Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1211-2022
https://doi.org/10.5194/esurf-10-1211-2022
Research article
 | Highlight paper
 | 
02 Dec 2022
Research article | Highlight paper |  | 02 Dec 2022

Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds

Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon

Related authors

Post-glacial reshaping of Alpine topography induced by landsliding
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088,https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Deformation and exhumation in thick continental crusts induced by valley incision of elevated plateaux
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962,https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
New experiments to probe the role of fractures in bedrock on river erosion rate and processes
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541,https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022,https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary

Cited articles

Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Transformation of tectonic and climatic signals from source to sedimentary archive, Nat. Geosci., 4, 231–235, 2011. 
Attal, M. and Lavé, J.: Changes of bedload characteristics along the marsyandi river (central nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts, Geol. Soc. Am. Spec. Pap., 398, 143–171, 2006. 
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res.-Earth Surf., 114, F04023, https://doi.org/10.1029/2009JF001328, 2009. 
Baynes, E. R., Lague, D., Steer, P., Bonnet, S., and Illien, L.: Sediment flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock rivers, Earth Surf. Proc. Land., 45, 3714–3731, 2020. 
Beer, A. R., Turowski, J. M., and Kirchner, J. W.: Spatial patterns of erosion in a bedrock gorge, J. Geophys. Res.-Earth Surf., 122, 191–214, 2017. 
Download
Editor
Understanding how sediment moves in rivers is fundamental to the shape of our landscapes and how they evolve. A key part of this understanding is measuring the size and shape of cobbles, pebbles and grains in the bed of a river. Often this measuring task is laborious and carried out by hand. However, this paper presents code and describes a method for measuring this using 3d point cloud data (from a laser scan for example) enabling the automation and rapid measurement.
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
Share