Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Laure Guerit
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Dimitri Lague
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Alain Crave
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Aurélie Gourdon
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Related authors
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025, https://doi.org/10.5194/essd-17-2963-2025, 2025
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Marine Le Minor, Dimitri Lague, Jamie Howarth, and Philippe Davy
EGUsphere, https://doi.org/10.5194/egusphere-2025-1271, https://doi.org/10.5194/egusphere-2025-1271, 2025
Short summary
Short summary
In natural rivers, flow variability and sediment heterogeneity affect how sediment grains are transported. A unique law that predicts the total amount of sediment transportable by a river for a wide range of sediment mixtures and flow conditions exist but unclear trends remain. Two improvements of this law, a standardized onset of sediment transport and a common reference transport height across all sizes, appear to be critical to have a functional multi grain-size total sediment load.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
M. Letard, A. Collin, D. Lague, T. Corpetti, Y. Pastol, and A. Ekelund
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 463–470, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022, 2022
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Cited articles
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.:
Transformation of tectonic and climatic signals from source to sedimentary
archive, Nat. Geosci., 4, 231–235, 2011.
Attal, M. and Lavé, J.: Changes of bedload characteristics along the
marsyandi river (central nepal): Implications for understanding hillslope
sediment supply, sediment load evolution along fluvial networks, and
denudation in active orogenic belts, Geol. Soc. Am. Spec. Pap., 398, 143–171, 2006.
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport:
Experimental results and implications for the evolution of the sediment load
along rivers, J. Geophys. Res.-Earth Surf., 114, F04023, https://doi.org/10.1029/2009JF001328, 2009.
Baynes, E. R., Lague, D., Steer, P., Bonnet, S., and Illien, L.: Sediment
flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock
rivers, Earth Surf. Proc. Land., 45, 3714–3731, 2020.
Beer, A. R., Turowski, J. M., and Kirchner, J. W.: Spatial patterns of
erosion in a bedrock gorge, J. Geophys. Res.-Earth Surf.,
122, 191–214, 2017.
Bernard, T. G., Lague, D., and Steer, P.: Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data, Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, 2021.
Blott, S. J. and Pye, K.: Particle shape: a review and new methods of
characterization and classification, Sedimentology, 55, 31–63, 2008.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel
method to solve the stream power equation governing fluvial incision and
landscape evolution, Geomorphology, 180, 170–179, 2013.
Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of
complex natural scenes using a multi-scale dimensionality criterion:
Applications in geomorphology, ISPRS J. Photogramm., 68, 121–134, 2012.
Bunte, K. and Abt, S. R.: Sampling surface and subsurface particle-size
distributions in wadable gravel-and cobble-bed streams for analyses in
sediment transport, hydraulics, and streambed monitoring, US Department of
Agriculture, Forest Service, Rocky Mountain Research Station, https://doi.org/10.2737/RMRS-GTR-74, 2001.
Burke, K. N., DellaGiustina, D. N., Bennett, C. A., Walsh, K. J., Pajola,
M., Bierhaus, E. B., Nolan, M. C., Boynton, W. V., Brodbeck, J. I., Connolly, H. C., Jr., Prasanna Deshapriya, J. D., Dworkin, J. P., Elder, C. M., Golish, D. R., Hoover, R. H., Jawin, E. R., McCoy, T. J., Michel, P., Molaro, J. L., Nolau, J. O., Padilla, J., Rizk, B., Robbins, S. J., Sahr, E. M., Smith, P. H., Stewart, S. J., Susorney, H. C. M., Enos, H. L., and Lauretta, D. S.: Particle size-frequency
distributions of the OSIRIS-REx candidate sample sites on asteroid (101955)
Bennu, Remote Sens., 13, 1315, https://doi.org/10.3390/rs13071315, 2021.
Buscombe, D.: Transferable wavelet method for grain-size distribution from
images of sediment surfaces and thin sections, and other natural granular
patterns, Sedimentology, 60, 1709–1732, 2013.
Buscombe, D. and Masselink, G.: Grain-size information from the statistical
properties of digital images of sediment, Sedimentology, 56, 421–438,
2009.
Buscombe, D., Rubin, D. M., and Warrick, J. A.: A universal approximation of
grain size from images of noncohesive sediment, J. Geophys. Res.-Earth Surf., 115, F02015, https://doi.org/10.1029/2009JF001477, 2010.
