Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Dieter Rickenmann
CORRESPONDING AUTHOR
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Lorenz Ammann
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Tobias Nicollier
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Stefan Boss
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Bruno Fritschi
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Gilles Antoniazza
Institute of Earth Surface Dynamics (IDYST), University of Lausanne, 1015 Lausanne, Switzerland
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Nicolas Steeb
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Zheng Chen
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu, 610041, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Carlos Wyss
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
wyss.io – Dr. Carlos R. Wyss Engineering, 8052 Zurich,
Switzerland
Alexandre Badoux
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Related authors
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Zheng Chen, Siming He, Alexandre Badoux, and Dieter Rickenmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2525, https://doi.org/10.5194/egusphere-2024-2525, 2024
Short summary
Short summary
We developed a novel bedload monitoring system, which integrates phased microphone arrays and an accelerometer for enhanced performance. This monitoring system can be used to identify bedload particle impact locations on the system plate with precision using beamforming techniques applied to the generated microphone signals. Optimal use of multiple types of signals recorded by the monitoring system improves the accuracy of bedload size prediction.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Zheng Chen, Siming He, Alexandre Badoux, and Dieter Rickenmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2525, https://doi.org/10.5194/egusphere-2024-2525, 2024
Short summary
Short summary
We developed a novel bedload monitoring system, which integrates phased microphone arrays and an accelerometer for enhanced performance. This monitoring system can be used to identify bedload particle impact locations on the system plate with precision using beamforming techniques applied to the generated microphone signals. Optimal use of multiple types of signals recorded by the monitoring system improves the accuracy of bedload size prediction.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
Cited articles
Aberle, J., Rennie, C., Admiraal, D., and Muste, M. (Eds.): Experimental
Hydraulics: Methods, Instrumentation, Data Processing and Management, in: Volume II: Instrumentation and Measurement Techniques, CRC Press, p. 448, ISBN 9781138038158, 2017.
Antoniazza, G., Nicollier, T., Wyss, C. R., Boss, S., and Rickenmann, D.:
Bedload transport monitoring in alpine rivers: Variability in Swiss plate
geophone response, Sensors, 20, 1–25, https://doi.org/10.3390/s20154089, 2020.
Antoniazza, G., Nicollier, T., Boss, S., Mettra, F., Badoux, A., Schaefli,
B., Rickenmann, D., and Lane, S. L.: Hydrological drivers of bedload transport in an Alpine watershed, Water Resour. Res., 58, e2021WR030663, https://doi.org/10.1029/2021WR030663, 2022.
Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., and Recking, A.:
Field application and validation of a seismic bedload transport model, J. Geophys. Res.-Earth, 125, e2019JF005416, https://doi.org/10.1029/2019JF005416, 2020.
Barrière, J., Krein, A., Oth, A., and Schenkluhn, R.: An advanced signal
processing technique for deriving grain size information of bedload transport from impact plate vibration measurements, Earth Surf. Proc. Land., 40, 913–924, https://doi.org/10.1002/esp.3693, 2015.
Beylich, A. and Laute, K.: Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams, Geomorphology, 218, 72–87,
https://doi.org/10.1016/j.geomorph.2013.09.004, 2014.
Bogen, J. and Møen, K.: Bed load measurements with a new passive acoustic sensor, in Erosion and Sediment Transport Measurement in Rivers: Trends and Explanation, IAHS Publ., 283, 181–182, 2003.
Bunte, K., Abt, S. R., Potyondy, J. P., and Ryan, S. E.: Measurement of coarse gravel and cobble transport using a portable bedload trap, J. Hydraul. Eng., 130, 879–893, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(879), 2004.
Camenen, B., Jaballah, M., Geay, T., Belleudy, P., Laronne, J. B., and Laskowski, J. P.: Tentative measurements of bedload transport in an energetic alpine gravel bed river, in: River flow, September 2012, 379–386, https://hal.inrae.fr/hal-02597879 (last access: 23 March 2022), 2012.
Chen, Z., He, S., Nicollier, T., Ammann, L., Badoux, A., and Rickenmann, D.:
Finite element modelling of the Swiss plate geophone bedload monitoring system, J. Hydraul. Res., 60, 792–810, https://doi.org/10.1080/00221686.2022.2059585, 2022a.
Chen, Z., He, S., Nicollier, T., Ammann, L., Badoux, A., and Rickenmann, D.:
Signal response of the Swiss plate geophone monitoring system impacted by
bedload particles with different transport modes, Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, 2022b.
Choi, J. H., Jun, K. W., and Jang, C. D.: Bed-Load Collision Sound Filtering
through Separation of Pipe Hydrophone Frequency Bands, Water, 12, 1875,
https://doi.org/10.3390/w12071875, 2020.
Coviello, V., Vignoli, G., Simoni, S., Bertoldi, W., Engel, M., Buter, A.,
Marchetti, G., Andreoli, A., Savi, S., and Comiti, F.: Bedload fluxes in a
glacier-fed river at multiple temporal scales, Water Resour. Res., 58, e2021WR031873, https://doi.org/10.1029/2021WR031873, 2022.
Dietze, M., Lagarde, S., Halfi, E., Laronne, J. B., and Turowski, J. M.: Joint sensing of bedload flux and water depth by seismic data inversion,
Water Resour. Res., 55, 9892–9904, https://doi.org/10.1029/2019WR026072, 2019.
Downs, P. W., Soar, P. J., and Taylor, A.: The anatomy of effective discharge: The dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel-bed river during a very wet year,
Earth Surf. Proc. Land., 41, 147–161, https://doi.org/10.1002/esp.3785, 2016.
Geay, T., Belleudy, P., Gervaise, C., Habersack, H., Aigner, J., Kreisler, A., Seitz, H., and Laronne, J. B.: Passive acoustic monitoring of bedload
discharge in a large gravel bed river, J. Geophys. Res.-Earth, 122, 528–545, https://doi.org/10.1002/2016JF004112, 2017.
Geay, T., Zanker, S., Misset, C., and Recking, A.: Passive acoustic measurement of bedload transport: Toward a global calibration curve?, J. Geophys. Res.-Earth, 125, e2019JF005242, https://doi.org/10.1029/2019JF005242, 2020.
Gimbert, F., Fuller, B. M., Lamb, M. P., Tsai, V. C., and Johnson, J. P. L.:
Particle transport mechanics and induced seismic noise in steep flume experiments with accelerometer-embedded tracers, Earth Surf. Proc. Land., 44, 219–241, https://doi.org/10.1002/esp.4495, 2019.
Gray, J. R., Laronne, J. B., and Marr, J. D. G. (Eds.): Bedload-surrogate
Monitoring Technologies, US Geological Survey Scientific Investigations
Report 2010-5091, US Geological Survey, Reston, VA, http://pubs.usgs.gov/sir/2010/5091 (last access: 11 November 2022), 2010.
Habersack, H., Kreisler, A., Rindler, R., Aigner, J., Seitz, H., Liedermann,
M., and Laronne, J. B.: Integrated automatic and continuous bedload monitoring in gravel bed rivers, Geomorphology, 291, 80–93,
https://doi.org/10.1016/j.geomorph.2016.10.020, 2017.
Helley, E. J. and Smith, W.: Development and calibration of a pressure-difference bedload sampler, Open-File Report 73-108, US Department of the Interior, Geological Survey, Water Resources Division,
https://doi.org/10.3133/ofr73108, 1971.
Hilldale, R. C., Carpenter, W. O., Goodwiller, B., Chambers, J. P., and
Randle, T. J.: Installation of impact plates to continuously measure bed
load: Elwha River, Washington, USA, J. Hydraul. Eng., 141, 06014023, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000975, 2015.
Koshiba, T. and Sumi, T.: Application of the wavelet transform to sediment
grain sizes analysis with an impact plate for bedload monitoring in sediment
bypass tunnels, Proc. River Flow 2018, E3S Web Conf., 40, 04022,
https://doi.org/10.1051/e3sconf/20184004022, 2018.
Koshiba, T., Auel, C., Tsutsumi, D., Kantoush, S. A., and Sumi, T.: Application of an impact plate – Bedload transport measuring system for
high-speed flows, Int. J. Sediment Res., 33, 35–46, https://doi.org/10.1016/j.ijsrc.2017.12.003, 2018.
Krein, A., Klinck, H., Eiden, M., Symader, W., Bierl, R., Hoffmann, L., and
Pfister, L.: Investigating the transport dynamics and the properties of bedload material with a hydro-acoustic measuring system, Earth Surf. Proc. Land., 33, 152–163, https://doi.org/10.1002/esp.1576, 2008.
Kreisler, A., Moser, M., Aigner, J., Rindler, R., Tritthard, M., and Habersack, H.: Analysis and classification of bedload transport events with
variable process characteristics, Geomorphology, 291, 57–68,
https://doi.org/10.1016/j.geomorph.2016.06.033, 2017.
Kuhnle, R., Wren, D., Hilldale, R. C., Goodwiller, B., and Carpenter, W.:
Laboratory Calibration of Impact Plates for Measuring Gravel Bed Load Size
and Mass, J. Hydraul. Eng., 143, 06017023, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001391, 2017.
Levinzon, P.: Piezoelectric Accelerometers with Integral Electronics, Springer, Heidelberg, p. 169, ISBN 978-3-319-08077-2, 2015.
Mao, L., Carrillo, R., Escauriaza, C., and Iroume, A.: Flume and field-based
calibration of surrogate sensors for monitoring bedload transport,
Geomorphology, 253, 10–21, https://doi.org/10.1016/j.geomorph.2015.10.002, 2016.
Mizuyama, T., Laronne, J. B., Nonaka, M., Sawada, T., Satofuka, Y.,
Matsuoka, M., Yamashita, S., Sako, Y., Tamaki, S., Watari, M., Yamaguchi, S., and Tsuruta, K.: Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers, in: Bedload-surrogate Monitoring Technologies, edited by: Gray, J. R., Laronne, J. B., and Marr, J. D. G., US Geological Survey Scientific Investigations Report 2010-5091, US Geological Survey, Reston, VA, 296–318,
http://pubs.usgs.gov/sir/2010/5091/papers/listofpapers.html (last access: 11 Novembe 2022), 2010a.
Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M., and Matsuoka, M.: Laboratory tests of a Japanese pipe geophone for continuous acoustic
monitoring of coarse bedload, in: Bedload-surrogate Monitoring Technologies,
edited by: Gray, J. R., Laronne, J. B., and Marr, J. D. G., US Geological Survey Scientific Investigations Report 2010-5091, US Geological Survey, Reston, VA, 319–335,
http://pubs.usgs.gov/sir/2010/5091/papers/listofpapers.html (last access: 11 Novembe 2022), 2010b.
Nicollier, T., Rickenmann, D., and Hartlieb, A.: Field and flume measurements with the impact plate: Effect of bedload grain-size distribution on signal response, Earth Surf. Proc. Land., 46, 1504–1520, https://doi.org/10.1002/esp.5117, 2021.
Nicollier, T., Antoniazza, G., Rickenmann, D., Hartlieb, A., and Kirchner, J.
W.: Improving the Calibration of Impact Plate Bedload Monitoring Systems by
Filtering Out Acoustic Signals from Extraneous Particle Impacts, Earth Space Sci., 9, e2021EA001962, https://doi.org/10.1029/2021EA001962, 2022a.
Nicollier, T., Antoniazza, G., Ammann, L., Rickenmann, D., and Kirchner, J. W.: Toward a general calibration of the Swiss plate geophone system for fractional bedload transport, Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, 2022b.
Onajite, E.: Seismic Data Analysis Techniques in Hydrocarbon Exploration, in:
chap. 8, Understanding Sample Data, Elsevier, Amsterdam, 105–115,
https://doi.org/10.1016/B978-0-12-420023-4.00008-3, 2014.
Raven, E. K., Lane, S. N., Ferguson, R. I., and Bracken, L. J.: The spatial
and temporal patterns of aggradation in a temperate, upland, gravel-bed river, Earth Surf. Proc. Land., 34, 1181–1197, 2009.
Raven, E. K., Lane, S. N., and Ferguson, R.: Using sediment impact sensors
to improve the morphological sediment budget approach for estimating bedload
transport rates, Geomorphology, 119, 125–134, https://doi.org/10.1016/j.geomorph.2010.03.012, 2010.
Reid, S. C., Lane, S. N., and Berney, J. M.: The timing and magnitude of
coarse sediment transport events within an upland gravel-bed river, Geomorphology, 83, 152–182, 2007.
Richardson, K., Benson, I., and Carling, P. A.: An instrument to record
sediment movement in bedrock channels, in: Erosion and sediment transport
measurement in rivers: Technological and methodological advances, edited by:
Bogen, J., Fergus, T., and Walling, D. E., IAHS, Wallingford, UK, 228–235,
ISBN 978-1-901502-42-8, 2003.
Rickenmann, D.: Bed-load transport measurements with geophones and other
passive acoustic methods, J. Hydraul. Eng., 143, 03117004-1-14, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001300, 2017a.
Rickenmann, D.: Bedload transport measurements with geophones, hydrophones
and underwater microphones (passive acoustic methods), in: Gravel Bed Rivers: Processes and Disasters, edited by: Tsutsumi, D. and Laronne, J. B., Wiley, 185–208, ISBN 978-1-118-97140-6, 2017b.
Rickenmann, D. and McArdell, B. W.: Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors, Earth Surf. Proc. Land., 32, 1362–1378, https://doi.org/10.1002/esp.1478, 2007.
Rickenmann, D. and McArdell, B. W.: Calibration of piezoelectric bedload
impact sensors in the Pitzbach mountain stream, Geodinamica Acta, 21, 35–52, 2008.
Rickenmann, D. and Fritschi, B.: Bedload transport measurements with impact
plate geophones in two Austrian mountain streams (Fischbach and Ruetz):
system calibration, grain size estimation, and environmental signal pick-up,
Earth Surf. Dynam., 5, 669–687, https://doi.org/10.5194/esurf-5-669-2017, 2017.
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Ludwig, A.:
Bedload transport measurements at the Erlenbach stream withgeophones and
automated basket samplers, Earth Surf. Proc. Land., 37, 1000–1011, https://doi.org/10.1002/esp.3225, 2012.
Rickenmann, D., Turowski, J. M., Fritschi, B., Wyss, C., Laronne J. B.,
Barzilai, R., Reid, I., Kreisler, A., Aigner, J., Seitz, H., and Habersack,
H.: Bedload transport measurements with impact plate geophones: comparison
of sensor calibration in different gravel-bed streams, Earth Surface Proc. Land., 39, 928–942, https://doi.org/10.1002/esp.3499, 2014.
Rickenmann, D., Nicollier, T., Boss, S., and Badoux, A.: Four years of
bedload transport measurements in the Swiss Mountain River Albula, in: River flow 2020, edited by: Uijttewaal, W., Franca, M. J., Valero, D., Chavarrias, V., Ylla Arbós, C., Schielen, R., and Crosato, A., CRC Press, London, 1749–1755, https://doi.org/10.1201/b22619-245, 2020.
Rickenmann, D., Antoniazza, G., Nicollier, T., Wyss, C., Boss, S., Fritschi, B., Steeb, N., and Badoux, A.: Sediment transport observations in Swiss mountain streams, EnviDat [data set], https://www.envidat.ch/#/metadata/sediment-transport-observations-in-swiss-mountain-streams, last access: 11 November 2022.
Roth, D. L., Brodsky, E. E., Finnegan, N. J., Rickenmann, D., Turowski, J.
M., and Badoux, A.: Bed load sediment transport inferred from seismic signals near a river, J. Geophys. Res.-Earth, 121, 725–747, https://doi.org/10.1002/2015JF003782, 2016.
Saritas, F., Staehli, S., Ammann, L., Rickenmann, D., Custer, R., and Suter, S.: Using Acoustic Signal to Predict Grain Size of Bedload Particles, in:
Proceedings of the 9th Swiss Conference on Data Science, 22–23 June 2022,
Lucerne, Switzerland, https://doi.org/10.1109/SDS54800.2022.00017, 2022.
Thorne, P. D.: Laboratory and marine measurements on the acoustic detection
of sediment transport, J. Acoust. Soc. Am., 80, 899–910, https://doi.org/10.1121/1.393913, 1986.
Thorne, P. D.: An overview of underwater sound generated by inter-particle
collisions and its application to the measurements of coarse sediment bedload transport, Earth Surf. Dynam. 2, 531–543, https://doi.org/10.5194/esurf-2-531-2014, 2014.
Tsakiris, A. G., Papanicolaou, A. N., and Lauth, T.: Signature of bedload
particle transport mode in the acoustic signal of a geophone, J. Hydraul. Res., 52, 185–204, https://doi.org/10.1080/00221686.2013.876454, 2014.
Tsutsumi, D., Fujita, M., and Nonaka, M.: Transport measurement with a
horizontal and a vertical pipe microphone in a mountain stream: taking account of particle saltation, Earth Surf. Proc. Land., 43, 1118–1132, https://doi.org/10.1002/esp.4297, 2018.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J., Weitbrecht, V., and
Boes, R.: Measuring bed load transport rates by grain-size fraction using
the Swiss plate geophone signal at the Erlenbach, J. Hydraul. Eng., 142,
04016003, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001090, 2016a.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J., Weitbrecht, V., and
Boes, R.: Laboratory flume experiments with the Swiss plate geophone bed
load monitoring system: 1. Impulse counts and particle size identification,
Water Resour. Res., 52, 7744–7759, https://doi.org/10.1002/2015WR018555, 2016b.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J., Weitbrecht, V., Travaglini, E., Bardou, E., and Boes, R.: Laboratory flume experiments with
the Swiss plate geophone bed load monitoring system: 2. Application to field
sites with direct bed load samples, Water Resour. Res., 52, 7760–7778, https://doi.org/10.1002/2016WR019283, 2016c.
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed...