Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A temperature-dependent mechanical model to assess the stability of degrading permafrost rock slopes
Philipp Mamot
CORRESPONDING AUTHOR
Chair of Landslide Research, Technical University of Munich, 80333 Munich, Germany
Samuel Weber
Chair of Landslide Research, Technical University of Munich, 80333 Munich, Germany
Saskia Eppinger
Chair of Landslide Research, Technical University of Munich, 80333 Munich, Germany
Michael Krautblatter
Chair of Landslide Research, Technical University of Munich, 80333 Munich, Germany
Related authors
No articles found.
Benjamin Jacobs, Mohamed Ismael, Mostafa Ezzy, Markus Keuschnig, Alexander Mendler, Johanna Kieser, Michael Krautblatter, Christian U. Grosse, and Hany Helal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2007, https://doi.org/10.5194/egusphere-2025-2007, 2025
Short summary
Short summary
The Mortuary Temple of Hatshepsut is one of the key heritage sites in Egypt but potentially threatened by rockfalls from a 100 m high limestone cliff. We transferred established monitoring techniques from mountainous (alpine) environments to this major cultural heritage site and test their performance in a historically sensitive desert environment. Our study shows the first event and impact analysis of rockfalls at the Temple of Hatshepsut, providing vital data towards future risk assessment.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025, https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Short summary
Despite the critical role of water in alpine regions, its presence in bedrock is frequently neglected. This research examines the dynamics of water in fractures using 1 decade of measurements from a tunnel 50 m underground. We provide new insights into alpine groundwater dynamics, revealing that up to 800 L d-1 can flow in one fracture during extreme events. These quantities can saturate the fractures, enhance hydraulic conductivity, and generate pressures that destabilize slopes.
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Cited articles
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant
strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, https://doi.org/10.1139/t04-111, 2005.
Aydin, A. and Basu, A.: The Schmidt hammer in rock material characterization, Eng. Geol., 81, 1–14, 2005.
Bandis, S. C., Lumsden, A. C., and Barton, N. R.: Fundamentals of rock joint
deformation, Int. J. Rock Mech. Min., 20, 249–268, 1983.
Barnes, P., Tabor, D., and Walker, J. C. F.: The friction and creep of
polycrystalline ice, P. Roy. Soc. Lond. A, 324, 127–155, 1971.
Barton, N. R.: A model study of rock-joint deformation, Int. J. Rock Mech.
Min., 9, 579–582, https://doi.org/10.1016/0148-9062(72)90010-1, 1972.
Barton, N. R.: Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions, J. Rock Mech. Geotech. Eng., 5,
249–261, https://doi.org/10.1016/j.jrmge.2013.05.008, 2013.
Barton, N. R. and Choubey, V.: The shear strength of rock joints in theory
and practice, Rock Mech., 10, 1–54, 1977.
Bavarian Agency for Digitisation, High-Speed Internet and Surveying: Digital elevation model of the Zugspitze summit area, Bavarian Agency for Digitisation, High-Speed Internet and Surveying, Munich, 2006.
Bhasin, R. and Kaynia, A. M.: Static and dynamic simulation of a 700-m high
rock slope in western Norway, Eng. Geol., 71, 213–226,
https://doi.org/10.1016/S0013-7952(03)00135-2, 2004.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. Britta K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Böckli, L., Nötzli, J., and Gruber, S.: PermaNET-BY: Untersuchung des
Permafrosts in den Bayerischen Alpen, Teilprojekt PermaNET (EU Alpine Space
Interreg IVb), Glaciology, Geomorphodynamics & Geochronology,
Department of Geography,
University of Zurich, Zürich, 60 pp., 2011.
Bray, M. T.: Secondary creep approximations of ice-rich soils and ice using
transient relaxation tests, Cold. Reg. Sci. Technol., 88, 17–36,
https://doi.org/10.1016/j.coldregions.2012.12.011, 2013.
Butkovitch, T. R.: The ultimate strength of ice, Report on the Snow, Ice and Permafrost Research Establishment Project, Res. paper 15, Corps of Engineers, U. S. Army, Wilmette, Illinois, 1954.
Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., and Minami, M.: Estimation of
rock mass deformation modulus and strength of jointed hard rock masses using
the GSI system, Int. J. Rock Mech. Min., 41, 3–19,
https://doi.org/10.1016/S1365-1609(03)00025-X, 2004.
Chang, S.-H., Lee, C.-I., and Jeon, S.: Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type
specimens, Eng. Geol., 66, 79–97, https://doi.org/10.1016/S0013-7952(02)00033-9, 2002.
Cruden, D. M.: The shapes of cold, high mountains in sedimentary rocks,
Geomorphology, 55, 249–261, https://doi.org/10.1016/S0169-555X(03)00143-0, 2003.
Davies, M. C. R., Hamza, O., Lumsden, B. W., and Harris, C.: Laboratory
measurement of the shear strength of ice-filled rock joints, Ann. Glaciol.,
31, 463–467, https://doi.org/10.3189/172756400781819897, 2000.
Davies, M. C. R., Hamza, O., and Harris, C.: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled
discontinuities, Permafrost Periglac., 12, 137–144, https://doi.org/10.1002/ppp.378, 2001.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino,
M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S.,
Ravanel, L., and Schoeneich, P.: Ice Loss and Slope Stability in High-Mountain Regions, in: Snow and Ice-Related Hazards, Risks and Disasters, Academic Press, Boston, 521–561, 2015.
Draebing, D. and Krautblatter, M.: P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model, The Cryosphere, 6, 1163–1174, https://doi.org/10.5194/tc-6-1163-2012, 2012.
Dramis, F., Govi, M., Guglielmin, M., and Mortara, G.: Mountain permafrost and slope instability in the Italian Alps. The Val Pola Landslide, Permafrost Periglac., 6, 73–81, https://doi.org/10.1002/ppp.3430060108, 1995.
Dwivedi, R. D., Soni, A. K., Goel, R. K., and Dube, A. K.: Fracture toughness
of rocks under sub-zero temperature conditions, Int. J. Rock Mech. Min., 37,
1267–1275, 2000.
Eberhardt, E., Stead, D., and Coggan, J. S.: Numerical analysis of initiation
and progressive failure in natural rock slopes – the 1991 Randa rockslide,
Int. J. Rock Mech. Min., 41, 69–87, https://doi.org/10.1016/S1365-1609(03)00076-5, 2004.
Etzelmüller, B.: Recent Advances in Mountain Permafrost Research, Permafrost Periglac., 24, 99–107, https://doi.org/10.1002/ppp.1772, 2013.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fischer, L., Amann, F., Moore, J. R., and Huggel, C.: Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland), Eng. Geol., 116, 32–43, https://doi.org/10.1016/j.enggeo.2010.07.005, 2010.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
Gallemann, T., Haas, U., Teipel, U., von Poschinger, A., Wagner, B., Mahr,
M., and Bäse, F.: Permafrost-Messstation am Zugspitzgipfel: Ergebnisse
und Modellberechnungen, Geolog. Bavar., 115, 1–77, 2017.
Gambino, G. F. and Harrison, J. P.: Rock Engineering Design in Frozen and Thawing Rock. Current Approaches and Future Directions, Proced. Eng., 191, 656–665, https://doi.org/10.1016/j.proeng.2017.05.229, 2017.
Gischig, V., Amann, F., Moore, J. R., Loew, S., Eisenbeiss, H., and Stempfhuber, W.: Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling,
Eng. Geol., 118, 37–53, https://doi.org/10.1016/j.enggeo.2010.11.006, 2011a.
Gischig, V. S., Moore, J. R., Evans, K. F., Amann, F., and Loew, S.:
Thermomechanical forcing of deep rock slope deformation. 1. Conceptual study
of a simplified slope, J. Geophys. Res.-Earth, 116, F04010, https://doi.org/10.1029/2011JF002006, 2011b.
Gischig, V. S., Moore, J. R., Keith, F. E., Amann, F., and Loew, S.:
Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock
slope instability, J. Geophys. Res., 116, F04011, https://doi.org/10.1029/2011JF002007, 2011c.
Glamheden, R.: Thermo-mechanical behaviour of refrigerated caverns in hard
rock, Chalmers University of Technology, Göteborg, 2001.
Glamheden, R. and Lindblom, U.: Thermal and mechanical behaviour or refrigerated caverns in hard rock, Tunn. Undergr. Sp. Tech., 17, 341–353,
2002.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its
temperature-related destabilization following climate change, J. Geophys. Res., 112, 1–10, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett., 31, L13504, https://doi.org/10.1029/2004GL020051, 2004.
Günzel, F. K.: Shear strength of ice-filled rock joints, in: 9th International Conference on Permafrost, 28 June–3 July 2008, Fairbanks, Alaska, 2008.
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M.: Distributed snow and rock temperature modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, 2017.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning,
M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N.,
Seppälä, M., Springman, S. M., and Mühll, D. Vonder: Permafrost
and climate in Europe. Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171,
https://doi.org/10.1016/j.earscirev.2008.12.002, 2009.
Hauck, C. and Kneisel, C. (Eds.): Applied Geophysics in Periglacial Environments, Cambridge University Press, Cambridge, 2008.
Hipp, T., Etzelmüller, B., Farbrot, H., Schuler, T. V., and Westermann, S.: Modelling borehole temperatures in Southern Norway – insights into
permafrost dynamics during the 20th and 21st century, The Cryosphere, 6,
553–571, https://doi.org/10.5194/tc-6-553-2012, 2012.
Hoek, E. and Brown, E. T.: Practical estimates of rock mass strength, Int.
J. Rock Mech. Min., 34, 1165–1186, https://doi.org/10.1016/S1365-1609(97)80069-X, 1997.
Hoek, E., Carranza-Torres, C., and Corkum, B.: Hoek-Brown failure criterion – 2002 Edition, Proceedings of the 5th North American Rock Mechanics Symposium (NARMS),
edited by: Hammah, R., Bawden, W., Curran, J., and Telesnicki, M.,
University of Toronto Press, Toronto, Ont., Canada, 1,
267–273, 2002.
Huang, D., Cen, D., Ma, G., and Huang, R.: Step-path failure of rock slopes
with intermittent joints, Landslides, 12, 911–926, https://doi.org/10.1007/s10346-014-0517-6, 2015.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I., and Evans, S. G.: The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., 5, 173–187, https://doi.org/10.5194/nhess-5-173-2005, 2005.
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future
warm extreme events and high-mountain slope stability, Philos. T. Roy. Soc. A, 368, 2435–2459, https://doi.org/10.1098/rsta.2010.0078, 2010.
Huggel, C., Allen, S., Deline, P., Fischer, L., Noetzli, J., and Ravanel, L.:
Ice thawing, mountains falling – are alpine rock slope failures increasing?,
Geol. Today, 28, 98–104, https://doi.org/10.1111/j.1365-2451.2012.00836.x, 2012.
Inada, Y. and Yokota, K.: Some studies of low temperature rock strength, Int. J. Rock Mech. Min., 21, 145–153, https://doi.org/10.1016/0148-9062(84)91532-8, 1984.
Itasca Consulting Group: UDEC – Universal Distinct Element Code, User's Manual, Minneapolis, 2019.
Jaeger, J. C., Cook, N. G., and Zimmerman, R. W.: Fundamentals of rock
mechanics, 4th edn., Blackwell Publishing Ltd, Malden, USA,
Oxford, UK,
Carlton, Australia, 2007.
Jellinek, H. H. G.: Adhesive properties of ice, J. Coll. Sci., 14, 268–280,
1959.
Jennings, J.: A mathematical theory for the calculation of the stability of
open cast mines, Symposium on the theoretical background to the planning of open pit mines, Johannesburg, Republic of South Africa, 1970.
Keuschnig, M., Krautblatter, M., Hartmeyer, I., Fuss, C., and Schrott, L.:
Automated Electrical Resistivity Tomography Testing for Early Warning in
Unstable Permafrost Rock Walls Around Alpine Infrastructure, Permafrost
Periglac., 28, 158–171, https://doi.org/10.1002/ppp.1916, 2017.
Kodama, J., Goto, T., Fujii, Y., and Hagan P.: The effects of water content,
temperature and loading rate on strength and failure process of frozen rocks, Int. J. Rock Mech. Min., 62, 1–13, 2013.
Körner, H. and Ulrich, R.: Geologische und felsmechanische Untersuchungen für die Gipfelstation der Seilbahn Eibsee-Zugspitze, Geol. Bavar., 55, 404–421, 1965.
Krautblatter, M., Verleysdonk, S., Flores-Orozco, A. and Kemna, A.: Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps), J. Geophys. Res.-Earth, 115, 1–15, 2010.
Krautblatter, M., Huggel, C., Deline, P., and Hasler, A.: Research Perspectives on Unstable High-alpine Bedrock Permafrost. Measurement,
Modelling and Process Understanding, Permafrost Periglac., 23, 80–88,
https://doi.org/10.1002/ppp.740, 2012.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf.
Proc. Land., 38, 876–887, 2013.
Kulatilake, P. H. S. W., Ucpirti, H., Wang, S., Radberg, G., and Stephansson,
O.: Use of the distinct element method to perform stress analysis in rock
with non-persistent joints and to study the effect of joint geometry parameters on the strength and deformability of rock masses, Rock Mech. Rock
Eng., 25, 253–274, https://doi.org/10.1007/BF01041807, 1992.
Kveldsvik, V., Einstein, H. H., Nilsen, B., and Blikra, L. H.: Numerical Analysis of the 650,000 m2 Åknes Rock Slope based on Measured
Displacements and Geotechnical Data, Rock Mech. Rock Eng., 42, 689–728, https://doi.org/10.1007/s00603-008-0005-1, 2008.
Magnin, F., Krautblatter, M., Deline, P., Ravanel, L., Malet, E., and Bevington, A.: Determination of warm, sensitive permafrost areas in near-vertical rockwalls and evaluation of distributed models by electrical
resistivity tomography, J. Geophys. Res.-Earth, 120, 745–762,
https://doi.org/10.1002/2014JF003351, 2015.
Mamot, P., Weber, S., Schröder, T., and Krautblatter, M.: A temperature-
and stress-controlled failure criterion for ice-filled permafrost rock joints, The Cryosphere, 12, 3333—3353, https://doi.org/10.5194/tc-12-3333-2018, 2018.
Mamot, P., Weber, S., Lanz, M., and Krautblatter, M.: Brief communication: The influence of mica-rich rocks on the shear strength of ice-filled
discontinuities, The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020, 2020.
Marinos, P. and Hoek, E.: Gsi: A Geologically Friendly Tool for Rock Mass
Strength Estimation, in: ISRM International Symposium, Int. Soc. Rock Mech. Rock Eng., Melbourne, Australia, 2000.
Marmy, A., Rajczak, J., Delaloye, R., Hilbich, C., Hoelzle, M., Kotlarski, S., Lambiel, C., Noetzli, J., Phillips, M., Salzmann, N., Staub, B., and Hauck, C.: Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland, The Cryosphere, 10, 2693–2719,
https://doi.org/10.5194/tc-10-2693-2016, 2016.
Mejía Camones, L. A., Vargas, E. D. A., de Figueiredo, R. P., and
Velloso, R. Q.: Application of the discrete element method for modeling of
rock crack propagation and coalescence in the step-path failure mechanism, Eng. Geol., 153, 80–94, https://doi.org/10.1016/j.enggeo.2012.11.013, 2013.
Mellor, M.: Mechanical properties of rocks at low temperatures, in: 2nd International Conference on Permafrost, 13–28 July 1973, Yakutsk, Siberia, 1973.
Mergili, M., Jaboyedoff, M., Pullarello, J., and Pudasaini, S. P.: Back
calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow:
what we can do and what we can learn, Nat. Hazards Earth Syst. Sci., 20,
505–520, https://doi.org/10.5194/nhess-20-505-2020, 2020.
Miller, H.: Der Bau des westlichen Wettersteingebirges, Z. Deutsch.
Geolog. Gesell., 113, 409–425, 1962.
Moore, J. R., Gischig, V., Katterbach, M., and Loew, S.: Air circulation in
deep fractures and the temperature field of an alpine rock slope, Earth Surf. Proc. Land., 36, 1985–1996, https://doi.org/10.1002/esp.2217, 2011.
Murton, J., Kuras, O., Krautblatter, M., Cane, T., Tschofen, D., Uhlemann, S., Schober, S., and Watson, P.: Monitoring rock freezing and thawing by novel geoelectrical and acoustic techniques, J. Geophys. Res.-Eart, 121, 2309–2332, https://doi.org/10.1002/2016JF003948, 2016.
Myhra, K. S., Westermann, S., and Etzelmüller, B.: Modelled Distribution
and Temporal Evolution of Permafrost in Steep Rock Walls Along a Latitudinal
Transect in Norway by CryoGrid 2D, Permafrost Periglac., 28, 172–182,
https://doi.org/10.1002/ppp.1884, 2017.
Nötzli, J.: Modeling transient three-dimensional temperature fields in mountain permafrost, Dissertation, University of Zurich, Zurich, 2008.
Nötzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost,
The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Nötzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.: Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography, J. Geophys. Res.-Earth, 112, F02S13, https://doi.org/10.1029/2006JF000545, 2007.
Nötzli, J., Gruber, S., and von Poschinger, A.: Modellierung und Messung von Permafrosttemperaturen im Gipfelgrat der Zugspitze, Deutschland, Geogr. Helv., 65, 113–123, https://doi.org/10.5194/gh-65-113-2010, 2010.
Nötzli, J., Pellet, C., and Staub, B. (Eds.): PERMOS 2019, Permafrost in Switzerland 2014/2015 to 2017/2018, Glaciological Report (Permafrost) No. 16–19, Cryospheric Commission of the Swiss Academy of Sciences, 104 pp., https://doi.org/10.13093/permos-rep-2019-16-19, 2019.
Phillips, M., Wolter, A., Lüthi, R., Amann, F., Kenner, R., and Bühler, Y.: Rock slope failure in a recently deglaciated permafrost rock
wall at Piz Kesch (Eastern Swiss Alps), February 2014, Earth Surf. Proc. Land., 42, 426–438, https://doi.org/10.1002/esp.3992, 2017.
Plaesken, R., Keuschnig, M., and Krautblatter, M.: Permafrost rocks and
high-alpine infrastructure. Interrelated, interconnected, interacting, Geomech. Tunnel., 13, 628–633, https://doi.org/10.1002/geot.202000028, 2020.
Poisel, R. and Preh, A.: Rock slope initial failure mechanisms and their
mechanical models, Felsbau, 22, 40–45, 2004.
Ravanel, L. and Deline, P.: La face ouest des Drus (massif du Mont-Blanc):
évolution de l'instabilité d'une paroi rocheuse dans la haute montagne alpine depuis la fin du petit age glaciaire, Géomorphologie, 4, 261–272, 2008.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine
steep rockwalls. The north side of the Aiguilles de Chamonix (Mont Blanc
massif) since the end of the `Little Ice Age', Holocene, 21, 357–365,
https://doi.org/10.1177/0959683610374887, 2011.
Ravanel, L. and Deline, P.: Rockfall Hazard in the Mont Blanc Massif Increased by the Current Atmospheric Warming, in: Engineering Geology for
Society and Territory – Volume 1: Climate Change and Engineering Geology,
Springer International Publishing, Cham, 425–428, 2015.
Ravanel, L., Allignol, F., Deline, P., Gruber, S., and Ravello, M.: Rock falls in the Mont Blanc Massif in 2007 and 2008, Landslides, 7, 493–501,
2010.
Rentsch, W. and Krompholz, G.: Zur Bestimmung elastischer Konstanten durch
Schallgeschwindigkeitsmessungen, Bergakademie – Zeitschrift für Bergbau,
Hüttenwesen und verwandte Wissenschaften, 13, 492–504, 1961.
Sanderson, T. J. O.: Ice Mechanics. Risks to offshore structures, Graham & Trotman, London, 1988.
Sass, O.: Rock moisture measurements. Techniques, results, and implications for weathering, Earth Surf. Proc. Land., 30, 3, 359–374, https://doi.org/10.1002/esp.1214, 2005.
Scandroglio, R., Draebing, D., Offer, M., and Krautblatter, M.: 4D quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated electrical resistivity tomography approach, Near Surf. Geophys., 19, 241–260, https://doi.org/10.1002/nsg.12149, 2021.
Schulson, E. M. and Duval, P.: Creep and Fracture of Ice, Cambridge University Press, Cambridge, 2009.
Stead, D., Eberhardt, E., and Coggan, J. S.: Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques, Eng. Geol., 83, 217–235,
https://doi.org/10.1016/j.enggeo.2005.06.033, 2006.
Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S.,
Keuschnig, M., and Ita, A.: Geoelectrical monitoring of frozen ground and
permafrost in alpine areas. Field studies and considerations towards an improved measuring technology, Near Surf. Geophys., 12, 93–115,
https://doi.org/10.3997/1873-0604.2013057, 2014.
Tipler, P. A. and Mosca, G.: Physik für Wissenschaftler und Ingenieure,
in: Springer Spektrum, 7th Edn., Springer, Berlin, 2015.
Ulrich, R. and King, L.: Influence of mountain permafrost on construction in
the Zugspitze mountains, Bavarian Alps, Germany, 6th International Conference on Permafrost, 5–9 July 1993, Beijing, China, Chinese Soc. Glaciol. and Geocryol., 1993.
Ulusay, R.: The ISRM Suggested Methods for Rock Characterization, Testing
and Monitoring: 2007–2014, Springer International Publishing, Cham, Heidelberg, New York, Dordrecht, London, 2015.
Ulusay, R. and Karakul, H.: Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some
considerations on tilt testing, Bull. Int. Assoc. Eng. Geol., 75, 1683–1699,
https://doi.org/10.1007/s10064-015-0828-4, 2016.
Voigtländer, A., Scandroglio, R., and Krautblatter, M.: Entwicklung
geotechnischer Felsparameter des Kitzsteinhorner Kalkglimmerschiefers,
Abschlussbericht zum Forschungs- und Entwicklungsvertrag der TU München
und AlpS-GmbH, Munich, 2014.
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., de Preux, A., Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonanomi, Y.: Direct observations of a three million cubic meter rock-slope collapse with almost
immediate initiation of ensuing debris flows, Geomorphology, 351, 106933,
https://doi.org/10.1016/j.geomorph.2019.106933, 2020.
Weber, S., Beutel, J., Da Forno, R., Geiger, A., Gruber, S., Gsell, T., Hasler, A., Keller, M., Lim, R., Limpach, P., Meyer, M., Talzi, I., Thiele,
L., Tschudin, C., Vieli, A., Vonder Mühll, D., and Yücel, M.: A decade of detailed observations (2008–2018) in steep bedrock permafrost at
the Matterhorn Hörnligrat (Zermatt, CH), Earth Syst. Sci. Data, 11,
1203–1237, https://doi.org/10.5194/essd-11-1203-2019, 2019.
Welkner, D., Eberhardt, E., and Hermanns, R. L.: Hazard investigation of the
Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach, Eng. Geol., 114, 278–297,
https://doi.org/10.1016/j.enggeo.2010.05.007, 2010.
Wyllie, D. C.: Rock slope engineering, in: Civil applications, Taylor & Francis Group, Boca Raton, 2018.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(22337 KB) - Full-text XML
- Corrigendum
-
Supplement
(4217 KB) - BibTeX
- EndNote
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
The mechanical response of permafrost degradation on high-mountain rock slope stability has not...