Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Laure Guerit
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Dimitri Lague
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Alain Crave
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Aurélie Gourdon
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Related authors
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Guillaume Adrien Bernard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1239, https://doi.org/10.5194/egusphere-2024-1239, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations describing water flow at the surface of the earth. From quantitative information about rain and elevation, GraphFlood allow the calculation of river width, depth and allow the approximation of erosive power making it a suitable tool for large-scale hazard management or to comprehend the link between rivers and mountains.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Maxime Mouyen, Philippe Steer, Kuo-Jen Chang, Nicolas Le Moigne, Cheinway Hwang, Wen-Chi Hsieh, Louise Jeandet, Laurent Longuevergne, Ching-Chung Cheng, Jean-Paul Boy, and Frédéric Masson
Earth Surf. Dynam., 8, 555–577, https://doi.org/10.5194/esurf-8-555-2020, https://doi.org/10.5194/esurf-8-555-2020, 2020
Short summary
Short summary
Land erosion creates sediment particles that are redistributed from mountains to oceans through climatic, tectonic and human activities, but measuring the mass of redistributed sediment is difficult. Here we describe a new method combining gravity and photogrammetry measurements, which make it possible to weigh the mass of sediment redistributed by a landslide and a river in Taiwan from 2015 to 2017. Trying this method in other regions will help us to better understand the erosion process.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Guillaume Adrien Bernard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1239, https://doi.org/10.5194/egusphere-2024-1239, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations describing water flow at the surface of the earth. From quantitative information about rain and elevation, GraphFlood allow the calculation of river width, depth and allow the approximation of erosive power making it a suitable tool for large-scale hazard management or to comprehend the link between rivers and mountains.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
M. Letard, A. Collin, D. Lague, T. Corpetti, Y. Pastol, and A. Ekelund
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 463–470, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, 2022
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Maxime Mouyen, Philippe Steer, Kuo-Jen Chang, Nicolas Le Moigne, Cheinway Hwang, Wen-Chi Hsieh, Louise Jeandet, Laurent Longuevergne, Ching-Chung Cheng, Jean-Paul Boy, and Frédéric Masson
Earth Surf. Dynam., 8, 555–577, https://doi.org/10.5194/esurf-8-555-2020, https://doi.org/10.5194/esurf-8-555-2020, 2020
Short summary
Short summary
Land erosion creates sediment particles that are redistributed from mountains to oceans through climatic, tectonic and human activities, but measuring the mass of redistributed sediment is difficult. Here we describe a new method combining gravity and photogrammetry measurements, which make it possible to weigh the mass of sediment redistributed by a landslide and a river in Taiwan from 2015 to 2017. Trying this method in other regions will help us to better understand the erosion process.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Lionel Benoit, Aurelie Gourdon, Raphaël Vallat, Inigo Irarrazaval, Mathieu Gravey, Benjamin Lehmann, Günther Prasicek, Dominik Gräff, Frederic Herman, and Gregoire Mariethoz
Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019, https://doi.org/10.5194/essd-11-579-2019, 2019
Short summary
Short summary
This dataset provides a collection of 10 cm resolution orthomosaics and digital elevation models of the Gornergletscher glacial system (Switzerland). Raw data have been acquired every 2 weeks by intensive UAV surveys and cover the summer 2017. A careful photogrammetric processing ensures the geometrical coherence of the whole dataset.
Laure Guerit, Laurie Barrier, Youcun Liu, Clément Narteau, Eric Lajeunesse, Eric Gayer, and François Métivier
Earth Surf. Dynam., 6, 1011–1021, https://doi.org/10.5194/esurf-6-1011-2018, https://doi.org/10.5194/esurf-6-1011-2018, 2018
Short summary
Short summary
The grain-size distribution of ancient alluvial systems is commonly determined from sections of gravel deposits exposed vertically to reconstruct paleo-environments or changes in tectonics and/or climate. To test whether such a grain-size distribution is equivalent to one of the sediments that was in direct contact with the flow at the time of deposition, we dug a large trench in an active gravel-bedded, braided river. We show that the granulometry is uniform at the scale of the active layer.
S. B. Morera, T. Condom, P. Vauchel, J.-L. Guyot, C. Galvez, and A. Crave
Hydrol. Earth Syst. Sci., 17, 4641–4657, https://doi.org/10.5194/hess-17-4641-2013, https://doi.org/10.5194/hess-17-4641-2013, 2013
Related subject area
Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Evaluating the accuracy of binary classifiers for geomorphic applications
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
Drainage reorganization induces deviations in the scaling between valley width and drainage area
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar)
Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data
Coastal change patterns from time series clustering of permanent laser scan data
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Relationships between regional coastal land cover distributions and elevation reveal data uncertainty in a sea-level rise impacts model
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features
A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms
Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X ( ∼ 2015) in the south-central Andes
Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
Unsupervised detection of salt marsh platforms: a topographic method
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques
Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models
Tree-root control of shallow landslides
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau
3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism
Frontiers in Geomorphometry and Earth Surface Dynamics: possibilities, limitations and perspectives
How does grid-resolution modulate the topographic expression of geomorphic processes?
Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes
Image-based surface reconstruction in geomorphometry – merits, limits and developments
Topography-based flow-directional roughness: potential and challenges
A nondimensional framework for exploring the relief structure of landscapes
Topographic roughness as a signature of the emergence of bedrock in eroding landscapes
Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution
Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics
Extracting topographic swath profiles across curved geomorphic features
Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024, https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Short summary
We evaluated the intensity and spatial extent of landscape change in the Hengduan Mountains by identifying areas where river network reorganization is occurring or expected in the future. We combine four metrics that measure topographic imbalances at different spatial and temporal scales. Our study provides a deeper understanding of the dynamic nature of the Hengduan Mountains landscape and associated drivers, such as tectonic uplift, and insights for applying similar methods elsewhere.
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024, https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Short summary
Accurately identifying the presence and absence of landforms is important to inferring processes and testing numerical models of landscape evolution. Using synthetic scenarios, I show that the Matthews correlation coefficient (MCC) should be favored over the F1 score when comparing accuracy across scenes where landform abundances vary. Despite the resilience of MCC to imbalanced data, strong sensitivity to the size and shape of features can still occur when truth and model data are misaligned.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815, https://doi.org/10.5194/esurf-10-797-2022, https://doi.org/10.5194/esurf-10-797-2022, 2022
Short summary
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021, https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020, https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short summary
This short communication presents an efficient method for analyzing large fault scarp data sets. The programs and workflow required are open-source and the methodology is easy to use; thus the barrier to entry is low. This tool can be applied to a broad range of active tectonic studies. A case study in the Taupo Volcanic Zone, New Zealand, exemplifies the novelty of this tool by generating results that are consistent with extensive field campaigns in only a few hours at a work station.
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Erika E. Lentz, Nathaniel G. Plant, and E. Robert Thieler
Earth Surf. Dynam., 7, 429–438, https://doi.org/10.5194/esurf-7-429-2019, https://doi.org/10.5194/esurf-7-429-2019, 2019
Short summary
Short summary
Our findings examine several data inputs for probabilistic regional sea-level rise (SLR) impact predictions. To predict coastal response to SLR, detailed information on the landscape, including elevation, vegetation, and/or level of development, is needed. However, we find that the inherent relationship between elevation and land cover datasets (e.g., beaches tend to be low lying) is used to reduce error in a coastal response to SLR model, suggesting new applications for areas of limited data.
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
Short summary
The shape of landscapes is influenced by climate changes, faulting or the nature of the rocks under the surface. One of the most sensitive parts of the landscape to these changes is the river system that eventually adapts to such changes by adapting its slope, the most extreme example being a waterfall. We here present an algorithm that extracts changes in river slope over large areas from satellite data with the aim of investigating climatic, tectonic or geologic changes in the landscape.
Ankit Kumar Verma and Mary Carol Bourke
Earth Surf. Dynam., 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019, https://doi.org/10.5194/esurf-7-45-2019, 2019
Short summary
Short summary
The article describes the development of a portable triangle control target to register structure-from-motion-derived topographic data. We were able to generate sub-millimetre-resolution 3-D models with sub-millimetre accuracy. We verified the accuracy of our models in an experiment and demonstrated the potential of our method by collecting microtopographic data on weathered Moenkopi sandstone in Arizona. The results from our study confirm the efficacy of our method at sub-millimetre scale.
Niamh Danielle Cullen, Ankit Kumar Verma, and Mary Clare Bourke
Earth Surf. Dynam., 6, 1023–1039, https://doi.org/10.5194/esurf-6-1023-2018, https://doi.org/10.5194/esurf-6-1023-2018, 2018
Short summary
Short summary
This research article provides a comparison between the traditional method of measuring erosion on rock shore platforms using a traversing micro-erosion meter (TMEM) and a new approach using structure from motion (SfM) photogrammetry. Our results indicate that SfM photogrammetry offers several advantages over the TMEM, allowing for erosion measurement at different scales on rock surfaces with low roughness while also providing a means to identify different processes and styles of erosion.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018, https://doi.org/10.5194/esurf-6-971-2018, 2018
Short summary
Short summary
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer TanDEM-X dataset from ~ 2015. We difference the datasets over hillslopes and gravel-bed channels to extract vertical land-level changes. These signals are associated with incision, aggradation, and landsliding. This requires careful correction of the SRTM-C biases using the TanDEM-X and propagation of significant uncertainties. The method can be applied to moderate relief areas with SRTM-C coverage.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Daniel Wujanz, Michael Avian, Daniel Krueger, and Frank Neitzel
Earth Surf. Dynam., 6, 303–317, https://doi.org/10.5194/esurf-6-303-2018, https://doi.org/10.5194/esurf-6-303-2018, 2018
Short summary
Short summary
The importance of increasing the degree of automation in the context of monitoring natural hazards or geological phenomena is apparent. A vital step in the processing chain of monitoring deformations is the transformation of captured epochs into a common reference systems. This led to the motivation to develop an algorithm that realistically carries out this task. The algorithm was tested on three different geomorphic events while the results were quite satisfactory.
Guillaume C. H. Goodwin, Simon M. Mudd, and Fiona J. Clubb
Earth Surf. Dynam., 6, 239–255, https://doi.org/10.5194/esurf-6-239-2018, https://doi.org/10.5194/esurf-6-239-2018, 2018
Short summary
Short summary
Salt marshes are valuable environments that provide multiple services to coastal communities. However, their fast-paced evolution poses a challenge to monitoring campaigns due to time-consuming processing. The Topographic Identification of Platforms (TIP) method uses high-resolution topographic data to automatically detect the limits of salt marsh platforms within a landscape. The TIP method provides sufficient accuracy to monitor salt marsh change over time, facilitating coastal management.
Ellen Schwalbe and Hans-Gerd Maas
Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, https://doi.org/10.5194/esurf-5-861-2017, 2017
Short summary
Short summary
The simple use of time-lapse cameras as a visual observation tool may already be a great help for environmental investigations. However, beyond that, they have the potential to also deliver precise measurements with high temporal and spatial resolution when applying appropriate processing techniques. In this paper we introduce a method for the determination of glacier motion fields from time-lapse images, but it might also be adapted for other environmental motion analysis tasks.
Wolfgang Schwanghart and Dirk Scherler
Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, https://doi.org/10.5194/esurf-5-821-2017, 2017
Short summary
Short summary
River profiles derived from digital elevation models are affected by errors. Here we present two new algorithms – quantile carving and the CRS algorithm – to hydrologically correct river profiles. Both algorithms preserve the downstream decreasing shape of river profiles, while CRS additionally smooths profiles to avoid artificial steps. Our algorithms are able to cope with the problems of overestimation and asymmetric error distributions.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Giulia Sofia, John K. Hillier, and Susan J. Conway
Earth Surf. Dynam., 4, 721–725, https://doi.org/10.5194/esurf-4-721-2016, https://doi.org/10.5194/esurf-4-721-2016, 2016
Short summary
Short summary
The interdisciplinarity of geomorphometry is its greatest strength and one of its major challenges. This special issue showcases exciting developments that are the building blocks for the next step-change in the field. In reading and compiling the contributions we hope that the scientific community will be inspired to seek out collaborations and share ideas across subject-boundaries, between technique-developers and users, enabling us as a community to gather knowledge from our digital landscape
Stuart W. D. Grieve, Simon M. Mudd, David T. Milodowski, Fiona J. Clubb, and David J. Furbish
Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, https://doi.org/10.5194/esurf-4-627-2016, 2016
Short summary
Short summary
High-resolution topographic data are becoming more prevalent, yet many areas of geomorphic interest do not have such data available. We produce topographic data at a range of resolutions to explore the influence of decreasing resolution of data on geomorphic analysis. We test the accuracy of the calculation of curvature, a hillslope sediment transport coefficient, and the identification of channel networks, providing guidelines for future use of these methods on low-resolution topographic data.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Sebastiano Trevisani and Marco Cavalli
Earth Surf. Dynam., 4, 343–358, https://doi.org/10.5194/esurf-4-343-2016, https://doi.org/10.5194/esurf-4-343-2016, 2016
Short summary
Short summary
The generalization of the concept of roughness implies the need to refer to a family of roughness indices capturing specific aspects of surface morphology. We test the application of a flow-oriented directional measure of roughness based on the geostatistical index MAD (median of absolute directional differences), computed considering gravity-driven flow direction. The use of flow-directional roughness improves geomorphometric modeling and the interpretation of landscape morphology.
Stuart W. D. Grieve, Simon M. Mudd, Martin D. Hurst, and David T. Milodowski
Earth Surf. Dynam., 4, 309–325, https://doi.org/10.5194/esurf-4-309-2016, https://doi.org/10.5194/esurf-4-309-2016, 2016
Short summary
Short summary
Relationships between the erosion rate and topographic relief of hillslopes have been demonstrated in a number of diverse settings and such patterns can be used to identify the impact of tectonic plate motion on the Earth's surface. Here we present an open-source software tool which can be used to explore these relationships in any landscape where high-resolution topographic data have been collected.
D. T. Milodowski, S. M. Mudd, and E. T. A. Mitchard
Earth Surf. Dynam., 3, 483–499, https://doi.org/10.5194/esurf-3-483-2015, https://doi.org/10.5194/esurf-3-483-2015, 2015
Short summary
Short summary
Rock is exposed at the Earth surface when erosion rates locally exceed rates of soil production. This transition is marked by a diagnostic increase in topographic roughness, which we demonstrate can be a powerful indicator of the location of rock outcrop in a landscape. Using this to explore how hillslopes in two landscapes respond to increasing erosion rates, we find that the transition from soil-mantled to bedrock hillslopes is patchy and spatially heterogeneous.
M. T. Melis, F. Mundula, F. DessÌ, R. Cioni, and A. Funedda
Earth Surf. Dynam., 2, 481–492, https://doi.org/10.5194/esurf-2-481-2014, https://doi.org/10.5194/esurf-2-481-2014, 2014
S. Zhao and W. Cheng
Earth Surf. Dynam., 2, 433–441, https://doi.org/10.5194/esurf-2-433-2014, https://doi.org/10.5194/esurf-2-433-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
W. Schwanghart and D. Scherler
Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, https://doi.org/10.5194/esurf-2-1-2014, 2014
Cited articles
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.:
Transformation of tectonic and climatic signals from source to sedimentary
archive, Nat. Geosci., 4, 231–235, 2011.
Attal, M. and Lavé, J.: Changes of bedload characteristics along the
marsyandi river (central nepal): Implications for understanding hillslope
sediment supply, sediment load evolution along fluvial networks, and
denudation in active orogenic belts, Geol. Soc. Am. Spec. Pap., 398, 143–171, 2006.
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport:
Experimental results and implications for the evolution of the sediment load
along rivers, J. Geophys. Res.-Earth Surf., 114, F04023, https://doi.org/10.1029/2009JF001328, 2009.
Baynes, E. R., Lague, D., Steer, P., Bonnet, S., and Illien, L.: Sediment
flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock
rivers, Earth Surf. Proc. Land., 45, 3714–3731, 2020.
Beer, A. R., Turowski, J. M., and Kirchner, J. W.: Spatial patterns of
erosion in a bedrock gorge, J. Geophys. Res.-Earth Surf.,
122, 191–214, 2017.
Bernard, T. G., Lague, D., and Steer, P.: Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data, Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, 2021.
Blott, S. J. and Pye, K.: Particle shape: a review and new methods of
characterization and classification, Sedimentology, 55, 31–63, 2008.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel
method to solve the stream power equation governing fluvial incision and
landscape evolution, Geomorphology, 180, 170–179, 2013.
Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of
complex natural scenes using a multi-scale dimensionality criterion:
Applications in geomorphology, ISPRS J. Photogramm., 68, 121–134, 2012.
Bunte, K. and Abt, S. R.: Sampling surface and subsurface particle-size
distributions in wadable gravel-and cobble-bed streams for analyses in
sediment transport, hydraulics, and streambed monitoring, US Department of
Agriculture, Forest Service, Rocky Mountain Research Station, https://doi.org/10.2737/RMRS-GTR-74, 2001.
Burke, K. N., DellaGiustina, D. N., Bennett, C. A., Walsh, K. J., Pajola,
M., Bierhaus, E. B., Nolan, M. C., Boynton, W. V., Brodbeck, J. I., Connolly, H. C., Jr., Prasanna Deshapriya, J. D., Dworkin, J. P., Elder, C. M., Golish, D. R., Hoover, R. H., Jawin, E. R., McCoy, T. J., Michel, P., Molaro, J. L., Nolau, J. O., Padilla, J., Rizk, B., Robbins, S. J., Sahr, E. M., Smith, P. H., Stewart, S. J., Susorney, H. C. M., Enos, H. L., and Lauretta, D. S.: Particle size-frequency
distributions of the OSIRIS-REx candidate sample sites on asteroid (101955)
Bennu, Remote Sens., 13, 1315, https://doi.org/10.3390/rs13071315, 2021.
Buscombe, D.: Transferable wavelet method for grain-size distribution from
images of sediment surfaces and thin sections, and other natural granular
patterns, Sedimentology, 60, 1709–1732, 2013.
Buscombe, D. and Masselink, G.: Grain-size information from the statistical
properties of digital images of sediment, Sedimentology, 56, 421–438,
2009.
Buscombe, D., Rubin, D. M., and Warrick, J. A.: A universal approximation of
grain size from images of noncohesive sediment, J. Geophys. Res.-Earth Surf., 115, F02015, https://doi.org/10.1029/2009JF001477, 2010.
Carbonneau, P. E., Lane, S. N., and Bergeron, N. E.: Catchment-scale mapping
of surface grain size in gravel bed rivers using airborne digital imagery,
Water resources research, 40, W07202, https://doi.org/10.1029/2003WR002759, 2004.
Carbonneau, P. E., BIzzi, S., and Marchetti, G.: Robotic photosieving from
low-cost multirotor sUAS: a proof-of-concept, Earth Surf. Proc. Land., 43, 1160–1166, 2018.
Chardon, V., Schmitt, L., Piégay, H., and Lague, D.: Use of terrestrial
photosieving and airborne topographic LiDAR to assess bed grain size in
large rivers: a study on the Rhine River, Earth Surf. Proc. Land., 45, 2314–2330, 2020.
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte,
T., Honegger, L., Perret, M., Sluijs, A., and Castelltort, S.: Estimating
regional flood discharge during Palaeocene-Eocene global warming, Sci.
Rep., 8, 1–8, 2018.
Chen, Z., Scott, T. R., Bearman, S., Anand, H., Keating, D., Scott, C.,
Arrowsmith, J. R., and Das, J.: Geomorphological analysis using unpiloted
aircraft systems, structure from motion, and deep learning. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021, 1276–1283 pp., https://doi.org/10.1109/IROS45743.2020.9341354, 2020.
Church, M. A., McLean, D. G., and Wolcott, J. F.: River Bed Gravels: Sampling and Analysis, in: Sediments transport in Gravel Bed Rivers, 43–88,
John Wiley and Sons, New York, USA, 1987.
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the
importance of bedload transport for fluvial bedrock erosion and knickpoint
propagation, Earth Surf. Proc. Land., 38, 683–695, 2013.
Croissant, T., Lague, D., Steer, P., and Davy, P.: Rapid post-seismic
landslide evacuation boosted by dynamic river width, Nat. Geosci.,
10, 680–684, 2017.
D'Arcy, M., Whittaker, A. C., and Roda-Boluda, D. C.: Measuring alluvial fan
sensitivity to past climate changes using a self-similarity approach to
grain-size fining, Death Valley, California, USA, Sedimentology, 64, 388–424, 2017.
Detert, M. and Weitbrecht, V.: Automatic object detection to analyze the
geometry of gravel grains – a free stand-alone tool, In River flow, Taylor and Francis Group London, UK, 595–600 pp., ISBN 9780415621298, 2012.
Detert, M., Kadinski, L., and Weitbrecht, V.: On the way to airborne
gravelometry based on 3D spatial data derived from images, Int.
J. Sediment Res., 33, 84–92, 2018.
DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain
size controls on the relief structure of bedrock landscapes, Geology, 46,
399–402, 2018.
Diplas, P. and Fripp, J. B.: Properties of various sediment sampling
procedures, J. Hydraul. Eng., 118, 955–970, 1992.
Domokos, G., Jerolmack, D. J., Sipos, A. Á., and Török, Á.:
How river rocks round: resolving the shape-size paradox, 2–4 August 1996,
Portland, Oregon, PloS One, 9, e88657, 2014.
Domokos, G., Kun, F., Sipos, A. A., and Szabó, T.: Universality of
fragment shapes, Sci. Rep., 5, 1–6, 2015.
Domokos, G., Jerolmack, D. J., Kun, F., and Török, J.: Plato's cube
and the natural geometry of fragmentation, P. Natl.
Acad. Sci., 117, 18178–18185, 2020.
Eaton, B. C., Moore, R. D., and MacKenzie, L. G.: Percentile-based grain size distribution analysis tools (GSDtools) – estimating confidence limits and hypothesis tests for comparing two samples, Earth Surf. Dynam., 7, 789–806, https://doi.org/10.5194/esurf-7-789-2019, 2019.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise, in:
Proceedings of the 2nd International Conference on Knowledge Discovery and
Data mining, 226–231, 1996.
Finnegan, N. J., Sklar, L. S., and Fuller, T. K.: Interplay of sediment
supply, river incision, and channel morphology revealed by the transient
evolution of an experimental bedrock channel, J. Geophys. Res.-Earth Surf., 112, F03S11, https://doi.org/10.1029/2006JF000569, 2007.
Garzanti, E., Andò, S., and Vezzoli, G.: Settling equivalence of
detrital minerals and grain-size dependence of sediment composition, Earth Planet. Sci. Lett., 273, 138–151, 2008.
Graham, D. J., Rice, S. P., and Reid, I.: A transferable method for the
automated grain sizing of river gravels, Water Resour. Res., 41, W07020, https://doi.org/10.1029/2004WR003868, 2005.
Graham, D. J., Reid, I., and Rice, S. P.: Automated sizing of coarse-grained
sediments: image-processing procedures, Math. Geol., 37, 1–28,
2005.
Graham, D. J., Rollet, A. J., Piégay, H., and Rice, S. P.: Maximizing
the accuracy of image-based surface sediment sampling techniques, Water Resour. Res., 46, W02508, https://doi.org/10.1029/2008WR006940, 2010.
Green, J. C.: The precision of sampling grain-size percentiles using the
Wolman method, Earth Surf. Proc. Land., 28, 979–991, 2003.
Groom, J., Bertin, S., and Friedrich, H.: Evaluation of DEM size and grid
spacing for fluvial patch-scale roughness parameterisation, Geomorphology,
320, 98–110, 2018.
Guerit, L., Barrier, L., Narteau, C., Métivier, F., Liu, Y., Lajeunesse, E., Gayer, E., Meunier, P., Malverti, L., and Ye, B.: The Grain-size Patchiness of Braided Gravel-Bed Streams – example of the Urumqi River (northeast Tian Shan, China), Adv. Geosci., 37, 27–39, https://doi.org/10.5194/adgeo-37-27-2014, 2014.
Guerit, L., Barrier, L., Liu, Y., Narteau, C., Lajeunesse, E., Gayer, E., and Métivier, F.: Uniform grain-size distribution in the active layer of a shallow, gravel-bedded, braided river (the Urumqi River, China) and implications for paleo-hydrology, Earth Surf. Dynam., 6, 1011–1021, https://doi.org/10.5194/esurf-6-1011-2018, 2018.
Hodge, R., Brasington, J., and Richards, K.: Analysing laser-scanned digital
terrain models of gravel bed surfaces: linking morphology to sediment
transport processes and hydraulics, Sedimentology, 56, 2024–2043, 2009.
Hunyadi, L.: Fitting quadratic curves and surfaces, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/45356-fitting-quadratic-curves-and-surfaces, last access: 10 February 2022.
Johansson, C. E.: Orientation of pebbles in running water, A laboratory
study, Geografiska Annaler, 45, 85–112, 1963.
Kellerhals, R. and Bray, D. I.: Sampling procedures for coarse fluvial
sediments, J. Hydr. Eng. Div., 97, 1165–1180, 1971.
Kondolf, G. M., and Wolman, M. G.: The sizes of salmonid spawning gravels,
Water Resour. Res., 29, 2275–2285, 1993.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (NZ), ISPRS J. Photogramm., 82, 10–26, 2013.
Langhammer, J., Lendzioch, T., Mirijovky, and Hartvich, F.: UAV-based
Optical Granulometry as Tool for Detecting Chnages in Strctures of Flood
Depositions, Remote Sens., 9, 240, https://doi.org/10.3390/rs9030240, 2017.
Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A., Golish, D. R.,
Becker, K. J., Balram-Knutson, S. S., Barnouin, O. S., Becker, T. L., Bottke, W. F., Boynton, W. V., Campins, H., Clark, B. E., Connolly Jr, H. C., Drouet d’Aubigny, C. Y., Dworkin, J. P., Emery, J. P., Enos, H. L., Hamilton, V. E., Hergenrother, C. W., Howell, E. S., Izawa, M. R. M., Kaplan, H. H., Nolan, M. C., Rizk, B., Roper, H. L., Scheeres, D. J., Smith, P. H. , Walsh, K. J., Wolner, C. W. V., and The OSIRIS-REx Team: The unexpected surface of asteroid (101955) Bennu, Nature, 568, 55–60, 2019.
Leduc, P., Peirce, S., and Ashmore, P.: Short communication: Challenges and applications of structure-from-motion photogrammetry in a physical model of a braided river, Earth Surf. Dynam., 7, 97–106, https://doi.org/10.5194/esurf-7-97-2019, 2019.
Leyland, J., Hackney, C. R., Darby, S. E., Parsons, D. R., Best, J. L.,
Nicholas, A. P., Aalto, R., and Lague, D.: Extreme flood-driven fluvial bank
erosion and sediment loads: direct process measurements using integrated
Mobile Laser Scanning (MLS) and hydro-acoustic techniques, Earth Surf. Proc. Land., 42, 334–346, 2017.
Li, Q. and Griffiths, J. G.: Least squares ellipsoid specific fitting, Geometric Modeling and Processing, Proceedings, 335–340 pp., https://doi.org/10.1109/GMAP.2004.1290055, 2004.
Marc, O., Turowski, J. M., and Meunier, P.: Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength, Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, 2021.
Miller, K. L., Szabó, T., Jerolmack, D. J., and Domokos, G.: Quantifying
the significance of abrasion and selective transport for downstream fluvial
grain size evolution, J. Geophys. Res.-Earth Surf., 119, 2412–2429, 2014.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of
rock, and erosion, J. Geophys. Res.-Earth Surf., 112, F03014, https://doi.org/10.1029/2005JF000433, 2007.
Neely, A. B. and DiBiase, R. A.: Drainage area, bedrock fracture spacing,
and weathering controls on landscape-scale patterns in surface sediment
grain size, J. Geophys. Res.-Earth Surf., 125, e2020JF005560, https://doi.org/10.1029/2020JF005560, 2020.
Novák-Szabó, T., Sipos, A. Á., Shaw, S., Bertoni, D., Pozzebon,
A., Grottoli, E., Sarti, G., Ciavola, P., Domokos, G., and Jerolmack, D. J.:
Universal characteristics of particle shape evolution by bed-load chipping,
Sci. Adv., 4, eaao4946, https://doi.org/10.1126/sciadv.aao4946, 2018.
O'Callaghan, J. F., and Mark, D. M.: The extraction of drainage networks
from digital elevation data, Computer Vision, Graphics, And Image
Processing, 28, 323–344, 1984.
Pearson, E., Smith, M. W., Klaar, M. J., and Brown, L. E.: Can high
resolution 3D topographic surveys provide reliable grain size estimates in
gravel bed rivers?, Geomorphology, 293, 143–155, 2017.
Purinton, B. and Bookhagen, B.: Introducing PebbleCounts: a grain-sizing tool for photo surveys of dynamic gravel-bed rivers, Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, 2019.
Purinton, B. and Bookhagen, B.: Tracking downstream variability in large
grain-size distributions in the south-central Andes, J. Geophys. Res.-Earth Surf., 126, e2021JF006260, https://doi.org/10.1029/2021JF006260, 2021.
Rheinwalt, A., Goswami, B., and Bookhagen, B.: A network-based flow
accumulation algorithm for point clouds: Facet-Flow Networks (FFNs), J. Geophys. Res.-Earth Surf., 124, 2013–2033, 2019.
Rice, S. and Church, M.: Sampling surficial fluvial gravels; the precision
of size distribution percentile sediments, J. Sediment. Res.,
66, 654–665, 1996.
Riebe, C. S., Sklar, L. S., Overstreet, B. T., and Wooster, J. K.: Optimal
reproduction in salmon spawning substrates linked to grain size and fish
length, Water Resour. Res., 50, 898–918, 2014.
Roda-Boluda, D. C., D'Arcy, M., McDonald, J., and Whittaker, A. C.:
Lithological controls on hillslope sediment supply: insights from landslide
activity and grain size distributions, Earth Surf. Proc. Land., 43, 956–977, 2018.
Roduit, N.: JMicroVision: Image analysis toolbox for measuring and
quantifying components of high-definition images, ver. 1, 2002–2007, 2008.
Rubin, D. M.: A simple autocorrelation algorithm for determining grain size
from digital images of sediment, J. Sediment. Res., 74, 160–165, 2004.
Rust, B. R.: Structure and process in a braided river, Sedimentology,
18, 221–245, 1972.
Rychkov, I., Brasington, J., and Vericat, D.: Computational and
methodological aspects of terrestrial surface analysis based on point
clouds, Computers and Geosciences, 42, 64–70, 2012.
Schneider, J. M., Rickenmann, D., Turowski, J. M., Bunte, K., and Kirchner,
J. W.: Applicability of bed load transport models for mixed-size sediments
in steep streams considering macro-roughness, Water Resour. Res.,
51, 5260–5283, 2015.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Shields, A.: Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung
auf die Geschiebebewegung, PhD Thesis Technical University Berlin, Germany, 1936.
Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river incision
into bedrock by saltating bed load, Water Resour. Res., 40, W06301, https://doi.org/10.1029/2003WR002496, 2004.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S.,
Lukens, C. L., and Merces, V.: The problem of predicting the size
distribution of sediment supplied by hillslopes to rivers, Geomorphology,
277, 31–49, 2017.
Soloy, A., Turki, I., Fournier, M., Costa, S., Peuziat, B., and Lecoq, N.: A
deep learning-based method for quantifying and mapping the grain size on
pebble beaches, Remote Sens., 12, 3659, https://doi.org/10.3390/rs12213659, 2020.
Steer, P.: philippesteer/G3Point: G3Point v1.0 (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.6368501, 2022.
Szabó, T., Domokos, G., Grotzinger, J. P., and Jerolmack, D. J.:
Reconstructing the transport history of pebbles on Mars, Nat. Commun., 6, 1–7, 2015.
Tonina, D. and Buffington, J. M.: Hyporheic exchange in mountain rivers I:
Mechanics and environmental effects, Geography Compass, 3, 1063–1086,
2009.
Várkonyi, P. L., Laity, J. E., and Domokos, G.: Quantitative modeling of
facet development in ventifacts by sand abrasion, Aeol. Res., 20,
25–33, 2016.
Vázquez-Tarrío, D., Borgniet, L., Liébault, F., and Recking,
A.: Using UAS optical imagery and SfM photogrammetry to characterize the
surface grain size of gravel bars in a braided river (Vénéon River,
French Alps), Geomorphology, 285, 94–105, 2017.
Verdian, J. P., Sklar, L. S., Riebe, C. S., and Moore, J. R.: Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes, Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, 2021.
Walicka, A. and Pfeifer, N.: Automatic Segmentation of Individual Grains
From a Terrestrial Laser Scanning Point Cloud of a Mountain River Bed, IEEE
J. Sel. Top. Appl., 15, 1389–1410, 2022.
Watkins, S. E., Whittaker, A. C., Bell, R. E., Brooke, S. A., Ganti, V.,
Gawthorpe, R. L., McNeill, L. C., and Nixon, C. W.: Straight from the
source's mouth: Controls on field-constrained sediment export across the
entire active Corinth Rift, central Greece, Basin Research, 32,
1600–1625, 2020.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., &
Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost,
effective tool for geoscience applications, Geomorphology, 179, 300–314,
2012.
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M.,
Winter, K., and Sugden, D. E.: Sedimentological characterization of
Antarctic moraines using UAVs and Structure-from-Motion photogrammetry,
J. Glaciol., 61, 1088–1102, 2015.
Wolman, M. G.: A method of sampling coarse river-bed material, EOS,
Transactions American Geophysical Union, 35, 951–956, 1954.
Woodget, A. S. and Austrums, R.: Subaerial gravel size measurement using
topographic data derived from a UAV-SfM approach, Earth Surf. Proc. Land., 42, 1434–1443, 2017.
Woodget, A. S., Fyffe, C., and Carbonneau, P. E.: From manned to unmanned
aircraft: Adapting airborne particle size mapping methodologies to the
characteristics of sUAS and SfM, Earth Surf. Proc. Land.,
43, 857–870, 2018.
Editor
Understanding how sediment moves in rivers is fundamental to the shape of our landscapes and how they evolve. A key part of this understanding is measuring the size and shape of cobbles, pebbles and grains in the bed of a river. Often this measuring task is laborious and carried out by hand. However, this paper presents code and describes a method for measuring this using 3d point cloud data (from a laser scan for example) enabling the automation and rapid measurement.
Understanding how sediment moves in rivers is fundamental to the shape of our landscapes and how...
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
The morphology and size of sediments influence erosion efficiency, sediment transport and the...