Articles | Volume 11, issue 1
https://doi.org/10.5194/esurf-11-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupling between downstream variations of channel width and local pool–riffle bed topography
Shawn M. Chartrand
CORRESPONDING AUTHOR
School of Environmental Science, Simon Fraser University, Burnaby, British Columbia, Canada
A. Mark Jellinek
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
Marwan A. Hassan
Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada
Carles Ferrer-Boix
Department of Civil and Environmental Engineering, Technical University of Catalonia, Barcelona, Spain
Related authors
Shannon M. Hibbard, Gordon R. Osinski, Etienne Godin, Antero Kukko, Chimira Andres, Shawn Chartrand, Anna Grau Galofre, A. Mark Jellinek, and Wendy Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-227, https://doi.org/10.5194/egusphere-2024-227, 2024
Short summary
Short summary
This study investigates a new landform found on Axel Heiberg Island in Nunavut, Canada. Vermicular Ridge Features (VRFs) are comprised of a series of ridges and troughs creating a unique brain-like pattern. We aim to identify how VRFs form and assess the past climate conditions necessary for their formation. We use surface elevation and subsurface data to infer a formation mechanism. We propose VRFs were formed from the burial and removal of glacier ice as the glaciers were retreating.
Shawn M. Chartrand and David Jon Furbish
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-16, https://doi.org/10.5194/esurf-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Sediment particles are transported along the bottom of rivers during floods. Descriptions of the transport process are commonly restricted to the strength of the water flow. In our research we use mathematical theory and data from laboratory experiments to explore whether sediment particles colliding with the river bed can help explain our observations of transport. We learn that particle collisions are likely an important component of the transport process and we offer thoughts for future work.
Shannon M. Hibbard, Gordon R. Osinski, Etienne Godin, Antero Kukko, Chimira Andres, Shawn Chartrand, Anna Grau Galofre, A. Mark Jellinek, and Wendy Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-227, https://doi.org/10.5194/egusphere-2024-227, 2024
Short summary
Short summary
This study investigates a new landform found on Axel Heiberg Island in Nunavut, Canada. Vermicular Ridge Features (VRFs) are comprised of a series of ridges and troughs creating a unique brain-like pattern. We aim to identify how VRFs form and assess the past climate conditions necessary for their formation. We use surface elevation and subsurface data to infer a formation mechanism. We propose VRFs were formed from the burial and removal of glacier ice as the glaciers were retreating.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022, https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water with probability arguments. Our major conclusions are that (1) sediment transport can be phrased in terms of the movements of individual sediment grains, (2) transport rates in river channels are inherently uncertain, and (3) sediment transport in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in air.
Xingyu Chen, Marwan A. Hassan, and Xudong Fu
Earth Surf. Dynam., 10, 349–366, https://doi.org/10.5194/esurf-10-349-2022, https://doi.org/10.5194/esurf-10-349-2022, 2022
Short summary
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.
Chenge An, Marwan A. Hassan, Carles Ferrer-Boix, and Xudong Fu
Earth Surf. Dynam., 9, 333–350, https://doi.org/10.5194/esurf-9-333-2021, https://doi.org/10.5194/esurf-9-333-2021, 2021
Short summary
Short summary
Mountain rivers are characterized by fluctuations of water flow, including both flood and inter-flood low flow. Recently, increasing attention has been paid to how inter-flood low flow affects the sediment transport in subsequent floods. Here we present a series of flume experiments. Results show that the existence of inter-flood low flow can reduce the sediment transport at the beginning of the subsequent flood. However, such an effect is gradually erased with the increase of flow intensity.
Shawn M. Chartrand and David Jon Furbish
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-16, https://doi.org/10.5194/esurf-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Sediment particles are transported along the bottom of rivers during floods. Descriptions of the transport process are commonly restricted to the strength of the water flow. In our research we use mathematical theory and data from laboratory experiments to explore whether sediment particles colliding with the river bed can help explain our observations of transport. We learn that particle collisions are likely an important component of the transport process and we offer thoughts for future work.
