: MATLAB Virtual Toolbox for Retrospective Rockfall Source Detection and Volume Estimation Using 3D Point Clouds: A Case Study of a Subalpine Molasse Cliff, Geosciences, 11, 75, https://doi.org/10.3390/geosciences11020075, 2021.
Corsini, A., Borgatti, L., Cervi, F., Dahne, A., Ronchetti, F., and Sterzai, P.: Estimating mass-wasting processes in active earth slides – earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR, Nat. Hazards Earth Syst. Sci., 9, 433–439, https://doi.org/10.5194/nhess-9-433-2009, 2009.
Croissant, T., Lague, D., Davy, P., Davies, T., and Steer, P.: A
precipiton-based approach to model hydro-sedimentary hazards induced by
large sediment supplies in alluvial fans, Earth Surf. Proc. Land.,
42, 2054–2067, https://doi.org/10.1002/esp.4171, 2017.
Crozier, M. J.: Landslides, in Environmental Geology, Kluwer
Academic Publishers, Dordrecht, 371–375, 1999.
DiBiase, R. A. and Lamb, M. P.: Dry sediment loading of headwater channels
fuels post-wildfire debris flows in bedrock landscapes, Geology, 48,
189–193, https://doi.org/10.1130/G46847.1, 2020.
Dolan, J. F.: Data Collection and Processing Report LiDAR survey of five fault segments (Eastern Clarence, Western Clarence, Central Eastern Awatere, West Wairau and East Hope-Conway) of the Marlborough Fault System on the Northwestern portion of New Zealand’s South Island, PhD, University of Southern California, Los Angeles, 11 pp., 2014.
Dussauge, C., Grasso, J.-R., and Helmstetter, A.: Statistical analysis of
rockfall volume distributions: Implications for rockfall dynamics, J.
Geophys. Res.-Sol. Ea., 108, 687–711, https://doi.org/10.1029/2001jb000650, 2003.
EDF R&D: Cloudcompare (version 2.12), available at:
http://www.danielgm.net/cc/ (last access: 14 June 2021), 2011.
Esposito, G., Salvini, R., Matano, F., Sacchi, M., Danzi, M., Somma, R., and
Troise, C.: Multitemporal monitoring of a coastal landslide through
SfM-derived point cloud comparison, Photogramm. Rec., 32, 459–479,
https://doi.org/10.1111/phor.12218, 2017.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 96, 226–231, 1996
Fairfield, J. and Leymarie, P.: Drainage networks from grid digital
elevation models, Water Resour. Res., 27, 709–717,
https://doi.org/10.1029/90WR02658, 1991.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague,
C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J.,
Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X.,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B.,
Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.:
Hillslope Hydrology in Global Change Research and Earth System Modeling,
Water Resour. Res., 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Frattini, P. and Crosta, G. B.: The role of material properties and
landscape morphology on landslide size distributions, Earth Planet. Sc.
Lett., 361, 310–319, https://doi.org/10.1016/j.epsl.2012.10.029, 2013.
Giordan, D., Allasia, P., Manconi, A., Baldo, M., Santangelo, M., Cardinali,
M., Corazza, A., Albanese, V., Lollino, G., and Guzzetti, F.: Geomorphology
Morphological and kinematic evolution of a large earth flow: The Montaguto
landslide, southern Italy, Geomorphology, 187, 61–79,
https://doi.org/10.1016/j.geomorph.2012.12.035, 2013.
Glennie, C.: Rigorous 3D error analysis of kinematic scanning LIDAR systems,
J. Appl. Geod., 1, 147–157, https://doi.org/10.1515/jag.2007.017, 2008.
Glennie, C. L., Hinojosa-Corona, A., Nissen, E., Kusari, A., Oskin, M. E.,
Arrowsmith, J. R., and Borsa, A.: Optimization of legacy lidar data sets for
measuring near-field earthquake displacements, Geophys. Res. Lett., 41,
3494–3501, https://doi.org/10.1002/2014GL059919, 2014.
Guzzetti, F., Malamud, B. D., Turcotte, D. L., and Reichenbach, P.: Power-law
correlations of landslide areas in central Italy, Earth Planet. Sc. Lett.,
195, 169–183, https://doi.org/10.1016/S0012-821X(01)00589-1, 2002.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M.,
and Chang, K. T.: Landslide inventory maps: New tools for an old problem,
Earth-Sci. Rev., 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001,
2012.
Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain
belt derived by landslide mapping, Geology, 25, 231,
https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2,
1997.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
Jeandet, L., Steer, P., Lague, D., and Davy, P.: Coulomb Mechanics and Relief
Constraints Explain Landslide Size Distribution, Geophys. Res. Lett., 46,
4258–4266, https://doi.org/10.1029/2019GL082351, 2019.
