Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1125-2021
https://doi.org/10.5194/esurf-9-1125-2021
Research article
 | 
09 Sep 2021
Research article |  | 09 Sep 2021

A temperature-dependent mechanical model to assess the stability of degrading permafrost rock slopes

Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter

Related authors

Safeguarding Cultural Heritage: Integrative Analysis of Gravitational Mass Movements at the Mortuary Temple of Hatshepsut, Luxor, Egypt
Benjamin Jacobs, Mohamed Ismael, Mostafa Ezzy, Markus Keuschnig, Alexander Mendler, Johanna Kieser, Michael Krautblatter, Christian U. Grosse, and Hany Helal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2007,https://doi.org/10.5194/egusphere-2025-2007, 2025
Short summary
Decadal in situ hydrological observations and empirical modeling of pressure head in a high-alpine, fractured calcareous rock slope
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025,https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Progressive destabilization of a freestanding rock pillar in permafrost on the Matterhorn (Swiss Alps): Field observations, laboratory experiments and mechanical modeling
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151,https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025,https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025,https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary

Cited articles

Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, https://doi.org/10.1139/t04-111, 2005. 
Aydin, A. and Basu, A.: The Schmidt hammer in rock material characterization, Eng. Geol., 81, 1–14, 2005. 
Bandis, S. C., Lumsden, A. C., and Barton, N. R.: Fundamentals of rock joint deformation, Int. J. Rock Mech. Min., 20, 249–268, 1983. 
Barnes, P., Tabor, D., and Walker, J. C. F.: The friction and creep of polycrystalline ice, P. Roy. Soc. Lond. A, 324, 127–155, 1971. 
Barton, N. R.: A model study of rock-joint deformation, Int. J. Rock Mech. Min., 9, 579–582, https://doi.org/10.1016/0148-9062(72)90010-1, 1972. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Share