Juan P. Martín-Vide, Arnau Prats-Puntí, and Carles Ferrer-Boix
Nat. Hazards Earth Syst. Sci., 20, 3315–3331, https://doi.org/10.5194/nhess-20-3315-2020, https://doi.org/10.5194/nhess-20-3315-2020, 2020
Short summary
Short summary
An alluvial Mediterranean river changed its riverine and deltaic landscape. The delta has been heavily retreating (up to 800 m) for more than a century. We focus on the river, channelized in the last 50 years, trying to link its sandy sediment yield to the delta evolution. Sediment availability in the last 30 km of the river channel is deemed responsible for the decrease in the sediment yield to the delta. Sediment supply reduction to the coast jeopardizes the future of the delta and beaches.
Carina Helm, Marwan A. Hassan, and David Reid
Earth Surf. Dynam., 8, 913–929, https://doi.org/10.5194/esurf-8-913-2020, https://doi.org/10.5194/esurf-8-913-2020, 2020
Short summary
Short summary
Forested, gravel-bed streams possess complex channel morphologies which are difficult to objectively characterize. This paper describes a novel technique using a remotely piloted aircraft (RPA) to characterize these systems below the forest canopy. The results demonstrate the accuracy and coverage of RPAs for objectively characterizing and classifying these systems relative to more traditional, time-consuming techniques that are generally used in these environments.
Matteo Saletti and Marwan A. Hassan
Earth Surf. Dynam., 8, 855–868, https://doi.org/10.5194/esurf-8-855-2020, https://doi.org/10.5194/esurf-8-855-2020, 2020
Short summary
Short summary
Mountain streams often display a stepped morphology but the conditions under which these steps form, remain stable, and eventually collapse are still not entirely clear. We run flume experiments to study how (a) the amount of sediment input and (b) channel width variations affect step dynamics in steep channels. Steps form preferentially in areas of flow convergence (channel narrowing) and their frequency is higher when sediment supply is larger than zero but smaller than the transport capacity.
Tobias Müller and Marwan A. Hassan
Earth Surf. Dynam., 6, 1041–1057, https://doi.org/10.5194/esurf-6-1041-2018, https://doi.org/10.5194/esurf-6-1041-2018, 2018
Short summary
Short summary
We used a numerical model to study how mountain streams adjust to series of sediment input events, e.g., landslides. We recreated flume experiments with similar scope and then expanded their parameter space, allowing us to find conditions under which the stream becomes overloaded with sediment. This occurs when the stream cannot evacuate a sediment input in the time between pulses. Our results can help to better understand the long-term adjustment of mountain streams to episodic sediment supply.
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Matteo Saletti, Peter Molnar, Marwan A. Hassan, and Paolo Burlando
Earth Surf. Dynam., 4, 549–566, https://doi.org/10.5194/esurf-4-549-2016, https://doi.org/10.5194/esurf-4-549-2016, 2016
Short summary
Short summary
This study presents a new reduced-complexity model with few parameters linked to basic physical processes, which aims to reproduce the transport of sediment as bed load and the formation and stability of channel morphology in steep mountain streams. The model is able to simulate the formation and stability of steps, bed structures commonly encountered in steep channels, by assuming that their formation is due to intense sediment transport during high flows causing jamming of particles.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Examination of analytical shear stress predictions for coastal dune evolution
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Width evolution of channel belts as a random walk
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
Equilibrium distance from long-range dune interactions
Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Geometric constraints on tributary fluvial network junction angles
A new dunetracking tool to support input parameter selection and uncertainty analyses using a Monte Carlo approach
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Downstream rounding rate of pebbles in the Himalaya
Automatic detection of instream large wood in videos using deep learning
A physics-based model for fluvial valley width
Sub-surface processes and heat fluxes at coarse-blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
A numerical model for duricrust formation by water table fluctuations
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2024-2011, https://doi.org/10.5194/egusphere-2024-2011, 2024
Short summary
Short summary
We propose a new mechanism of widespread surficial co-seismic sediment entrainment by seismic motions in subduction earthquakes. Our physical experiments show that shear from sediment-water relative velocities from long-period earthquake motions can mobilize synthetic fine marine sediment. High frequency vertical shaking can enhance this mobilization. According to our results, the largest tsunamigenic earthquakes that rupture to the trench may be distinguishable in the sedimentary record.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Jens Martin Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
EGUsphere, https://doi.org/10.5194/egusphere-2024-2342, https://doi.org/10.5194/egusphere-2024-2342, 2024
Short summary
Short summary
Channel belts comprise the area that is affected by a river due to lateral migration and floods. As a landform, they affect local water resources, flood hazard, and often host unique ecological communities. Here, we develop a model describing the evolution of channel belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems is favourable.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1634, https://doi.org/10.5194/egusphere-2024-1634, 2024
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency and dune size. This process is controlled by the modification of wind flow over dunes of various shape, influencing the sediment transport downstream.