Joerg, P. C., Morsdorf, F., and Zemp, M.: Uncertainty assessment of
multi-temporal airborne laser scanning data: A case study on an Alpine
glacier, Remote Sens. Environ., 127, 118–129,
https://doi.org/10.1016/j.rse.2012.08.012, 2012.
Keefer, D. K.: The importance of earthquake-induced landslides to long-term
slope erosion and slope-failure hazards in seismically active regions,
Geomorphology, 10, 265–284, https://doi.org/10.1016/0169-555X(94)90021-3, 1994.
Kraus, K. and Pfeifer, N.: Determination of terrain models in wooded areas
with airborne laser scanner data, ISPRS J. Photogramm. Remote Sens., 53,
193–203, https://doi.org/10.1016/S0924-2716(98)00009-4, 1998.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS J. Photogramm. Remote Sens., 82, 10–26,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled
by hillslope material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776,
2010.
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R.
G.: Seismic mountain building: Landslides associated with the 2008 Wenchuan
earthquake in the context of a generalized model for earthquake volume
balance, Geochem. Geophy. Geosy., 15, 833–844,
https://doi.org/10.1002/2013GC005067, 2014.
Lumia, R., Shapiro, L., and Zuniga, O.: A new connected components algorithm
for virtual memory computers, Comput. Vision, Graph. Image Process., 22,
287–300, https://doi.org/10.1016/0734-189X(83)90071-3, 1983.
Malamud, B. D. and Turcotte, D. L.: Self-organized criticality applied to
natural hazards, Nat. Hazards, 20, 93–116,
https://doi.org/10.1023/A:1008014000515, 1999.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide
inventories and their statistical properties, Earth Surf. Proc.
Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Marc, O., Hovius, N., Meunier, P., Gorum, T., and Uchida, T.: A
seismologically consistent expression for the total area and volume of
earthquake-triggered landsliding – Marc – 2016, J. Geophys.
Res.- Earth, 121, 640–663,
https://doi.org/10.1002/2015JF003732, 2016.
Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides, Earth Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, 2019.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., and Kumar, K. V.:
Characterising spectral, spatial and morphometric properties of landslides
for semi-automatic detection using object-oriented methods, Geomorphology,
116, 24–36, https://doi.org/10.1016/j.geomorph.2009.10.004, 2010.
Massey, C., Townsend, D., Rathje, E., Allstadt, K. E., Lukovic, B., Kaneko,
Y., Bradley, B., Wartman, J., Jibson, R. W., Petley, D. N., Horspool, N.,
Hamling, I., Carey, J., Cox, S., Davidson, J., Dellow, S., Godt, J. W.,
Holden, C., Jones, K., Kaiser, A., Little, M., Lyndsell, B., McColl, S.,
Morgenstern, R., Rengers, F. K., Rhoades, D., Rosser, B., Strong, D.,
Singeisen, C., and Villeneuve, M.: Landslides triggered by the 14 November
2016 Mw 7.8 Kaikōura earthquake, New Zealand, B. Seismol. Soc. Am.,
108, 1630–1648, https://doi.org/10.1785/0120170305, 2018.
Massey, C. I., Townsend, D., Jones, K., Lukovic, B., Rhoades, D.,
Morgenstern, R., Rosser, B., Ries, W., Howarth, J., Hamling, I., Petley, D.,
Clark, M., Wartman, J., Litchfield, N., and Olsen, M.: Volume Characteristics
of Landslides Triggered by the MW 7.8 2016 Kaikōura Earthquake, New
Zealand, Derived From Digital Surface Difference Modeling, J. Geophys. Res.-Earth, 125, e2019JF005163, https://doi.org/10.1029/2019JF005163, 2020.
McInnes, L., Healy, J., and Astels, S.: hdbscan: Hierarchical density based
clustering, J. Open Source Softw., 2, 205, https://doi.org/10.21105/joss.00205,
2017.
Medwedeff, W. G., Clark, M. K., Zekkos, D., and West, A. J.: Characteristic
landslide distributions: An investigation of landscape controls on landslide
size, Earth Planet. Sc. Lett., 539, 116203, https://doi.org/10.1016/j.epsl.2020.116203,
2020.
Miller, D. J. and Burnett, K. M.: Effects of forest cover, topography, and
sampling extent on the measured density of shallow, translational
landslides, Water Resour. Res., 43, 1–23, https://doi.org/10.1029/2005WR004807,
2007.
Mora, O. E., Gabriela Lenzano, M., Toth, C. K., Grejner-Brzezinska, D. A.,
and Fayne, J. V.: Landslide change detection based on Multi-Temporal
airborne LIDAR-derived DEMs, Geosciences, 8, 6–8,
https://doi.org/10.3390/geosciences8010023, 2018.
Mouyen, M., Steer, P., Chang, K.-J., Le Moigne, N., Hwang, C., Hsieh, W.-C., Jeandet, L., Longuevergne, L., Cheng, C.-C., Boy, J.-P., and Masson, F.: Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys, Earth Surf. Dynam., 8, 555–577, https://doi.org/10.5194/esurf-8-555-2020, 2020.
Okyay, U., Telling, J., Glennie, C. L., and Dietrich, W. E.: Airborne lidar change detection: An overview of Earth sciences applications, Earth-Sci. Rev., 198, 102929, https://doi.org/10.1016/j.earscirev.2019.102929, 2019.
Parker, R. N., Densmore, A. L., Rosser, N. J., De Michele, M., Li, Y.,
Huang, R., Whadcoat, S., and Petley, D. N.: Mass wasting triggered by the
2008 Wenchuan earthquake is greater than orogenic growth, Nat. Geosci.,
4, 449–452, https://doi.org/10.1038/ngeo1154, 2011.
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J.
R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A.,
Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T.,
and Wheaton, J. M.: Analyzing high resolution topography for advancing the
understanding of mass and energy transfer through landscapes: A review,
Earth-Sci. Rev., 148, 174–193, https://doi.org/10.1016/j.earscirev.2015.05.012,
2015.
Pollock, W. and Wartman, J.: Human Vulnerability to Landslides, GeoHealth,
4, 1–17, https://doi.org/10.1029/2020GH000287, 2020.
Pradhan, B., Jebur, M. N., Shafri, H. Z. M., and Tehrany, M. S.: Data fusion
technique using wavelet transform and taguchi methods for automatic
landslide detection from airborne laser scanning data and quickbird
satellite imagery, IEEE T. Geosci. Remote, 54, 1610–1622,
https://doi.org/10.1109/TGRS.2015.2484325, 2016.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Simonett, D. S.: Landslide distribution and earthquakes in the Bavani and
Torricelli mountains, New Guinea, Cambridge Unviversity Press Cambrige,
Landform S, 64–84, 1967.
Sithole, G. and Vosselman, G.: Experimental comparison of filter algorithms
for bare-Earth extraction from airborne laser scanning point clouds, ISPRS
J. Photogramm. Remote Sens., 59, 85–101,
https://doi.org/10.1016/j.isprsjprs.2004.05.004, 2004.
Stark, C. P. and Guzzetti, F.: Landslide rupture and the probability
distribution of mobilized debris volumes, J. Geophys. Res.-Earth,
114, 1–16, https://doi.org/10.1029/2008JF001008, 2009.
Stark, C. P. and Hovius, N.: The characterization of landslide size
distributions, Geophys. Res. Lett., 28, 1091–1094,
https://doi.org/10.1029/2000GL008527, 2001.
Stumpf, A., Malet, J. P., Allemand, P., Pierrot-Deseilligny, M., and
Skupinski, G.: Ground-based multi-view photogrammetry for the monitoring of
landslide deformation and erosion, Geomorphology, 231, 130–145,
https://doi.org/10.1016/j.geomorph.2014.10.039, 2015.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., and Jibson, R. W.:
Factors controlling landslide frequency–area distributions, Earth Surf.
Proc. Land., 44, 900–917, https://doi.org/10.1002/esp.4543, 2019.
Teza, G., Galgaro, A., Zaltron, N., and Genevois, R.: Terrestrial laser
scanner to detect landslide displacement fields: A new approach, Int. J.
Remote Sens., 28, 3425–3446, https://doi.org/10.1080/01431160601024234, 2007.
Tonini, M. and Abellan, A.: Rockfall detection from terrestrial lidar point
clouds: A clustering approach using R, J. Spat. Inf. Sci., 8, 95–110,
https://doi.org/10.5311/JOSIS.2014.8.123, 2014.
Ventura, G., Vilardo, G., Terranova, C., and Sessa, E. B.: Tracking and
evolution of complex active landslides by multi-temporal airborne LiDAR
data: The Montaguto landslide (Southern Italy), Remote Sens. Environ.,
115, 3237–3248, https://doi.org/10.1016/j.rse.2011.07.007, 2011.
Wagner, W., Lague, D., Mohrig, D., Passalacqua, P., Shaw, J., and Moffett,
K.: Elevation change and stability on a prograding delta, Geophys. Res.
Lett., 44, 1786–1794, https://doi.org/10.1002/2016GL072070, 2017.
Wheaton, J. M., Brasington, J., Darby, S. E., and Sear, D. A.: Accounting for
uncertainty in DEMs from repeat topographic surveys: Improved sediment
budgets, Earth Surf. Proc. Land., 35, 136–156,
https://doi.org/10.1002/esp.1886, 2010.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
Zhong, C., Liu, Y., Gao, P., Chen, W., Li, H., Hou, Y., Nuremanguli, T., and
Ma, H.: Landslide mapping with remote sensing: challenges and opportunities,
Int. J. Remote Sens., 41, 1555–1581, https://doi.org/10.1080/01431161.2019.1672904,
2020.
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape...