Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic-scale to mesoscale atmospheric circulation connects fluvial and coastal gravel conveyors and directional deposition of coastal landforms in the Dead Sea basin
The Freddy & Nadin Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem,
9371234, Israel
Moshe Armon
The Freddy & Nadin Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Institute for Atmospheric and Climate Science, ETH Zurich, 8092, Zurich, Switzerland
Yehouda Enzel
The Freddy & Nadin Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem,
9371234, Israel
The Freddy & Nadin Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Related authors
No articles found.
Guorong Ling, Hilla Afargan-Gerstman, and Moshe Armon
EGUsphere, https://doi.org/10.5194/egusphere-2025-6438, https://doi.org/10.5194/egusphere-2025-6438, 2026
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This research examines how well storms that bring heavy rain to the Sahara can be predicted. Using satellite observations and ensemble weather forecasts, it shows that predictability varies by season and location, with an upper limit of about ten days. These insights can improve early flood warnings and support better planning for scarce water resources in desert regions.
Ellina Agayar, Moshe Armon, Michael Sprenger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-5942, https://doi.org/10.5194/egusphere-2025-5942, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines the hydrometeorological features of the major floods of 2008, 2010, and 2020 in western Ukraine. All cases were linked to upper-level PV anomalies. We also conducted a climatological analysis of PV structure associated with 22 summer heavy precipitation cases (2000–2022), highlighting their key role in determining the location and intensity of flood-inducing rainfall events in the Carpathians.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
Hydrol. Earth Syst. Sci., 29, 1395–1427, https://doi.org/10.5194/hess-29-1395-2025, https://doi.org/10.5194/hess-29-1395-2025, 2025
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help assess future water availability.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Cited articles
Abu Ghazleh, S. and Kempe, S.: Geomorphology of Lake Lisan terraces along
the eastern coast of the Dead Sea, Jordan, Geomorphology, 108, 246–263,
https://doi.org/10.1016/j.geomorph.2009.02.015, 2009.
Ahlborn, M., Armon, M., Ben Dor, Y., Neugebauer, I., Schwab, M. J., Tjallingii, R., Shoqeir, J. H., Morin, E., Enzel, Y., and Brauer, A.: Increased frequency of torrential rainstorms during a regional late Holocene
eastern Mediterranean drought, Quatern. Res., 89, 425–431,
https://doi.org/10.1017/qua.2018.9, 2018.
Alpert, P. and Shay-El, Y.: The moisture source for the winter cyclones in
the EM, Isr. Meteorol. Res. Pap., 5, 20–27, 1994.
Alpert, P. and Ziv, B.: The Sharav Cyclone: Observations and some theoretical considerations, J. Geophys. Res., 94, 18495, https://doi.org/10.1029/JD094iD15p18495, 1989.
Alpert, P., Neeman, B. U., and Shay-El, Y.: Climatological analysis of
Mediterranean cyclones using ECMWF data, Tellus A, 42, 65–77, https://doi.org/10.3402/tellusa.v42i1.11860, 1990a.
Alpert, P., Abramsky, R., and Neeman, B. U.: The prevailing summer synoptic
system in Israel – subtropical high, not Persian trough, Isr. J. Earth Sci.,
39, 93–102, 1990b.
Alpert, P., Shafir, H., and Issahary, D.: Recent changes in the climate at
the Dead Sea – a preliminary study, Climatic Change, 37, 513–537,
https://doi.org/10.1023/A:1005330908974, 1997.
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: A new seasons definition
based on classified daily synoptic systems: an example for the eastern
Mediterranean, Int. J. Climatol., 24, 1013–1021, https://doi.org/10.1002/joc.1037, 2004a.
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: Semi-objective classification for daily synoptic systems: application to the eastern
Mediterranean climate change, Int. J. Climatol., 24, 1001–1011,
https://doi.org/10.1002/joc.1036, 2004b.
Amit, R. and Gerson, R.: The evolution of holocene reg (gravelly) soils in
deserts: An example from the dead sea region, Catena, 13, 59–79,
https://doi.org/10.1016/S0341-8162(86)80005-4, 1986.
Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R.
W. R., and Taha, Z. P.: Recycling sediments between source and sink during a
eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin, Earth-Sci. Rev., 153, 111–138, https://doi.org/10.1016/j.earscirev.2015.10.014, 2016.
Arbel, S., Getker, M., Arazi, A., Yosi, B., Moshe, G., Efraim, F., and Alon,
M.: Data of rain and floods of exceptional events in the hydrological year
2006–2007, special report M-84, Ministry of Agriculture and Rural Development, Israel, https://www.gov.il/BlobFolder/dynamiccollectorresultitem/sers-2009-1-m-84/he/water-and-soil_Hydrological-book_sers_2009_1_M-84.pdf (last access: 2 July 2023), 2009.
Armon, M., Dente, E., Smith, J. A., Enzel, Y., and Morin, E.: Synoptic-Scale
Control over Modern Rainfall and Flood Patterns in the Levant Drylands with
Implications for Past Climates, J. Hydrometeorol., 19, 1077–1096,
https://doi.org/10.1175/JHM-D-18-0013.1, 2018.
Armon, M., Morin, E., and Enzel, Y.: Overview of modern atmospheric patterns
controlling rainfall and floods into the Dead Sea: Implications for the lake's sedimentology and paleohydrology, Quaternary Sci. Rev., 216, 58–73,
https://doi.org/10.1016/j.quascirev.2019.06.005, 2019.
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., and Morin, E.:
Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model,
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, 2020.
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., Garfinkel, C. I.,
Adam, O., Dayan, U., and Morin, E.: Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain
Rate, Earth's Future, 10, e2021EF002397, https://doi.org/10.1029/2021EF002397, 2022.
Ashton, A. D. and Giosan, L.: Wave-angle control of delta evolution, Geophys. Res. Lett., 38, L13405, https://doi.org/10.1029/2011GL047630, 2011.
Ashton, A. D., Hutton, E. W. H., Kettner, A. J., Xing, F., Kallumadikal, J.,
Nienhuis, J., and Giosan, L.: Progress in coupling models of coastline and
fluvial dynamics, Comput. Geosci., 53, 21–29, https://doi.org/10.1016/j.cageo.2012.04.004, 2013.
Bárdossy, A. and Filiz, F.: Identification of flood producing atmospheric circulation patterns, J. Hydrol., 313, 48–57, https://doi.org/10.1016/j.jhydrol.2005.02.006, 2005.
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., and Reches, Z.: Lake Levels and
Sequence Stratigraphy of Lake Lisan, the Late Pleistocene Precursor of the
Dead Sea, Quatern. Res., 57, 9–21, https://doi.org/10.1006/qres.2001.2284, 2002.
Bartov, Y., Goldstein, S. L., Stein, M., and Enzel, Y.: Catastrophic arid
episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events, Geology, 31, 439, https://doi.org/10.1130/0091-7613(2003)031<0439:CAEITE>2.0.CO;2, 2003.
Bartov, Y., Bookman, R., and Enzel, Y.: Current depositional environments at
the Dead Sea margins as indicators of past lake levels, in: New Frontiers in
Dead Sea Paleoenvironmental Research, vol. 401, Geological Society of
America, 127–140, https://doi.org/10.1130/2006.2401(08), 2006.
Bartov, Y., Enzel, Y., Porat, N., and Stein, M.: Evolution of the Late
Pleistocene Holocene Dead Sea Basin from Sequence Statigraphy of Fan Deltas
and Lake-Level Reconstruction, J. Sediment. Res., 77, 680–692,
https://doi.org/10.2110/jsr.2007.070, 2007.
Belachsen, I., Marra, F., Peleg, N., and Morin, E.: Convective rainfall in a
dry climate: relations with synoptic systems and flash-flood generation in
the Dead Sea region, Hydrol. Earth Syst. Sci., 21, 5165–5180,
https://doi.org/10.5194/hess-21-5165-2017, 2017.
Ben Dor, Y., Armon, M., Ahlborn, M., Morin, E., Erel, Y., Brauer, A., Schwab, M. J., Tjallingii, R., and Enzel, Y.: Changing flood frequencies under opposing late Pleistocene eastern Mediterranean climates, Sci. Rep., 8, 8445, https://doi.org/10.1038/s41598-018-25969-6, 2018.
Benelli, G., Pozzebon, A., Bertoni, D., and Sarti, G.: An RFID-Based Toolbox
for the Study of Under- and Outside-Water Movement of Pebbles on
Coarse-Grained Beaches, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 5, 1474–1482, https://doi.org/10.1109/JSTARS.2012.2196499, 2012.
Ben Moshe, L., Haviv, I., Enzel, Y., Zilberman, E., and Matmon, A.: Incision
of alluvial channels in response to a continuous base level fall: Field
characterization, modeling, and validation along the Dead Sea, Geomorphology, 93, 524–536, https://doi.org/10.1016/j.geomorph.2007.03.014, 2008.
Bitan, A.: The wind regime in the north-west section of the Dead-Sea, Arch.
für Meteorol. Geophys. und Bioklimatologie Ser. B, 22, 313–335,
https://doi.org/10.1007/BF02246585, 1974.
Bitan, A.: The influence of the special shape of the dead-sea and its environment on the local wind system, Arch. für Meteorol. Geophys. und
Bioklimatologie Ser. B, 24, 283–301, https://doi.org/10.1007/BF02263460, 1976.
Blum, M. D. and Hattier-Womack, J.: Climate Change, Sea-Level Change, and
Fluvial Sediment Supply to Deepwater Depositional Systems, in: External Controls of Deep-Water Depositional Systems, SEPM – Society for Sedimentary
Geology, 15–39, https://doi.org/10.2110/sepmsp.092.015, 2009.
Blum, M. D., Martin, J., Milliken, K., and Garvin, M.: Paleovalley systems:
Insights from Quaternary analogs and experiments, Earth-Sci. Rev., 116, 128–169, https://doi.org/10.1016/j.earscirev.2012.09.003, 2013.
Bookman, R., Enzel, Y., Agnon, A., and Stein, M.: Late Holocene lake levels of the Dead Sea, Geol. Soc. Am. Bull., 116, 555–571, https://doi.org/10.1130/B25286.1, 2004.
Bookman, R., Bartov, Y., Enzel, Y., and Stein, M.: Quaternary lake levels in
the Dead Sea basin: two centuries of research, Geol. Soc. Am. Spacial Pap.,
401, 155–170, https://doi.org/10.1130/2006.2401(10), 2006.
Borga, M., Comiti, F., Ruin, I., and Marra, F.: Forensic analysis of flash
flood response, WIREs Water, 6, e1338, https://doi.org/10.1002/wat2.1338, 2019.
Bowman, D.: Geomorphology of the shore terraces of the late pleistocene Lisan lake (Israel), Palaeogeogr. Palaeoclimatol. Palaeoecol., 9, 183–209,
https://doi.org/10.1016/0031-0182(71)90031-9, 1971.
Bowman, D.: The Regional Approach: Alluvial Fans along the Dead Sea-Arava
Rift Valley, in: Principles of Alluvial Fan Morphology, Springer Netherlands, Dordrecht, 135–151, https://doi.org/10.1007/978-94-024-1558-2_19, 2019.
Bowman, D. and Gross, T.: The highest stand of Lake Lisan: ∼150 meter
below MSL, Isr. J. Earth Sci., 41, 233–237, 1992.
Bowman, D., Banet-Davidovich, D., Bruins, H. J., and Van der Plicht, J.:
Dead Sea shoreline facies with seismically-induced soft-sediment deformation
structures, Israel, Isr. J. Earth Sci., 49, 197–214,
https://doi.org/10.1560/GXHT-AK5W-46EF-VTR8, 2000.
Bowman, D., Svoray, T., Devora, S., Shapira, I., and Laronne, J. B.: Geomorphology Extreme rates of channel incision and shape evolution in
response to a continuous, rapid base-level fall, the Dead Sea, Israel,
Geomorphology, 114, 227–237, https://doi.org/10.1016/j.geomorph.2009.07.004, 2010.
Bridge, J. S.: The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers, Geol. Soc. Lond. Spec. Publ., 75, 13–71, https://doi.org/10.1144/GSL.SP.1993.075.01.02, 1993.
Burgess, P. M. and Hovius, N.: Rates of delta progradation during highstands: consequences for timing of deposition in deep-marine systems, J. Geol. Soc. Lond., 155, 217–222, https://doi.org/10.1144/gsjgs.155.2.0217, 1998.
CDS: https://cds.climate.copernicus.eu (last access: 1 October 2022), 2022.
Coleman, J. M. and Prior, D. B.: Deltaic environments of deposition, in: M 31: Sandstone Depositional Environments, AAPG Special Volumes, 139–178,
1982.
David-Novak, H. B., Morin, E., and Enzel, Y.: Modern extreme storms and the rainfall thresholds for initiating debris flows on the hyperarid western
escarpment of the Dead Sea, Israel, Geol. Soc. Am. Bull., 116, 718–728, https://doi.org/10.1130/B25403.2, 2004.
Dayan, U. and Morin, E.: Flash flood-producing rainstorms over the Dead Sea: A review, in: New Frontiers in Dead Sea Paleoenvironmental Research, vol. 401, Geological Society of America, 53–62, https://doi.org/10.1130/2006.2401(04), 2006.
Dayan, U., Ricaud, P., Zbinden, R., and Dulac, F.: Atmospheric pollution over the eastern Mediterranean during summer – a review, Atmos. Chem. Phys., 17, 13233–13263, https://doi.org/10.5194/acp-17-13233-2017, 2017.
Dayan, U., Lensky, I. M., Ziv, B., and Khain, P.: Atmospheric conditions leading to an exceptional fatal flash flood in the Negev Desert, Israel, Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, 2021.
Dente, E., Lensky, N. G., Morin, E., Grodek, T., Sheffer, N. A., and Enzel, Y.: Geomorphic Response of a Low-Gradient Channel to Modern, Progressive
Base-Level Lowering: Nahal HaArava, the Dead Sea, J. Geophys. Res.-Earth, 122, 2468–2487, https://doi.org/10.1002/2016JF004081, 2017.
Dente, E., Lensky, N. G., Morin, E., Dunne, T., and Enzel, Y.: Sinuosity
evolution along an incising channel: New insights from the Jordan River response to the Dead Sea level fall, Earth Surf. Proc. Land., 44, 781–795, https://doi.org/10.1002/esp.4530, 2018.
Dente, E., Lensky, N. G., Morin, E., and Enzel, Y.: From straight to deeply
incised meandering channels: Slope impact on sinuosity of confined streams,
Earth Surf. Process. Land., 46, 1041–1054, https://doi.org/10.1002/esp.5085, 2021.
Desert Floods Research Center: https://floods.org.il/english/ (last access: 1 October 2022), 2022.
de Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics of
the Active Red Sea Trough, J. Geophys. Res.-Atmos., 118, 7087–7108,
https://doi.org/10.1002/jgrd.50569, 2013.
Elliot, T.: Deltas, edited by: Reading, H., Oxford, 113–154, http://geoweb.uwyo.edu/geol2100/Deltas.pdf (last access: 2 July 2023), 1986.
Enzel, Y. and Bar-Yosef, O. (Eds.): Quaternary of the Levant, Cambridge University Press, https://doi.org/10.1017/9781316106754, 2017.
Enzel, Y., Bookman, R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., and
Stein, M.: Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall, Quatern. Res., 60,
263–273, https://doi.org/10.1016/j.yqres.2003.07.011, 2003.
Enzel, Y., Agnon, A., and Stein, M.: New Frontiers in Dead Sea Paleoenvironmental Research, Geological Society of America, https://doi.org/10.1130/SPE401, 2006.
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., and Sharon,
D.: The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts, Global Planet. Change, 60, 165–192, https://doi.org/10.1016/j.gloplacha.2007.02.003, 2008.
Enzel, Y., Mushkin, A., Groisman, M., Calvo, R., Eyal, H., and Lensky, N.:
The modern wave-induced coastal staircase morphology along the western shores of the Dead Sea, Geomorphology, 408, 108237, https://doi.org/10.1016/j.geomorph.2022.108237, 2022.
Eyal, H.: Nahal Og beach – the 25.12.2019 largest storm wave, TIB-AV-Portal [video supplement], https://doi.org/10.5446/59268, 2023a.
Eyal, H.: Nahal Og – the 28.2.2019 flash flood, TIB-AV-Portal [video supplement], https://doi.org/10.5446/59269, 2023b.
Eyal, H.: Air flow circulation over the Dead Sea under Mediterranean cyclones indicated by the movement of clouds, TIB-AV-Portal [video supplement], https://doi.org/10.5446/59267, 2023c.
Eyal, H., Dente, E., Haviv, I., Enzel, Y., Dunne, T., and Lensky, N. G.: Fluvial incision and coarse gravel redistribution across the modern Dead Sea
shelf as a result of base-level fall, Earth Surf. Process. Land., 44, 2170–2185, https://doi.org/10.1002/esp.4640, 2019.
Eyal, H., Enzel, Y., Meiburg, E., Vowinckel, B., and Lensky, N. G.: How Does
Coastal Gravel Get Sorted Under Stormy Longshore Transport?, Geophys. Res.
Lett., 48, e2021GL095082, https://doi.org/10.1029/2021GL095082, 2021.
Eyal, H., Armon, M., Enzel, Y., and Lensky, N. G.: Synoptic- to meso-scale
circulation connects fluvial and coastal gravel conveyors and directional
deposition of coastal landforms in the Dead Sea basin, V1, Mendeley Data [data set], https://doi.org/10.17632/65bhpwftrh.1, 2022.
Fagherazzi, S., Howard, A. D., and Wiberg, P. L.: Modeling fluvial erosion and deposition on continental shelves during sea level cycles, J. Geophys. Res., 109, F03010, https://doi.org/10.1029/2003JF000091, 2004.
Frostick, L. E. and Reid, I. A. N.: Climatic versus tectonic controls of fan
sequences: lessons from the Dead Sea, Israel, J. Geol. Soc. Lond., 146,
527–538, https://doi.org/10.1144/gsjgs.146.3.0527, 1989.
Galloway, W. E.: Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems, 87–98, https://archives.datapages.com/data/hgssp/data/022/022001/87_hgs0220087.htm
(last access: 2 July 2023), 1975.
Garfunkel, Z. and Ben-Avraham, Z.: The structure of the Dead Sea basin,
Tectonophysics, 266, 155–176, https://doi.org/10.1016/S0040-1951(96)00188-6, 1996.
Gertman, I. and Hecht, A.: The Dead Sea hydrography from 1992 to 2000, J.
Mar. Syst., 35, 169–181, https://doi.org/10.1016/S0924-7963(02)00079-9, 2002.
Goldreich, Y.: The spatial distribution of annual rainfall in Israel? a review, Theor. Appl. Climatol., 50, 45–59, https://doi.org/10.1007/BF00864902, 1994.
Goldreich, Y.: The Climate of Israel, Springer US, Boston, MA,
https://doi.org/10.1007/978-1-4615-0697-3, 2003.
Goldreich, Y., Mozes, H., and Rosenfeld, D.: Radar analysis of cloud systems
and their rainfall yield in Israel, Isr. J. Earth Sci., 53, 63–76, 2004.
Goodwin, I. D., Mortlock, T. R., and Browning, S.: Tropical and extratropical-origin storm wave types and their influence on the East Australian longshore sand transport system under a changing climate, J.
Geophys. Res.-Oceans, 121, 4833–4853, https://doi.org/10.1002/2016JC011769, 2016.
Graf, M., Sprenger, M., Lohmann, U., Seibt, C., and Hofmann, H.: Evaluating
the suitability of the SWAN/COSMO-2 model system to simulate short-crested
surface waves for a narrow lake with complex bathymetry, Meteorol. Z., 22, 257–272, https://doi.org/10.1127/0941-2948/2013/0442, 2013.
Grosse, G., Schirrmeister, L., Kunitsky, V. V., and Hubberten, H.: The use of
CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast, Permafrost. Periglac. Process., 16, 163–172, https://doi.org/10.1002/ppp.509, 2005.
Grottoli, E., Bertoni, D., Ciavola, P., and Pozzebon, A.: Short term displacements of marked pebbles in the swash zone: Focus on particle shape
and size, Mar. Geol., 367, 143–158, https://doi.org/10.1016/j.margeo.2015.06.006, 2015.
Hamdani, I., Assouline, S., Tanny, J., Lensky, I. M., Gertman, I., Mor, Z.,
and Lensky, N. G.: Seasonal and diurnal evaporation from a deep hypersaline
lake: The Dead Sea as a case study, J. Hydrol., 562, 155–167,
https://doi.org/10.1016/j.jhydrol.2018.04.057, 2018.
Hansford, M. R. and Plink-Björklund, P.: River discharge variability as
the link between climate and fluvial fan formation, Geology, 48, 952–956,
https://doi.org/10.1130/G47471.1, 2020.
Haviv, I.: Mechanics, morphology and evolution of vertical knickpoints
(waterfalls) along the bedrock channels of the Dead Sea western tectonic
escarpment, PhD thesis, The Hebrew University of Jerusalem, https://huji.primo.exlibrisgroup.com/permalink/972HUJI_INST/10ptda2/alma990014406120203701
(last access: 2 July 2023), 2007.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hochman, A., Mercogliano, P., Alpert, P., Saaroni, H., and Bucchignani, E.:
High-resolution projection of climate change and extremity over Israel using
COSMO-CLM, Int. J. Climatol., 38, 5095–5106, https://doi.org/10.1002/joc.5714, 2018.
Huntington, E.: Palestine and its Transformation, Houghton, Mifflin and Company, Boston, https://www.loc.gov/item/unk82080191/ (last access: 2 July 2023), 1911.
IMS – Israel Meteorological Service: http://www.ims.gov.il (last access: 1 October 2022), 2022.
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major
floods in the Negev Desert, Israel, Int. J. Climatol., 22, 867–882,
https://doi.org/10.1002/joc.766, 2002.
Karimpour, A. and Chen, Q.: Wind wave analysis in depth limited water using
OCEANLYZ, A MATLAB toolbox, Comput. Geosci., 106, 181–189,
https://doi.org/10.1016/j.cageo.2017.06.010, 2017.
Kiro, Y., Goldstein, S. L., Garcia-Veigas, J., Levy, E., Kushnir, Y., Stein,
M., and Lazar, B.: Relationships between lake-level changes and water and
salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean, Earth Planet. Sc. Lett., 464, 211–226,
https://doi.org/10.1016/j.epsl.2017.01.043, 2017.
Kunin, P., Alpert, P., and Rostkier-Edelstein, D.: Investigation of sea-breeze/foehn in the Dead Sea valley employing high resolution WRF and
observations, Atmos. Res., 229, 240–254, https://doi.org/10.1016/j.atmosres.2019.06.012, 2019.
Kushnir, Y., Dayan, U., Ziv, B., Morin, E., and Enzel, Y.: Climate of the
Levant, in: Quaternary of the Levant, Cambridge University Press, 31–44,
https://doi.org/10.1017/9781316106754.004, 2017.
Lekach, J. and Enzel, Y.: Flood-duration-integrated stream power and
frequency magnitude of >50-year-long sediment discharge out of a hyperarid watershed, Earth Surf. Process. Land., 46, 1348–1362, https://doi.org/10.1002/esp.5104, 2021.
Lensky, I. M. and Dayan, U.: Continuous detection and characterization of
the Sea Breeze in clear sky conditions using Meteosat Second Generation, Atmos. Chem. Phys., 12, 6505–6513, https://doi.org/10.5194/acp-12-6505-2012, 2012.
Lensky, I. M. and Dayan, U.: Satellite observations of land surface temperature patterns induced by synoptic circulation, Int. J. Climatol., 35,
189–195, https://doi.org/10.1002/joc.3971, 2015.
Lensky, N. G., Dvorkin, Y., Lyakhovsky, V., Gertman, I., and Gavrieli, I.:
Water, salt, and energy balances of the Dead Sea, Water Resour. Res., 41,
1–13, https://doi.org/10.1029/2005WR004084, 2005.
Lensky, N. G., Lensky, I. M., Peretz, A., Gertman, I., Tanny, J., and Assouline, S.: Diurnal Course of Evaporation From the Dead Sea in Summer: A
Distinct Double Peak Induced by Solar Radiation and Night Sea Breeze, Water
Resour. Res., 54, 150–160, https://doi.org/10.1002/2017WR021536, 2018.
Longuet-Higgins, M. S.: Longshore currents generated by obliquely incident
sea waves: 1, J. Geophys. Res., 75, 6778–6789, 1970.
Manspeizer, W.: The Dead Sea Rift: Impact of climate and tectonism on Pleistocene and Holocene sedimentation, SEPM, https://archives.datapages.com/data/sepm_sp/SP37/The_Dead_Sea_Rift.htm
(last access: 2 July 2023), 1985.
Marra, F. and Morin, E.: Autocorrelation structure of convective rainfall in
semiarid-arid climate derived from high-resolution X-Band radar estimates,
Atmos. Res., 200, 126–138, https://doi.org/10.1016/j.atmosres.2017.09.020, 2018.
Marra, F., Borga, M., and Morin, E.: A Unified Framework for Extreme Subdaily Precipitation Frequency Analyses Based on Ordinary Events, Geophys. Res. Lett., 47, e2020GL090209, https://doi.org/10.1029/2020GL090209, 2020.
Marra, F., Armon, M., Adam, O., Zoccatelli, D., Gazal, O., Garfinkel, C. I.,
Rostkier-Edelstein, D., Dayan, U., Enzel, Y., and Morin, E.: Toward Narrowing Uncertainty in Future Projections of Local Extreme Precipitation, Geophys. Res. Lett., 48, e2020GL091823, https://doi.org/10.1029/2020GL091823, 2021.
Marra, F., Armon, M., and Morin, E.: Coastal and orographic effects on extreme precipitation revealed by weather radar observations, Hydrol. Earth
Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, 2022.
Masselink, G., Scott, T., Poate, T., Stokes, C., Wiggins, M., Valiente, N.,
and Konstantinou, A.: Tale of two beaches: correlation between decadal beach
dynamics and climate indices, in: Coastal Sediments 2023: The Proceedings of
the Coastal Sediments 2023, World Scientific, 337–350,
https://doi.org/10.1142/9789811275135_0031, 2023.
Meadows, G. A., Meadows, L. A., Wood, W. L., Hubertz, J. M., and Perlin, M.:
The Relationship between Great Lakes Water Levels, Wave Energies, and
Shoreline Damage, B. Am. Meteorol. Soc., 78, 675–682,
https://doi.org/10.1175/1520-0477(1997)078<0675:TRBGLW>2.0.CO;2, 1997.
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H.,
Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., and Macdonald,
E.: Causes, impacts and patterns of disastrous river floods, Nat. Rev. Earth
Environ., 2, 592–609, https://doi.org/10.1038/s43017-021-00195-3, 2021.
Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, in:
appendix 2, IAHSR 2nd meeting, 7 June 1948, Stockholm, http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7 (last access: 2 July 2023), 1948.
Molina, R., Manno, G., Lo Re, C., Anfuso, G., and Ciraolo, G.: Storm Energy
Flux Characterization along the Mediterranean Coast of Andalusia (Spain),
Water, 11, 509, https://doi.org/10.3390/w11030509, 2019.
Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Bull. Geol. Soc. Am., 109, 596–611,
https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997.
Morin, E., Jacoby, Y., Navon, S., and Bet-Halachmi, E.: Towards flash-flood
prediction in the dry Dead Sea region utilizing radar rainfall information,
Adv. Water Resour., 32, 1066–1076, https://doi.org/10.1016/j.advwatres.2008.11.011, 2009.
Mulder, T. and Syvitski, J. P. M.: Climatic and Morphologic Relationships of
Rivers: Implications of Sea-Level Fluctuations on River Loads, J. Geol., 104, 509–523, https://doi.org/10.1086/629849, 1996.
Naor, R., Potchter, O., Shafir, H., and Alpert, P.: An observational study
of the summer Mediterranean Sea breeze front penetration into the complex
topography of the Jordan Rift Valley, Theor. Appl. Climatol., 127, 275–284,
https://doi.org/10.1007/s00704-015-1635-3, 2017.
Neev, D. and Emery, K. O.: The Dead Sea: depositional processes and environments of evaporites, Israel Geological Survey Bulletin, 41, p. 147, 1967.
Neugebauer, I., Schwab, M. J., Waldmann, N. D., Tjallingii, R., Frank, U.,
Hadzhiivanova, E., Naumann, R., Taha, N., Agnon, A., Enzel, Y., and Brauer, A.: Hydroclimatic variability in the Levant during the early last glacial
(∼117–75 ka) derived from micro-facies analyses of deep Dead Sea
sediments, Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, 2016.
Nienhuis, J. H., Ashton, A. D., and Giosan, L.: What makes a delta wave-dominated?, Geology, 43, 511–514, https://doi.org/10.1130/G36518.1, 2015.
Nienhuis, J. H., Ashton, A. D., and Giosan, L.: Littoral steering of deltaic
channels, Earth Planet. Sc. Lett., 453, 204–214, https://doi.org/10.1016/j.epsl.2016.08.018, 2016.
Palchan, D., Neugebauer, I., Amitai, Y., Waldmann, N. D., Schwab, M. J., Dulski, P., Brauer, A., Stein, M., Erel, Y., and Enzel, Y.: North Atlantic
controlled depositional cycles in MIS 5e layered sediments from the deep Dead Sea basin, Quatern. Res., 87, 168–179, https://doi.org/10.1017/qua.2016.10, 2017.
Postma, G.: An analysis of the variation in delta architecture, Terra Nova,
2, 124–130, https://doi.org/10.1111/j.1365-3121.1990.tb00052.x, 1990.
Postma, G.: Sea-level-related architectural trends in coarse-grained delta
complexes, Sediment. Geol., 98, 3–12, https://doi.org/10.1016/0037-0738(95)00024-3, 1995.
Pringle, J. and Stretch, D. D.: On a new statistical wave generator based on
atmospheric circulation patterns and its applications to coastal shoreline
evolution, Comput. Geosci., 149, 104707, https://doi.org/10.1016/j.cageo.2021.104707, 2021.
Pringle, J., Stretch, D. D., and Bárdossy, A.: Automated classification
of the atmospheric circulation patterns that drive regional wave climates,
Nat. Hazards Earth Syst. Sci., 14, 2145–2155, https://doi.org/10.5194/nhess-14-2145-2014, 2014.
Pringle, J., Stretch, D. D., and Bárdossy, A.: On linking atmospheric
circulation patterns to extreme wave events for coastal vulnerability assessments, Nat. Hazards, 79, 45–59, https://doi.org/10.1007/s11069-015-1825-4, 2015.
Reid, I., Frostick, L. E., and Layman, J. T.: The incidence and nature of
bedload transport during flood flows in coarse-grained alluvial channels,
Earth Surf. Process. Land., 10, 33–44, https://doi.org/10.1002/esp.3290100107, 1985.
Rinat, Y., Marra, F., Armon, M., Metzger, A., Levi, Y., Khain, P., Vadislavsky, E., Rosensaft, M., and Morin, E.: Hydrometeorological analysis
and forecasting of a 3 d flash-flood-triggering desert rainstorm, Nat.
Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, 2021.
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Q.
J. Roy. Meteorol. Soc., 122, 1385–1404, https://doi.org/10.1002/qj.49712253408, 1996.
Saaroni, H., Ziv, B., Bitan, A., and Alpert, P.: Easterly Wind Storms over
Israel, Theor. Appl. Climatol., 59, 61–77, https://doi.org/10.1007/s007040050013, 1998.
Saaroni, H., Halfon, N., Ziv, B., Alpert, P., and Kutiel, H.: Links between
the rainfall regime in Israel and location and intensity of Cyprus lows, Int. J. Climatol., 30, 1014–1025, https://doi.org/10.1002/joc.1912, 2010.
Segal, M., Mahrer, Y., and Pielke, R. A.: A study of meteorological patterns
associated with a lake confined by mountains – the Dead Sea case, Q. J. Roy.
Meteorol. Soc., 109, 549–564, 1983.
Sharon, D.: The spottiness of rainfall in a desert area, J. Hydrol., 17,
161–175, https://doi.org/10.1016/0022-1694(72)90002-9, 1972.
Sharon, D. and Kutiel, H.: The distribution of rainfall intensity in Israel,
its regional and seasonal variations and its climatological evaluation, J.
Climatol., 6, 277–291, https://doi.org/10.1002/joc.3370060304, 1986.
Shentsis, I., Laronne, J. B., and Alpert, P.: Red Sea Trough flood events in
the Negev, Israel (1964–2007), Hydrolog. Sci. J., 57, 42–51, https://doi.org/10.1080/02626667.2011.636922, 2012.
Shohami, D., Dayan, U., and Morin, E.: Warming and drying of the eastern
Mediterranean: Additional evidence from trend analysis, J. Geophys. Res.-Atmos., 116, D22101, https://doi.org/10.1029/2011JD016004, 2011.
Sirota, I., Enzel, Y., Mor, Z., Ben Moshe, L., Eyal, H., Lowenstein, T. K.,
and Lensky, N. G.: Sedimentology and stratigraphy of a modern halite sequence formed under Dead Sea level fall, Sedimentology, 68, 1069–1090,
https://doi.org/10.1111/sed.12814, 2021.
Solari, S. and Alonso, R.: A New Methodology for Extreme Waves Analysis
Based on Weather-Patterns Classification Methods, Coast. Eng. Proc., 35, 23, https://doi.org/10.9753/icce.v35.waves.23, 2017.
Steirou, E., Gerlitz, L., Apel, H., and Merz, B.: Links between large-scale
circulation patterns and streamflow in Central Europe: A review, J. Hydrol.,
549, 484–500, 2017.
Syvitski, J. P. M. and Milliman, J. D.: Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean, J. Geol., 115, 1–19, https://doi.org/10.1086/509246, 2007.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon,
M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009.
Torfstein, A. and Enzel, Y.: Dead Sea lake level changes and Levant palaeoclimate, Quat. Levant, 115–126, https://doi.org/10.1017/9781316106754.013, 2017.
Torfstein, A., Goldstein, S. L., Stein, M., and Enzel, Y.: Impacts of abrupt
climate changes in the Levant from Last Glacial Dead Sea levels, Quaternary Sci. Rev., 69, 1–7, https://doi.org/10.1016/j.quascirev.2013.02.015, 2013.
Torfstein, A., Goldstein, S. L., Kushnir, Y., Enzel, Y., Haug, G., and Stein, M.: Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial, Earth Planet. Sc. Lett., 412, 235–244, https://doi.org/10.1016/j.epsl.2014.12.013, 2015.
Tsvieli, Y. and Zangvil, A.: Synoptic climatological analysis of Red Sea Trough and non-Red Sea Trough rain situations over Israel, Adv. Geosci., 12,
137–143, https://doi.org/10.5194/adgeo-12-137-2007, 2007.
Tyrlis, E. and Lelieveld, J.: Climatology and Dynamics of the Summer Etesian
Winds over the Eastern Mediterranean, J. Atmos. Sci., 70, 3374–3396,
https://doi.org/10.1175/JAS-D-13-035.1, 2013.
Van Hijum, E. and Pilarczyk, K. W.: Gravel beaches: equilibrium profile and
longshore transport of coarse material under regular and irregular wave
attack, Publication no. 274, Delft Hydraulics Laboratory, the Netherlands, 1982.
Vüllers, J., Mayr, G. J., Corsmeier, U., and Kottmeier, C.: Characteristics and evolution of diurnal foehn events in the Dead Sea
valley, Atmos. Chem. Phys., 18, 18169–18186, https://doi.org/10.5194/acp-18-18169-2018, 2018.
Wang, C., Zheng, S., Wang, P., and Hou, J.: Interactions between vegetation,
water flow and sediment transport: A review, J. Hydrodynam., 27, 24–37,
https://doi.org/10.1016/S1001-6058(15)60453-X, 2015.
Weisbrod, N., Yechieli, Y., Shandalov, S., and Lensky, N.: On the viscosity
of natural hyper-saline solutions and its importance: The Dead Sea brines, J. Hydrol., 532, 46–51, https://doi.org/10.1016/j.jhydrol.2015.11.036, 2016.
Wright, L. D.: Sediment transport and deposition at river mouths: A synthesis, Geol. Soc. Am. Bull., 88, 857, https://doi.org/10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2, 1977.
Zak, I.: The geology of Mt. Sedom, PhD thesis, The Hebrew University, Jerusalem, 208 pp., https://huji.primo.exlibrisgroup.com/permalink/972HUJI_INST/u1osdb/alma990014863530203701
(last acccess: 2 July 2023), 1967.
Zappa, G., Hoskins, B. J., and Shepherd, T. G.: The dependence of wintertime
Mediterranean precipitation on the atmospheric circulation response to climate change, Environ. Res. Lett., 10, 104012, https://doi.org/10.1088/1748-9326/10/10/104012, 2015.
Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y.,
Fnais, M., Francis, D., Hadjinicolaou, P., Howari, F., Jrrar, A., Kaskaoutis, D. G., Kulmala, M., Lazoglou, G., Mihalopoulos, N., Lin, X., Rudich, Y., Sciare, J., Stenchikov, G., Xoplaki, E., and Lelieveld, J.: Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East, Rev. Geophys., 60, e2021RG000762, https://doi.org/10.1029/2021RG000762, 2022.
Ziv, B., Saaroni, H., and Alpert, P.: The factors governing the summer regime of the eastern Mediterranean, Int. J. Climatol., 24, 1859–1871, https://doi.org/10.1002/joc.1113, 2004.
Ziv, B., Harpaz, T., Saaroni, H., and Blender, R.: A new methodology for
identifying daughter cyclogenesis: application for the Mediterranean Basin,
Int. J. Climatol., 35, 3847–3861, https://doi.org/10.1002/joc.4250, 2015.
Ziv, B., Saaroni, H., Etkin, A., Harpaz, T., and Shendrik, L.: Formation of
cyclones over the East Mediterranean within Red-Sea Troughs, Int. J. Climatol., 42, 577–596, https://doi.org/10.1002/joc.7261, 2022.
Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J. A., and Morin, E.: Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins, Hydrol. Earth Syst. Sci., 23, 2665–2678,
https://doi.org/10.5194/hess-23-2665-2019, 2019.
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth...