Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1481-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1481-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Chair of Landslide Research, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Patrick Oswald
Department of Geology, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Jasper Moernaut
Department of Geology, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Stefano Claudio Fabbri
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Christoph Mayr
Institute of Geography, Friedrich–Alexander University Erlangen-Nuremberg, Glückstraße 5, 91054 Erlangen, Germany
Michael Strasser
Department of Geology, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Michael Krautblatter
Chair of Landslide Research, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Related authors
No articles found.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2509, https://doi.org/10.5194/egusphere-2024-2509, 2024
Short summary
Short summary
Our study explores permafrost-glaciers interactions with a foucs on its implication for preparing/triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold/warm dividing line in polythermal alpine glaciers, a widespread and currently underexplored phenomenon in alpine environments worldwide.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1512, https://doi.org/10.5194/egusphere-2024-1512, 2024
Short summary
Short summary
Recent studies confirm that mountain permafrost is reducing, but there is little information on the role of water. This study looks at ten years of weather data and water flow in 50m-deep rock fractures. We precisely quantify the timing and quantities of this flow with a model. For the first time, we estimate pressures generated by water inside rock fractures. Pressures from snowmelt and rain events threaten slope stability; therefore, monitoring water's presence in permafrost areas is crucial.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
EGUsphere, https://doi.org/10.5194/egusphere-2024-893, https://doi.org/10.5194/egusphere-2024-893, 2024
Short summary
Short summary
We present a unique dataset of repeated electrical resistivity tomography and long-term borehole temperature measurements to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subject to enhanced pressurised water flow during the melt period. In addition to slow thermal heat conduction, permafrost rocks are subject to push-like warming events, favouring accelerated permafrost degradation and reduced rockwall stability.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Patrick Oswald, Michael Strasser, Jens Skapski, and Jasper Moernaut
Nat. Hazards Earth Syst. Sci., 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022, https://doi.org/10.5194/nhess-22-2057-2022, 2022
Short summary
Short summary
This study provides the first regional earthquake catalogue of the eastern Alps spanning 16 000 years by using three lake paleoseismic records. Recurrence statistics reveal that earthquakes recur every 1000–2000 years in an aperiodic pattern. The magnitudes of paleo-earthquakes exceed the historically documented values. This study estimates magnitude and source areas for severe paleo-earthquakes, and their shaking effects are explored in the broader study area.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Kerstin Pasda, Matthias López Correa, Philipp Stojakowits, Bernhard Häck, Jérôme Prieto, Najat al-Fudhaili, and Christoph Mayr
E&G Quaternary Sci. J., 69, 187–200, https://doi.org/10.5194/egqsj-69-187-2020, https://doi.org/10.5194/egqsj-69-187-2020, 2020
Short summary
Short summary
The radiocarbon dating of Late Iron Age origin and anthropogenic traces such as cut marks on bones of a male elk skeleton found by a local resident in a pit cave prove an archaeological origin. So far known archaeological settlements are several tens of kilometres apart from the finds. The location and the dating are unique in that they are the first evidence of elk hunting during the Late Iron Age in the Bavarian Alps.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 20, 2255–2279, https://doi.org/10.5194/nhess-20-2255-2020, https://doi.org/10.5194/nhess-20-2255-2020, 2020
Short summary
Short summary
This study highlights the use of the software Flow-3D in reproducing landslide-generated impulse waves. Due to the available data and the possibility of comparing the results with other previous works, a numerical modelling investigation on the 1958 Lituya Bay tsunami event is proposed. It is noted that the rockslide impact into the waterbody has a key role in the wave initiation and thus its propagation. The concept used in this work can be applied to prevent such phenomena in future.
Philipp Mamot, Samuel Weber, Maximilian Lanz, and Michael Krautblatter
The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020, https://doi.org/10.5194/tc-14-1849-2020, 2020
Short summary
Short summary
A failure criterion for ice-filled rock joints is a prerequisite to accurately assess the stability of permafrost rock slopes. In 2018 a failure criterion was proposed based on limestone. Now, we tested the transferability to other rocks using mica schist and gneiss which provide the maximum expected deviation of lithological effects on the shear strength. We show that even for controversial rocks the failure criterion stays unaltered, suggesting that it is applicable to mostly all rock types.
Philipp Mamot, Samuel Weber, Tanja Schröder, and Michael Krautblatter
The Cryosphere, 12, 3333–3353, https://doi.org/10.5194/tc-12-3333-2018, https://doi.org/10.5194/tc-12-3333-2018, 2018
Short summary
Short summary
Most of the observed failures in permafrost-affected alpine rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. We present a systematic study of the brittle shear failure of ice and rock–ice contacts along rock joints in a simulated depth ≤ 30 m and at temperatures from −10 to −0.5 °C. Warming and sudden reduction in rock overburden due to the detachment of an upper rock mass lead to a significant drop in shear resistance.
Christoph Mayr, Lukas Langhamer, Holger Wissel, Wolfgang Meier, Tobias Sauter, Cecilia Laprida, Julieta Massaferro, Günter Försterra, and Andreas Lücke
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-431, https://doi.org/10.5194/hess-2018-431, 2018
Manuscript not accepted for further review
Short summary
Short summary
Patagonia is a key area to understand wind dynamics and orographic isotope effects on precipitation in the southern hemisphere. Stable isotope composition of precipitation, lake and river waters were investigated. Sources of Patagonian moisture were mainly in the south-eastern Pacific. A strong heavy-isotope depletion occurs due to orographic rainout in the Andes. Isotope data allow the determination of the drying ratio (DR). The obtained DR value of 0.45 is one of the highest measured on earth.
Christoph Mayr, Renate Matzke-Karasz, Philipp Stojakowits, Sally E. Lowick, Bernd Zolitschka, Tanja Heigl, Richard Mollath, Marian Theuerkauf, Marc-Oliver Weckend, Rupert Bäumler, and Hans-Joachim Gregor
E&G Quaternary Sci. J., 66, 73–89, https://doi.org/10.5194/egqsj-66-73-2017, https://doi.org/10.5194/egqsj-66-73-2017, 2017
Wen Nie, Michael Krautblatter, Kerry Leith, Kurosch Thuro, and Judith Festl
Nat. Hazards Earth Syst. Sci., 17, 1595–1610, https://doi.org/10.5194/nhess-17-1595-2017, https://doi.org/10.5194/nhess-17-1595-2017, 2017
Short summary
Short summary
Deep-seated landslides are an important and widespread natural hazard within alpine regions and can have a massive impact on infrastructure. Pore water pressure plays an important role in determining the stability of hydro-triggered deep-seated landslides. Here we demonstrate a modified tank model for deep-seated landslides that includes snow and infiltration effects and can effectively predict changes in pore water pressure in alpine environments.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
J. D. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, and S. Saito
Sci. Dril., 19, 27–32, https://doi.org/10.5194/sd-19-27-2015, https://doi.org/10.5194/sd-19-27-2015, 2015
Short summary
Short summary
We summarize the findings of the IODP Workshop Tracking the Tsunamigenic slips Across and Along the Japan Trench (JTRACK) held in Tokyo, May 2014. The workshop recommended a program of drilling to investigate the physical and chemical controls on coseismic slip in the 2011 Tohoku-oki earthquake and to develop new methods for determining the recurrence interval of tsunamigenic earthquakes in the sediment record. One full- and one pre-proposal with these goals were recently submitted to IODP.
G. F. Moore, K. Kanagawa, M. Strasser, B. Dugan, L. Maeda, S. Toczko, and the IODP Expedition 338 Scientific Party
Sci. Dril., 17, 1–12, https://doi.org/10.5194/sd-17-1-2014, https://doi.org/10.5194/sd-17-1-2014, 2014
Related subject area
Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Storm frequency, magnitude, and cumulative storm beach impact along the US east coast
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Modeling deadwood for rockfall mitigation assessments in windthrow areas
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Detection and explanation of spatiotemporal patterns in Late Cenozoic palaeoclimate change relevant to Earth surface processes
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry
Erosional response of an actively uplifting mountain belt to cyclic rainfall variations
Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate
Rachele Dominguez, Michael S. Fenster, and John W. McManus
Earth Surf. Dynam., 12, 1145–1163, https://doi.org/10.5194/esurf-12-1145-2024, https://doi.org/10.5194/esurf-12-1145-2024, 2024
Short summary
Short summary
Climate change is a hot topic and changes in storminess can be indicative of climate change impacts. Also, coastal storms can impact ecosystems and the people who live, work, and recreate along our world's coasts. Our findings show that the number of the US east coast storms has not increased since the early 20th century, but storm strength has increased moderately. Finally, beaches can take up to 10 years to recover depending on the number, timing, and strength of previous storms.
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Andrew D. Wickert
Earth Surf. Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, https://doi.org/10.5194/esurf-4-831-2016, 2016
Short summary
Short summary
The ice sheets that once spread across northern North America dramatically changed the drainage basin areas and discharges of rivers across the continent. As these ice sheets retreated, starting around 19 500 years ago, they sent meltwater to the oceans, influencing climate and building a geologic record of deglaciation. This record can be used to evaluate ice-sheet reconstructions and build an improved history and understanding of past ice-sheet collapse across North America.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
J. Braun, C. Voisin, A. T. Gourlan, and C. Chauvel
Earth Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, https://doi.org/10.5194/esurf-3-1-2015, 2015
Short summary
Short summary
We have derived a simple solution to the stream power law equation governing the erosion of rapidly uplifting tectonic areas assuming that rainfall varies as a periodic function of time. We show that the erosional response of this forcing is characterized by an amplification of the resulting erosional flux variations as well as a time lag. We show how this time lag can be important in interpreting several geological observations.
A. Barkwith, C. W. Thomas, P. W. Limber, M. A. Ellis, and A. B. Murray
Earth Surf. Dynam., 2, 295–308, https://doi.org/10.5194/esurf-2-295-2014, https://doi.org/10.5194/esurf-2-295-2014, 2014
Cited articles
Abellán, A., Jaboyedoff, M., Oppikofer, T., and Vilaplana, J. M.: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Nat. Hazards Earth Syst. Sci., 9, 365–372, https://doi.org/10.5194/nhess-9-365-2009, 2009.
Albrecher, H., Bladt, M., Kortschak, D., Prettenthaler, F., and Swierczynski, T.: Flood occurrence change-point analysis in the paleoflood record from Lake Mondsee (NE Alps), Global Planet. Change, 178, 65–76, https://doi.org/10.1016/j.gloplacha.2019.04.009, 2019.
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007.
Beyer, A., Chakraborty, B., and Schenke, H. W.: Seafloor classification of the mound and channel provinces of the Porcupine Seabight: an application of the multibeam angular backscatter data, Int. J. Earth Sci., 96, 11–20, https://doi.org/10.1007/s00531-005-0022-1, 2007.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N., Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doktor, R., Elleder, L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J., Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D., Panin, A., Parajka, J., Petrić, H., Rodrigo, F. S., Rohr, C., Schönbein, J., Schulte, L., Silva, L. P., Toonen, W. H. J., Valent, P., Waser, J., and Wetter, O.: Current European flood-rich period exceptional compared with past 500 years, Nature, 583, 560–566, https://doi.org/10.1038/s41586-020-2478-3, 2020.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bremer, M. and Sass, O.: Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event, Geomorphology, 138, 49–60, https://doi.org/10.1016/j.geomorph.2011.08.024, 2012.
Bruel, R. and Sabatier, P.: serac: an R package for ShortlivEd RAdionuclide chronology of recent sediment cores, J. Environ. Radioactiv., 225, 106449, https://doi.org/10.1016/j.jenvrad.2020.106449, 2020.
Chiarle, M., Iannotti, S., Mortara, G., and Deline, P.: Recent debris flow occurrences associated with glaciers in the Alps, Global Planet. Change, 56, 123–136, https://doi.org/10.1016/j.gloplacha.2006.07.003, 2007.
Czymzik, M., Brauer, A., Dulski, P., Plessen, B., Naumann, R., von Grafenstein, U., and Scheffler, R.: Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany), Quaternary Sci. Rev., 61, 96–110, https://doi.org/10.1016/j.quascirev.2012.11.010, 2013.
Damm, B. and Felderer, A.: Impact of atmospheric warming on permafrost degradation and debris flow initiation: A case study from the eastern European Alps, J. Quaternary Sci., 62, 136–149, https://doi.org/10.3285/eg.62.2.05, 2013.
Daxer, C., Sammartini, M., Molenaar, A., Piechl, T., Strasser, M., and Moernaut, J.: Morphology and spatio-temporal distribution of lacustrine mass-transport deposits in Wörthersee, Eastern Alps, Austria, Geological Society, London, Special Publications, 500, 235–254, https://doi.org/10.1144/SP500-2019-179, 2020.
de Haas, T., van den Berg, W., Braat, L., and Kleinhans, M. G.: Autogenic avulsion, channelization and backfilling dynamics of debris-flow fans, Sedimentology, 63, 1596–1619, https://doi.org/10.1111/sed.12275, 2016.
Dietrich, A. and Krautblatter, M.: Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980 s (Plansee, Austria), Geomorphology, 287, 144–158, https://doi.org/10.1016/j.geomorph.2016.01.013, 2017.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe thunderstorm environments in response to greenhouse forcing, P. Natl. Acad. Sci. USA, 110, 16361–16366, https://doi.org/10.1073/pnas.1307758110, 2013.
Dowling, C. and Santi, P.: Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011, Nat. Hazards, 71, 203–227, https://doi.org/10.1007/s11069-013-0907-4, 2014.
eHYD – Hydrographischer Dienst Tirol: Hydrographische Archivdaten Österreichs, available at: https://ehyd.gv.at/, last access: 7 January 2021.
EPOSA: Echtzeit Positionierung Austria, available at: https://www.eposa.at/, last access: 31 January 2021.
Fricke, W. and Kronier, M.: Betrachtungen zum Klimawandel am Hohenpeißenberg, Klimastatusbericht 2001, Offenbach, 250–257, 2002.
Gilli, A., Anselmetti, F. S., Glur, L., and Wirth, S. B.: Lake Sediments as Archives of Recurrence Rates and Intensities of Past Flood Events, in: Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment, edited by: Schneuwly-Bollschweiler, M., Stoffel, M., and Rudolf-Miklau, F., Springer, Dordrecht, 225–242, https://doi.org/10.1007/978-94-007-4336-6_15, 2013.
Glur, L., Wirth, S. B., Büntgen, U., Gilli, A., Haug, G. H., Schär, C., Beer, J., and Anselmetti, F. S.: Frequent floods in the European Alps coincide with cooler periods of the past 2500 years, Sci. Rep., 3, 1–5, https://doi.org/10.1038/srep02770, 2013.
Grelle, G., Rossi, A., Revellino, P., Guerriero, L., Guadagno, F. M., and Sappa, G.: Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines, Sustainability, 11, 2382, https://doi.org/10.3390/su11082382, 2019.
Hibler, I. J.: Der Plansee und seine Umgebung, Universitätsverlag Wagner, Innsbruck, 135 pp., 1921.
Hilbe, M., Anselmetti, F. S., Eilertsen, R. S., Hansen, L., and Wildi, W.: Subaqueous morphology of Lake Lucerne (Central Switzerland): implications for mass movements and glacial history, Swiss J. Geosci., 104, 425–443, https://doi.org/10.1007/s00015-011-0083-z, 2011.
Howarth, J. D., Fitzsimons, S. J., Norris, R. J., Langridge, R., and Vandergoes, M. J.: A 2000 yr rupture history for the Alpine fault derived from Lake Ellery, South Island, New Zealand, Geol. Soc. Am. Bull., 128, 627–643, https://doi.org/10.1130/B31300.1, 2016.
International Organization for Standardization: ISO 13320:2020-01, Particle size analysis – Laser diffraction methods, Geneva, Switzerland, 2020.
Irmler, R., Daut, G., and Mäusbacher, R.: A debris flow calendar derived from sediments of lake Lago di Braies (N. Italy), Geomorphology, 77, 69–78, https://doi.org/10.1016/j.geomorph.2006.01.013, 2006.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Jomelli, V., Brunstein, D., Déqué, M., Vrac, M., and Grancher, D.: Impacts of future climatic change (2070–2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps), Climatic Change, 97, 171–191, https://doi.org/10.1007/s10584-009-9616-0, 2009.
Jomelli, V., Pavlova, I., Giacona, F., Zgheib, T., and Eckert, N.: Respective influence of geomorphologic and climate conditions on debris-flow occurrence in the Northern French Alps, Landslides, 16, 1871–1883, https://doi.org/10.1007/s10346-019-01195-7, 2019.
Kral, F.: Pollenanalytische Untersuchungen im Fernpaßgebiet (Tirol): Zur Frage des Reliktcharakters der Bergsturz-Kiefernwälder, Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, Since 2014 “Acta ZooBot Austria”, 1989, 127–138, 1989.
Lowe, D. R.: Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents, J. Sediment. Res., 52, 279–297, https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D, 1982.
Lu, H., Moran, C. J., and Prosser, I. P.: Modelling sediment delivery ratio over the Murray Darling Basin, Environ. Modell. Softw., 21, 1297–1308, https://doi.org/10.1016/j.envsoft.2005.04.021, 2006.
Meyers, P. A. and Teranes, J. L.: Sediment Organic Matter, in: Tracking environmental change using lake sediments, edited by: Last, W. M. and Smol, J. P., Kluwer Academic Publishers, Dordrecht, 239–269, https://doi.org/10.1007/0-306-47670-3_9, 2001.
Moernaut, J., van Daele, M., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., and Batist, M. de: Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile, J. Geophys. Res.-Sol. Ea., 119, 1607–1633, https://doi.org/10.1002/2013JB010738, 2014.
Oswald, P., Strasser, M., Hammerl, C., and Moernaut, J.: Seismic control of large prehistoric rockslides in the Eastern Alps, Nat. Commun., 12, 1059, https://doi.org/10.1038/s41467-021-21327-9, 2021.
Pavlova, I., Jomelli, V., Brunstein, D., Grancher, D., Martin, E., and Déqué, M.: Debris flow activity related to recent climate conditions in the French Alps: A regional investigation, Geomorphology, 219, 248–259, https://doi.org/10.1016/j.geomorph.2014.04.025, 2014.
Rebetez, M., Lugon, R., and Baeriswyl, P.-A.: Climatic Change and Debris Flows in High Mountain Regions: The Case Study of the Ritigraben Torrent (Swiss Alps), in: Climatic Change at High Elevation Sites, edited by: Diaz, H. F., Beniston, M., and Bradley, R. S., Springer Netherlands, Dordrecht, 139–157, https://doi.org/10.1007/978-94-015-8905-5_8, 1997.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rickenmann, D. and Zimmermann, M.: The 1987 debris flows in Switzerland: documentation and analysis, Geomorphology, 8, 175–189, https://doi.org/10.1016/0169-555X(93)90036-2, 1993.
RIEGL Laser Measurement Systems GmbH (Ed.): RIEGL VZ-400 data sheet, Horn, 4 pp., 2017.
Sass, O. and Krautblatter, M.: Debris flow-dominated and rockfall-dominated talus slopes: Genetic models derived from GPR measurements, Geomorphology, 86, 176–192, https://doi.org/10.1016/j.geomorph.2006.08.012, 2007.
Schillereff, D. N., Chiverrell, R. C., Macdonald, N., and Hooke, J. M.: Flood stratigraphies in lake sediments: A review, Earth-Sci. Rev., 135, 17–37, https://doi.org/10.1016/j.earscirev.2014.03.011, 2014.
Schindler, D. W.: Recent advances in the understanding and management of eutrophication, Limnol. Oceanogr., 51, 356–363, https://doi.org/10.4319/lo.2006.51.1_part_2.0356, 2006.
Schlögel, R., Kofler, C., Gariano, S. L., Van Campenhout, J., and Plummer, S.: Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps), Sci. Rep., 10, 1–14, https://doi.org/10.1038/s41598-020-61615-w, 2020.
Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., and Ward, S. N.: Prehistoric earthquake history revealed by lacustrine slump deposits, Geology, 30, 1131, https://doi.org/10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2, 2002.
Schneuwly-Bollschweiler, M. and Stoffel, M.: Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864, J. Geophys. Res.-Earth, 117, F02033, https://doi.org/10.1029/2011JF002262, 2012.
Sheather, S. J. and Jones, M. C.: A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation, J. Roy. Stat. Soc. B Met., 53, 683–690, https://doi.org/10.1111/j.2517-6161.1991.tb01857.x, 1991.
Sletten, K., Blikra, L. H., Ballantyne, C. K., Nesje, A., and Dahl, S. O.: Holocene debris flows recognized in a lacustrine sedimentary succession: Sedimentology, chronostratigraphy and cause of triggering, The Holocene, 13, 907–920, https://doi.org/10.1191/0959683603hl673rp, 2003.
Stoffel, M.: Magnitude–frequency relationships of debris flows – A case study based on field surveys and tree-ring records, Geomorphology, 116, 67–76, https://doi.org/10.1016/j.geomorph.2009.10.009, 2010.
Stoffel, M., Lièvre, I., Conus, D., Grichting, M. A., Raetzo, H., Gärtner, H. W., and Monbaron, M.: 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland, Arct. Antarct. Alp. Res., 37, 387–395, https://doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2, 2005.
Stoffel, M., Tiranti, D., and Huggel, C.: Climate change impacts on mass movements – Case studies from the European Alps, Sci. Total Environ., 493, 1255–1266, https://doi.org/10.1016/j.scitotenv.2014.02.102, 2014.
Stojakowits, P. and Friedmann, A.: Pollenanalytische Rekonstruktion der Vegetations- und Landnutzungsgeschichte des südlichen Ostallgäus (Bayern), TELMA – Berichte der Deutschen Gesellschaft für Moor- und Torfkunde, 43, 55–82, https://doi.org/10.23689/fidgeo-2867, 2013.
Strasser, M., Berberich, T., Fabbri, S. C., Hilbe, M., Huang, J.-J. S., Lauterbach, S., Ortler, M., Rechschreiter, H., Brauer, A., Anselmetti, F., and Kowarik, K.: Geomorphology and event-stratigraphy of recent mass-movement processes in Lake Hallstatt (UNESCO World Heritage Cultural Landscape, Austria), Geological Society, London, Special Publications, 500, 405–426, https://doi.org/10.1144/SP500-2019-178, 2020.
Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B., and Brauer, A.: Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria), Quaternary Sci. Rev., 80, 78–90, https://doi.org/10.1016/j.quascirev.2013.08.018, 2013.
Thouret, J.-C., Antoine, S., Magill, C., and Ollier, C.: Lahars and debris flows: Characteristics and impacts, Earth-Sci. Rev., 201, 103003, https://doi.org/10.1016/j.earscirev.2019.103003, 2020.
Vandekerkhove, E., Van Daele, M., Praet, N., Cnudde, V., Haeussler, P. J., and De Batist, M.: Flood-triggered versus earthquake-triggered turbidites: A sedimentological study in clastic lake sediments (Eklutna Lake, Alaska), Sedimentology, 67, 364–389, https://doi.org/10.1111/sed.12646, 2020.
Wilhelm, B.: Reconstructing extreme flood events from high altitude lake sediment records: methodological issues and first results, Quatern. Int., 279–280, 535, https://doi.org/10.1016/j.quaint.2012.08.1872, 2012.
Wilhelm, B., Arnaud, F., Sabatier, P., Magand, O., Chapron, E., Courp, T., Tachikawa, K., Fanget, B., Malet, E., Pignol, C., Bard, E., and Delannoy, J. J.: Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps, J. Quaternary Sci., 28, 189–199, https://doi.org/10.1002/jqs.2609, 2013.
Wilhelm, B., Vogel, H., and Anselmetti, F. S.: A multi-centennial record of past floods and earthquakes in Valle d'Aosta, Mediterranean Italian Alps, Nat. Hazards Earth Syst. Sci., 17, 613–625, https://doi.org/10.5194/nhess-17-613-2017, 2017.
Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., Toonen, W. H., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., and Wetter, O.: Interpreting historical, botanical, and geological evidence to aid preparations for future floods, WIREs Water, 6, e1318, https://doi.org/10.1002/wat2.1318, 2019.
Zimmermann, M., Mani, P., and Romang, H.: Magnitude-frequency aspects of alpine debris flows, Eclogae Geol. Helv., 90, 415–420, https://doi.org/10.5169/seals-168173, 1997.
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active...