Abhishek Kashyap, Kristen Cook, and Mukunda Dev Behera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1618, https://doi.org/10.5194/egusphere-2024-1618, 2024
Short summary
Short summary
High-mountain floods exhibit a significant geomorphic hazard, often triggered by rapid snowmelt, extreme precipitation, glacial lake outbursts, and natural failures of dams. Such high-magnitude floods can have catastrophic impacts on downstream communities, ecosystems, and infrastructure. These floods demonstrate the significance of understanding the complex interaction of climatic, hydrological, and geological forces in high mountain regions.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Julius Reich and Axel Winterscheid
EGUsphere, https://doi.org/10.5194/egusphere-2024-579, https://doi.org/10.5194/egusphere-2024-579, 2024
Short summary
Short summary
Analysing the geometry and the dynamics of riverine bedforms (so-called dunetracking) is important for various fields of application and contributes to a sound and efficient river and sediment management. We developed a new tool, which enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a test dataset, we show that the selection of input parameters of dunetracking tools can have a significant impact on the results.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1138, https://doi.org/10.5194/egusphere-2024-1138, 2024
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
EGUsphere, https://doi.org/10.5194/egusphere-2024-792, https://doi.org/10.5194/egusphere-2024-792, 2024
Short summary
Short summary
This study presents a novel CNN approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods that can be used on a variety of data sources. Leveraging a database of 15,228 fully labeled images, our model achieved a 67 % weighted mean average precision. Fine-tuning parameters and sampling techniques offer potential for further performance enhancement of more than 10 % in certain cases, promising valuable insights for ecosystem management.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
EGUsphere, https://doi.org/10.5194/egusphere-2024-160, https://doi.org/10.5194/egusphere-2024-160, 2024
Short summary
Short summary
We have developed a new numerical model to represent the formation of ferricretes which are iron-rich, hard layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Cited articles
Bolla Pittaluga, M., Luchi, R., and Seminara, G.: On the equilibrium profile of river beds, J. Geophys. Res.-Earth, 119, 317–332, https://doi.org/10.1002/2013JF002806, 2014. a, b, c, d
Brew, A., Morgan, J., and Nelson, P.: Bankfull width controls on riffle-pool morphology under conditions of increased sediment supply: Field observations during the Elwha River dam removal project, in: 3rd Joint
Federal Interagency Conference on Sedimentation and Hydrologic
Modeling, 19–23 April 2015, Reno, NV, USA, p. 11, 2015. a, b, c, d, e, f, g, h, i, j, k
Byrne, C. F., Pasternack, G. B., Guillon, H., Lane, B. A., and Sandoval-Solis, S.: Channel Constriction Predicts Pool-Riffle Velocity Reversals Across Landscapes, Geophys. Res. Lett., 48, e2021GL094378, https://doi.org/10.1029/2021GL094378, 2021. a, b
Carling, P.: An appraisal of the velocity-reversal hypothesis for stable
pool-riffle sequences in the river Severn, England, Earth Surf. Proc. Land., 16, 19–31, https://doi.org/10.1002/esp.3290160104, 1991. a
Carling, P. and Orr, H.: Morphology of riffle-pool sequences in the River
Severn, England, Earth Surf. Proc. Land., 25, 369–384,
https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<369::AID-ESP60>3.0.CO;2-M,
2000. a, b
Carling, P. and Wood, N.: Simulation of flow over pool-riffle topography: A
consideration of the velocity reversal hypothesis, Earth Surf. Proc. Land., 19, 319–332, https://doi.org/10.1002/esp.3290190404, 1994. a, b
Chartrand, S. M.: Environmental Planning of River Corridors Considering Climate Change: A Brief Perspective, in: Recent Trends in River Corridor Management, edited by: Chembolu, V. and Dutta, S., Springer Nature Singapore, Singapore, 27–38, https://doi.org/10.1007/978-981-16-9933-7_2, 2022. a
Chartrand, S. M., Jellinek, A. M., Hassan, M. A., and Ferrer-Boix, C.:
Experimental data set for morphodyanmics of a width-variable gravel-bed
stream: new insights on pool-riffle formation, Mendeley Data [data set],
https://doi.org/10.17632/zmjvt32gj3.3, 2017. a
Chartrand, S. M., Jellinek, A. M., Hassan, M. A., and Ferrer-Boix, C.:
Morphodynamics of a Width-Variable Gravel Bed Stream: New
Insights on Pool-Riffle Formation From Physical Experiments,
J. Geophys. Res.-Earth, 123, 2735–2766,
https://doi.org/10.1029/2017JF004533, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Chartrand, S. M., Jellinek, A. M., Hassan, M. A., and Ferrer-Boix, C.: What
controls the disequilibrium state of gravel-bed rivers?, Earth Surf. Proc. Land., 44, 3020–3041, https://doi.org/10.1002/esp.4695, 2019. a, b, c
Church, M.: Bed material transport and the morphology of alluvial river
channels, Annu. Rev. Earth Pl. Sc., 34, 325–354,
https://doi.org/10.1146/annurev.earth.33.092203.122721, 2006. a
Clifford, N. J.: Formation of riffle–pool sequences: field evidence for an
autogenetic process, Sediment. Geol., 85, 39–51, 1993. a
Cui, Y., Parker, G., Braudrick, C., Dietrich, W. E., and Cluer, B.: Dam
Removal Express Assessment Models (DREAM), J. Hydraul. Res., 44, 291–307, https://doi.org/10.1080/00221686.2006.9521683, 2006. a
de Almeida, G. A. M. and Rodríguez, J. F.: Understanding pool-riffle dynamics
through continuous morphological simulations, Water Resour. Res., 47,
W01502, https://doi.org/10.1029/2010WR009170, 2011. a, b, c
De Rego, K., Lauer, J. W., Eaton, B., and Hassan, M.: A decadal-scale numerical model for wandering, cobble-bedded rivers subject to disturbance, Earth Surf. Proc. Land., 45, 912–927, https://doi.org/10.1002/esp.4784, 2020. a, b
Dolan, R., Howard, A., and Trimble, D.: Structural control of the rapids and
pools of the colorado river in the grand canyon, Science, 202, 629–631, https://doi.org/10.1126/science.202.4368.629, 1978. a, b
East, A. E. and Sankey, J. B.: Geomorphic and Sedimentary Effects of
Modern Climate Change: Current and Anticipated Future
Conditions in the Western United States, Rev. Geophys., 58,
e2019RG000692, https://doi.org/10.1029/2019RG000692, 2020. a
East, A. E., Pess, G. R., Bountry, J. A., Magirl, C. S., Ritchie, A. C., Logan, J. B., Randle, T. J., Mastin, M. C., Minear, J. T., Duda, J. J., Liermann, M. C., McHenry, M. L., Beechie, T. J., and Shafroth, P. B.: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change, Geomorphology, 228, 765–786,
https://doi.org/10.1016/j.geomorph.2014.08.028, 2015. a, b, c, d, e, f, g, h
Ferrer-Boix, C. and Hassan, M. A.: Influence of the sediment supply texture on morphological adjustments in gravel-bed rivers, Water Resour. Res., 50, 8868–8890, https://doi.org/10.1002/2013WR015117, 2014. a
Ferrer-Boix, C., Chartrand, S. M., Hassan, M. A., Martin-Vide, J. P., Parker, G., Martín-Vide, J. P., and Parker, G.: On how spatial variations of channel
width influence river profile curvature, Geophys. Res. Lett., 43,
6313–6323, https://doi.org/10.1002/2016GL069824, 2016. a
Frey, P., Ducottet, C., and Jay, J.: Fluctuations of bed load solid discharge and grain size distribution on steep slopes with image analysis, Journal of Experimental Fluids, 35, 589–597, https://doi.org/10.1007/s00348-003-0707-9, 2003. a
Furbish, D. J. and Doane, T. H.: Rarefied particle motions on hillslopes – Part 4: Philosophy, Earth Surf. Dynam., 9, 629–664, https://doi.org/10.5194/esurf-9-629-2021, 2021. a
Gartner, J. D., Magilligan, F. J., and Renshaw, C. E.: Predicting the type,
location and magnitude of geomorphic responses to dam removal: Role of
hydrologic and geomorphic constraints, Geomorphology, 251, 20–30,
https://doi.org/10.1016/j.geomorph.2015.02.023, 2015. a
Harrison, L. R., East, A. E., Smith, D. P., Logan, J. B., Bond, R. M., Nicol,
C. L., Williams, T. H., Boughton, D. A., Chow, K., and Luna, L.: River
response to large-dam removal in a Mediterranean hydroclimatic setting:
Carmel River, California, USA, Earth Surf. Proc. Land.,
43, 3009–3021, https://doi.org/10.1002/esp.4464, 2018. a
Hassan, M. A., Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardinoni, F., and Chartrand, S.: Variable hillslope-channel coupling and channel
characteristics of forested mountain streams in glaciated landscapes, Earth
Surf. Proc. Land., 44, 736–751, https://doi.org/10.1002/esp.4527, 2019. a
Hassan, M. A., Radić, V., Buckrell, E., Chartrand, S. M., and McDowell, C.:
Pool-Riffle Adjustment Due to Changes in Flow and Sediment
Supply, Water Resour. Res., 57, e2020WR028048,
https://doi.org/10.1029/2020WR028048, 2021. a
Hassan, M. A., Chartrand, S. M., Radić, V., Ferrer-Boix, C., Buckrell, E., and McDowell, C.: Experiments on the Sediment Transport Along Pool-Riffle Unit, Water Resour. Res., 58, e2022WR032796, https://doi.org/10.1029/2022WR032796, 2022. a
Hirano, M.: River-bed degradation with armoring, Proceedings of the Japan Society of Civil Engineers, 1971, 55–65, 1971. a
Leopold, L. B., Wolman, M. G., and Miller, J. P.: Fluvial Processes in
Geomorphology, WH Freeman, San Francisco, 522 pp., ISBN 0486685888, 1964. a
Lisle, T. E.: Stabilization of a gravel channel by large streamside
obstructions and bedrock bends, Jacoby Creek, northwestern
California, Geol. Soc. Am. Bull., 97, 999–1011, 1986. a
Lisle, T. E. and Hilton, S.: Fine bed material in pools of natural gravel bed
channels, Water Resour. Res., 35, 1291–1304, https://doi.org/10.1029/1998WR900088, 1999. a
MacVicar, B. J. and Roy, A. G.: Hydrodynamics of a forced riffle pool in a
gravel bed river: 1. Mean velocity and turbulence intensity, Water
Resour. Res., 43, W12401, https://doi.org/10.1029/2006WR005272, 2007. a
MacWilliams, M. L., Wheaton, J. M., Pasternack, G. B., Street, R. L., and
Kitanidis, P. K.: Flow convergence routing hypothesis for pool-riffle
maintenance in alluvial rivers, Water Resour. Res., 42,
https://doi.org/10.1029/2005WR004391, 2006. a, b, c, d
Magilligan, F., Graber, B., Nislow, K., Chipman, J., Sneddon, C., and Fox, C.: River restoration by dam removal: Enhancing connectivity at watershed
scales, Elem. Sci. Anthro., 4, 000108, https://doi.org/10.12952/journal.elementa.000108, 2016. a
Morgan, J. A.: The effects of sediment supply, width variations, and unsteady
flow on riffle-pool dynamics, PhD thesis, Colorado State University, https://hdl.handle.net/10217/189320 (last access: 15 December 2022), 2018. a
Parker, G.: 1D sediment transport morphodynamics with applications to rivers and turbidity currents, e-book edn., http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm (last access: 15 December 2022), 2007. a
Parker, G.: Transport of gravel and sediment mixtures, in: Sedimentation
Engineering: Theory, Measurements, Modeling and Practice (ASCE
Manuals and Reports on Engineering Practice No. 110), edited by:
Garcia, M., ASCE, Reston, VA, 165–251, https://doi.org/10.1061/9780784408148, 2008. a
Repetto, R., Tubino, M., and Paola, C.: Planimetric instability of channels
with variable width, J. Fluid Mech., 457, 79–109,
https://doi.org/10.1017/S0022112001007595, 2002. a
Sawyer, A. M., Pasternack, G. B., Moir, H. J., and Fulton, A. a.: Riffle-pool
maintenance and flow convergence routing observed on a large gravel-bed
river, Geomorphology, 114, 143–160, https://doi.org/10.1016/j.geomorph.2009.06.021, 2010. a
Sear, D.: Sediment transport processes in pool-riffle sequences, Earth Surf.
Proc. Land., 21, 241–262,
https://doi.org/10.1002/(SICI)1096-9837(199603)21:3<241::AID-ESP623>3.0.CO;2-1, 1996. a
Thompson, D., Nelson, J. M., and Wohl, E.: Interactions between pool geometry
and hydraulics, Water Resour. Res., 34, 3673–3681,
https://doi.org/10.1029/1998WR900004, 1998. a, b
Thompson, D. M. and McCarrick, C. R.: A flume experiment on the effect of constriction shape on the formation of forced pools, Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, 2010.
a
Vahidi, E., Rodríguez, J. F., Bayne, E., and Saco, P. M.: One flood is not
enough: pool-riffle self-maintenance under time-varying flows and
non-equilibrium multi-fractional sediment transport, Water Resour. Res., 56, e2019WR026818, https://doi.org/10.1029/2019WR026818, 2020. a, b, c, d, e, f, g, h, i, j
White, J. Q., Pasternack, G. B., and Moir, H. J.: Valley width variation
influences riffle-pool location and persistence on a rapidly incising
gravel-bed river, Geomorphology, 121, 206–221,
https://doi.org/10.1016/j.geomorph.2010.04.012, 2010. a, b
Whiting, P. J. and Bradley, J. B.: A process-based classification system for
headwater streams, Earth Surf. Proc. Land., 18, 603–612,
https://doi.org/10.1002/esp.3290180704, 1993. a
Wolman, M. G.: The natural channel of Brandywine creek, Pennsylvania,
United States Geological Survey Professional Paper 271, 63–63, https://doi.org/10.3133/pp271, 1955. a, b, c
Wyrick, J., Senter, A., and Pasternack, G.: Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms, Geomorphology, 210, 14–22, https://doi.org/10.1016/j.geomorph.2013.12.013, 2014. a
Yalin, M.: On the formation of dunes and meanders, in: Proceedings of the 14th Congress of the International Association for Hydraulic Research, IAHR, Paris, France, C101–108, 1971. a
Zimmermann, A. E., Church, M., and Hassan, M. A.: Video-based gravel transport measurements with a flume mounted light table, Earth Surf. Proc. Land., 33, 2285–2296, 2008. a
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river...