Carbonneau, P. E., Lane, S. N., and Bergeron, N. E.: Catchment-scale mapping
of surface grain size in gravel bed rivers using airborne digital imagery,
Water resources research, 40, W07202, https://doi.org/10.1029/2003WR002759, 2004.
Carbonneau, P. E., BIzzi, S., and Marchetti, G.: Robotic photosieving from
low-cost multirotor sUAS: a proof-of-concept, Earth Surf. Proc. Land., 43, 1160–1166, 2018.
Chardon, V., Schmitt, L., Piégay, H., and Lague, D.: Use of terrestrial
photosieving and airborne topographic LiDAR to assess bed grain size in
large rivers: a study on the Rhine River, Earth Surf. Proc. Land., 45, 2314–2330, 2020.
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte,
T., Honegger, L., Perret, M., Sluijs, A., and Castelltort, S.: Estimating
regional flood discharge during Palaeocene-Eocene global warming, Sci.
Rep., 8, 1–8, 2018.
Chen, Z., Scott, T. R., Bearman, S., Anand, H., Keating, D., Scott, C.,
Arrowsmith, J. R., and Das, J.: Geomorphological analysis using unpiloted
aircraft systems, structure from motion, and deep learning. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021, 1276–1283 pp., https://doi.org/10.1109/IROS45743.2020.9341354, 2020.
Church, M. A., McLean, D. G., and Wolcott, J. F.: River Bed Gravels: Sampling and Analysis, in: Sediments transport in Gravel Bed Rivers, 43–88,
John Wiley and Sons, New York, USA, 1987.
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the
importance of bedload transport for fluvial bedrock erosion and knickpoint
propagation, Earth Surf. Proc. Land., 38, 683–695, 2013.
Croissant, T., Lague, D., Steer, P., and Davy, P.: Rapid post-seismic
landslide evacuation boosted by dynamic river width, Nat. Geosci.,
10, 680–684, 2017.
D'Arcy, M., Whittaker, A. C., and Roda-Boluda, D. C.: Measuring alluvial fan
sensitivity to past climate changes using a self-similarity approach to
grain-size fining, Death Valley, California, USA, Sedimentology, 64, 388–424, 2017.
Detert, M. and Weitbrecht, V.: Automatic object detection to analyze the
geometry of gravel grains – a free stand-alone tool, In River flow, Taylor and Francis Group London, UK, 595–600 pp., ISBN 9780415621298, 2012.
Detert, M., Kadinski, L., and Weitbrecht, V.: On the way to airborne
gravelometry based on 3D spatial data derived from images, Int.
J. Sediment Res., 33, 84–92, 2018.
DiBiase, R. A., Rossi, M. W., and Neely, A. B.: Fracture density and grain
size controls on the relief structure of bedrock landscapes, Geology, 46,
399–402, 2018.
Diplas, P. and Fripp, J. B.: Properties of various sediment sampling
procedures, J. Hydraul. Eng., 118, 955–970, 1992.
Domokos, G., Jerolmack, D. J., Sipos, A. Á., and Török, Á.:
How river rocks round: resolving the shape-size paradox, 2–4 August 1996,
Portland, Oregon, PloS One, 9, e88657, 2014.
Domokos, G., Kun, F., Sipos, A. A., and Szabó, T.: Universality of
fragment shapes, Sci. Rep., 5, 1–6, 2015.
Domokos, G., Jerolmack, D. J., Kun, F., and Török, J.: Plato's cube
and the natural geometry of fragmentation, P. Natl.
Acad. Sci., 117, 18178–18185, 2020.
Eaton, B. C., Moore, R. D., and MacKenzie, L. G.: Percentile-based grain size distribution analysis tools (GSDtools) – estimating confidence limits and hypothesis tests for comparing two samples, Earth Surf. Dynam., 7, 789–806, https://doi.org/10.5194/esurf-7-789-2019, 2019.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise, in:
Proceedings of the 2nd International Conference on Knowledge Discovery and
Data mining, 226–231, 1996.
Finnegan, N. J., Sklar, L. S., and Fuller, T. K.: Interplay of sediment
supply, river incision, and channel morphology revealed by the transient
evolution of an experimental bedrock channel, J. Geophys. Res.-Earth Surf., 112, F03S11, https://doi.org/10.1029/2006JF000569, 2007.
Garzanti, E., Andò, S., and Vezzoli, G.: Settling equivalence of
detrital minerals and grain-size dependence of sediment composition, Earth Planet. Sci. Lett., 273, 138–151, 2008.
Graham, D. J., Rice, S. P., and Reid, I.: A transferable method for the
automated grain sizing of river gravels, Water Resour. Res., 41, W07020, https://doi.org/10.1029/2004WR003868, 2005.
Graham, D. J., Reid, I., and Rice, S. P.: Automated sizing of coarse-grained
sediments: image-processing procedures, Math. Geol., 37, 1–28,
2005.
Graham, D. J., Rollet, A. J., Piégay, H., and Rice, S. P.: Maximizing
the accuracy of image-based surface sediment sampling techniques, Water Resour. Res., 46, W02508, https://doi.org/10.1029/2008WR006940, 2010.
Green, J. C.: The precision of sampling grain-size percentiles using the
Wolman method, Earth Surf. Proc. Land., 28, 979–991, 2003.
Groom, J., Bertin, S., and Friedrich, H.: Evaluation of DEM size and grid
spacing for fluvial patch-scale roughness parameterisation, Geomorphology,
320, 98–110, 2018.
Guerit, L., Barrier, L., Narteau, C., Métivier, F., Liu, Y., Lajeunesse, E., Gayer, E., Meunier, P., Malverti, L., and Ye, B.: The Grain-size Patchiness of Braided Gravel-Bed Streams – example of the Urumqi River (northeast Tian Shan, China), Adv. Geosci., 37, 27–39, https://doi.org/10.5194/adgeo-37-27-2014, 2014.
Guerit, L., Barrier, L., Liu, Y., Narteau, C., Lajeunesse, E., Gayer, E., and Métivier, F.: Uniform grain-size distribution in the active layer of a shallow, gravel-bedded, braided river (the Urumqi River, China) and implications for paleo-hydrology, Earth Surf. Dynam., 6, 1011–1021, https://doi.org/10.5194/esurf-6-1011-2018, 2018.
Hodge, R., Brasington, J., and Richards, K.: Analysing laser-scanned digital
terrain models of gravel bed surfaces: linking morphology to sediment
transport processes and hydraulics, Sedimentology, 56, 2024–2043, 2009.
Hunyadi, L.: Fitting quadratic curves and surfaces, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/45356-fitting-quadratic-curves-and-surfaces, last access: 10 February 2022.
Johansson, C. E.: Orientation of pebbles in running water, A laboratory
study, Geografiska Annaler, 45, 85–112, 1963.
Kellerhals, R. and Bray, D. I.: Sampling procedures for coarse fluvial
sediments, J. Hydr. Eng. Div., 97, 1165–1180, 1971.
Kondolf, G. M., and Wolman, M. G.: The sizes of salmonid spawning gravels,
Water Resour. Res., 29, 2275–2285, 1993.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (NZ), ISPRS J. Photogramm., 82, 10–26, 2013.
Langhammer, J., Lendzioch, T., Mirijovky, and Hartvich, F.: UAV-based
Optical Granulometry as Tool for Detecting Chnages in Strctures of Flood
Depositions, Remote Sens., 9, 240, https://doi.org/10.3390/rs9030240, 2017.
Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A., Golish, D. R.,
Becker, K. J., Balram-Knutson, S. S., Barnouin, O. S., Becker, T. L., Bottke, W. F., Boynton, W. V., Campins, H., Clark, B. E., Connolly Jr, H. C., Drouet d’Aubigny, C. Y., Dworkin, J. P., Emery, J. P., Enos, H. L., Hamilton, V. E., Hergenrother, C. W., Howell, E. S., Izawa, M. R. M., Kaplan, H. H., Nolan, M. C., Rizk, B., Roper, H. L., Scheeres, D. J., Smith, P. H. , Walsh, K. J., Wolner, C. W. V., and The OSIRIS-REx Team: The unexpected surface of asteroid (101955) Bennu, Nature, 568, 55–60, 2019.
Leduc, P., Peirce, S., and Ashmore, P.: Short communication: Challenges and applications of structure-from-motion photogrammetry in a physical model of a braided river, Earth Surf. Dynam., 7, 97–106, https://doi.org/10.5194/esurf-7-97-2019, 2019.
Leyland, J., Hackney, C. R., Darby, S. E., Parsons, D. R., Best, J. L.,
Nicholas, A. P., Aalto, R., and Lague, D.: Extreme flood-driven fluvial bank
erosion and sediment loads: direct process measurements using integrated
Mobile Laser Scanning (MLS) and hydro-acoustic techniques, Earth Surf. Proc. Land., 42, 334–346, 2017.
Li, Q. and Griffiths, J. G.: Least squares ellipsoid specific fitting, Geometric Modeling and Processing, Proceedings, 335–340 pp., https://doi.org/10.1109/GMAP.2004.1290055, 2004.
Marc, O., Turowski, J. M., and Meunier, P.: Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength, Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, 2021.
Miller, K. L., Szabó, T., Jerolmack, D. J., and Domokos, G.: Quantifying
the significance of abrasion and selective transport for downstream fluvial
grain size evolution, J. Geophys. Res.-Earth Surf., 119, 2412–2429, 2014.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of
rock, and erosion, J. Geophys. Res.-Earth Surf., 112, F03014, https://doi.org/10.1029/2005JF000433, 2007.
Neely, A. B. and DiBiase, R. A.: Drainage area, bedrock fracture spacing,
and weathering controls on landscape-scale patterns in surface sediment
grain size, J. Geophys. Res.-Earth Surf., 125, e2020JF005560, https://doi.org/10.1029/2020JF005560, 2020.
Novák-Szabó, T., Sipos, A. Á., Shaw, S., Bertoni, D., Pozzebon,
A., Grottoli, E., Sarti, G., Ciavola, P., Domokos, G., and Jerolmack, D. J.:
Universal characteristics of particle shape evolution by bed-load chipping,
Sci. Adv., 4, eaao4946, https://doi.org/10.1126/sciadv.aao4946, 2018.
O'Callaghan, J. F., and Mark, D. M.: The extraction of drainage networks
from digital elevation data, Computer Vision, Graphics, And Image
Processing, 28, 323–344, 1984.
Pearson, E., Smith, M. W., Klaar, M. J., and Brown, L. E.: Can high
resolution 3D topographic surveys provide reliable grain size estimates in
gravel bed rivers?, Geomorphology, 293, 143–155, 2017.
Purinton, B. and Bookhagen, B.: Introducing PebbleCounts: a grain-sizing tool for photo surveys of dynamic gravel-bed rivers, Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, 2019.
Purinton, B. and Bookhagen, B.: Tracking downstream variability in large
grain-size distributions in the south-central Andes, J. Geophys. Res.-Earth Surf., 126, e2021JF006260, https://doi.org/10.1029/2021JF006260, 2021.
Rheinwalt, A., Goswami, B., and Bookhagen, B.: A network-based flow
accumulation algorithm for point clouds: Facet-Flow Networks (FFNs), J. Geophys. Res.-Earth Surf., 124, 2013–2033, 2019.
Rice, S. and Church, M.: Sampling surficial fluvial gravels; the precision
of size distribution percentile sediments, J. Sediment. Res.,
66, 654–665, 1996.
Riebe, C. S., Sklar, L. S., Overstreet, B. T., and Wooster, J. K.: Optimal
reproduction in salmon spawning substrates linked to grain size and fish
length, Water Resour. Res., 50, 898–918, 2014.
Roda-Boluda, D. C., D'Arcy, M., McDonald, J., and Whittaker, A. C.:
Lithological controls on hillslope sediment supply: insights from landslide
activity and grain size distributions, Earth Surf. Proc. Land., 43, 956–977, 2018.
Roduit, N.: JMicroVision: Image analysis toolbox for measuring and
quantifying components of high-definition images, ver. 1, 2002–2007, 2008.
Rubin, D. M.: A simple autocorrelation algorithm for determining grain size
from digital images of sediment, J. Sediment. Res., 74, 160–165, 2004.
Rust, B. R.: Structure and process in a braided river, Sedimentology,
18, 221–245, 1972.
Rychkov, I., Brasington, J., and Vericat, D.: Computational and
methodological aspects of terrestrial surface analysis based on point
clouds, Computers and Geosciences, 42, 64–70, 2012.
Schneider, J. M., Rickenmann, D., Turowski, J. M., Bunte, K., and Kirchner,
J. W.: Applicability of bed load transport models for mixed-size sediments
in steep streams considering macro-roughness, Water Resour. Res.,
51, 5260–5283, 2015.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Shields, A.: Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung
auf die Geschiebebewegung, PhD Thesis Technical University Berlin, Germany, 1936.
Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river incision
into bedrock by saltating bed load, Water Resour. Res., 40, W06301, https://doi.org/10.1029/2003WR002496, 2004.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S.,
Lukens, C. L., and Merces, V.: The problem of predicting the size
distribution of sediment supplied by hillslopes to rivers, Geomorphology,
277, 31–49, 2017.
Soloy, A., Turki, I., Fournier, M., Costa, S., Peuziat, B., and Lecoq, N.: A
deep learning-based method for quantifying and mapping the grain size on
pebble beaches, Remote Sens., 12, 3659, https://doi.org/10.3390/rs12213659, 2020.
Steer, P.: philippesteer/G3Point: G3Point v1.0 (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.6368501, 2022.
Szabó, T., Domokos, G., Grotzinger, J. P., and Jerolmack, D. J.:
Reconstructing the transport history of pebbles on Mars, Nat. Commun., 6, 1–7, 2015.
Tonina, D. and Buffington, J. M.: Hyporheic exchange in mountain rivers I:
Mechanics and environmental effects, Geography Compass, 3, 1063–1086,
2009.
Várkonyi, P. L., Laity, J. E., and Domokos, G.: Quantitative modeling of
facet development in ventifacts by sand abrasion, Aeol. Res., 20,
25–33, 2016.
Vázquez-Tarrío, D., Borgniet, L., Liébault, F., and Recking,
A.: Using UAS optical imagery and SfM photogrammetry to characterize the
surface grain size of gravel bars in a braided river (Vénéon River,
French Alps), Geomorphology, 285, 94–105, 2017.
Verdian, J. P., Sklar, L. S., Riebe, C. S., and Moore, J. R.: Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes, Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, 2021.
Walicka, A. and Pfeifer, N.: Automatic Segmentation of Individual Grains
From a Terrestrial Laser Scanning Point Cloud of a Mountain River Bed, IEEE
J. Sel. Top. Appl., 15, 1389–1410, 2022.
Watkins, S. E., Whittaker, A. C., Bell, R. E., Brooke, S. A., Ganti, V.,
Gawthorpe, R. L., McNeill, L. C., and Nixon, C. W.: Straight from the
source's mouth: Controls on field-constrained sediment export across the
entire active Corinth Rift, central Greece, Basin Research, 32,
1600–1625, 2020.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., &
Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost,
effective tool for geoscience applications, Geomorphology, 179, 300–314,
2012.
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M.,
Winter, K., and Sugden, D. E.: Sedimentological characterization of
Antarctic moraines using UAVs and Structure-from-Motion photogrammetry,
J. Glaciol., 61, 1088–1102, 2015.
Wolman, M. G.: A method of sampling coarse river-bed material, EOS,
Transactions American Geophysical Union, 35, 951–956, 1954.
Woodget, A. S. and Austrums, R.: Subaerial gravel size measurement using
topographic data derived from a UAV-SfM approach, Earth Surf. Proc. Land., 42, 1434–1443, 2017.
Woodget, A. S., Fyffe, C., and Carbonneau, P. E.: From manned to unmanned
aircraft: Adapting airborne particle size mapping methodologies to the
characteristics of sUAS and SfM, Earth Surf. Proc. Land.,
43, 857–870, 2018.
Editor
Understanding how sediment moves in rivers is fundamental to the shape of our landscapes and how they evolve. A key part of this understanding is measuring the size and shape of cobbles, pebbles and grains in the bed of a river. Often this measuring task is laborious and carried out by hand. However, this paper presents code and describes a method for measuring this using 3d point cloud data (from a laser scan for example) enabling the automation and rapid measurement.
Understanding how sediment moves in rivers is fundamental to the shape of our landscapes and how...
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
The morphology and size of sediments influence erosion efficiency, sediment transport and the...