Articles | Volume 11, issue 1
https://doi.org/10.5194/esurf-11-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network
NORSAR, Gunnar Randers vei 15, 2007 Kjeller, Norway
Fred Marcus John Silverberg
The Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
Related authors
Andreas Aspaas, Gregory Bievre, Pascal Lacroix, Nadège Langet, Juditha Aga, Ingrid Skrede, Lene Kristensen, Bernd Etzelmuller, and François Renard
EGUsphere, https://doi.org/10.5194/egusphere-2026-62, https://doi.org/10.5194/egusphere-2026-62, 2026
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Climate change increases landslide risk in cold regions. We analyzed 12 years of GPS, borehole, water, and seismic data from two landslides in Arctic Norway, one with permafrost and one without. Both accelerate in spring and autumn due to water infiltration. One slip zone shows increasing snowmelt sensitivity while seismic data reveal seasonal stiffness changes. Results advance understanding of water-driven landslide dynamics in Arctic climates.
Andreas Aspaas, Gregory Bievre, Pascal Lacroix, Nadège Langet, Juditha Aga, Ingrid Skrede, Lene Kristensen, Bernd Etzelmuller, and François Renard
EGUsphere, https://doi.org/10.5194/egusphere-2026-62, https://doi.org/10.5194/egusphere-2026-62, 2026
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Climate change increases landslide risk in cold regions. We analyzed 12 years of GPS, borehole, water, and seismic data from two landslides in Arctic Norway, one with permafrost and one without. Both accelerate in spring and autumn due to water infiltration. One slip zone shows increasing snowmelt sensitivity while seismic data reveal seasonal stiffness changes. Results advance understanding of water-driven landslide dynamics in Arctic climates.
Cited articles
Arosio, D., Longoni, L., Papini, M., Boccolari, M., and Zanzi, L.: Analysis of
microseismic signals collected on an unstable rock face in the Italian
Prealps, Geophys. J. Int., 213, 475–488, https://doi.org/10.1093/gji/ggy010, 2018. a
Bardi, F., Raspini, F., Ciampalini, A., Kristensen, L., Rouyet, L., Lauknes,
T., Frauenfelder, R., and Casagli, N.: Space-Borne and Ground-Based InSAR
Data Integration: The Åknes Test Site, Remote Sensing, 8, 237, https://doi.org/10.3390/rs8030237, 2016. a
Blikra, L. and Christiansen, H.: A field-based model of permafrost-controlled
rockslide deformation in northern Norway, Geomorphology, 208, https://doi.org/10.1016/j.geomorph.2013.11.014, 2014. a, b
Blikra, L., Longva, O., Harbitz, C., and Løvholt, F.: Quantification of
rock-avalanche and tsunami hazard in Storfjorden, western Norway, Norw.
J. Geology, 2005. a
Bontemps, N., Lacroix, P., Larose, E., Jara, J., and Taipe, E.: Rain and small
earthquakes maintain a slow-moving landslide in a persistent critical state,
Nat. Commun., 11, 780, https://doi.org/10.1038/s41467-020-14445-3, 2020. a, b
Butler, R.: Seismic precursors to a 2017 Nuugaatsiaq, Greenland,
earthquake-landslide-tsunami event, Nat. Hazards, 96, 961–973, https://doi.org/10.1007/s11069-019-03582-8, 2019. a
Böhme, M., Hermanns, R., Oppikofer, T., Fischer, L., Bunkholt, H., Eiken, T.,
Pedrazzini, A. Derron, M.-H., Jaboyedoff, M., Blikra, L., and Nilsen, B.:
Analyzing complex rock slope deformation at Stampa, western Norway, by
integrating geomorphology, kinematics and numerical modeling, Eng.
Geol., 154, 116–130, 2013. a
Chmiel, M., Walter, F., Wenner, M., Zhang, Z., McArdell, B., and Hibert, C.:
Machine Learning Improves Debris Flow Warning, Geophys. Res. Lett.,
48, e2020GL090874, https://doi.org/10.1029/2020GL090874, 2021. a
Christiansen, V.: Potential for analysis of microseismicity from a
single-station record at the Åknes unstable rockslope, MS thesis,
University of Oslo, http://urn.nb.no/URN:NBN:no-89135 (last access: February 2023), 2021. a
Colombero, C., Baillet, L., Comina, C., Jongmans, D., Larose, E., Valentin, J.,
and Vinciguerra, S.: Integration of ambient seismic noise monitoring,
displacement and meteorological measurements to infer the
temperature-controlled long-term evolution of a complex prone-to-fall cliff,
Geophys. J. Int., 213, 1876–1897, 2018. a
Colombero, C., Jongmans, D., Fiolleau, S., Valentin, J., Baillet, L., and
Bièvre, G.: Seismic Noise Parameters as Indicators of Reversible
Modifications in Slope Stability: A Review, Surv. Geophys., 42,
339–375, 2021. a
Curilem, G., Vergara, J., Fuentealba, G., Acuña, G., and Chacón, M.:
Classification of seismic signals at Villarrica volcano (Chile) using
neural networks and genetic algorithms, J. Volcanol. Geoth.
Res., 180, 1–8, 2009. a
Dahl, H.: Building a 3D Seismic Velocity Model to Improve Location of
Microseismic Events at the Åknes Rock Slope, MS thesis, University
of Oslo, http://urn.nb.no/URN:NBN:no-82726 (last access: 21 February 2023), 2020. a
Dammeier, F., Moore, J., Haslinger, F., and Lowe, S.: Characterization of
alpine rockslides using statistical analysis of seismic signals, J.
Geophys. Res.-Earth, 116, https://doi.org/10.1029/2011JF002037, 2011. a
Dowla, F., Taylor, S., and Anderson, R.: Seismic discrimination with artificial
neural networks: preliminary results with regional spectral data, B. Seismol. Soc. Am., 80, 1346–1373, 1990. a
Falsaperla, S., Graziani, S., Nunnari, G., and Spampinato: Automatic
classification of volcanic earthquakes by using multi-layered neural
networks, Nat. Hazards, 13, 205–228, 1996. a
Feng, L., Pazzi, V., Intrieri, E., Gracchi, T., and Gigli, G.: Joint detection
and classification of rockfalls in a microseismic monitoring network,
Geophys. J. Int., 222, 2108–2120, 2020. a
Gomberg, J., Schulz, W., Bodin, P., and Kean, J.: Seismic and geodetic
signatures of fault slip at the Slumgullion Landslide Natural Laboratory,
J. Geophys. Res., 116, https://doi.org/10.1029/2011JB008304, 2011. a
Hammer, C., Ohrnberger, M., and Fäh, D.: Classifying seismic waveforms from
scratch: a case study in the alpine environment, Geophys. J.
Int., 192, 425–439, 2013. a
Harbitz, C., Glimsdal, S., Løvholt, F., Kveldsvik, V., Pedersen, G., and
Jensen, A.: Rockslide tsunamis in complex fjords: From an unstable rock
slope at Åkerneset to tsunami risk in western Norway, Coast. Eng.,
88, 101–122, 2014. a
Helmstetter, A. and Garambois, S.: Seismic monitoring of Séchilienne
rockslide (French Alps): Analysis of seismic signals and their correlation
with rainfalls, J. Geophys. Res.-Earth, 115, https://doi.org/10.1029/2009JF001532, 2010. a, b, c, d
Hibert, C., Malet, J.-P., Bourrier, F., Provost, F., Berger, F., Bornemann, P., Tardif, P., and Mermin, E.: Single-block rockfall dynamics inferred from seismic signal analysis, Earth Surf. Dynam., 5, 283–292, https://doi.org/10.5194/esurf-5-283-2017, 2017. a, b
Hilger, P., Hermann, R., Czekirda, J., Myhra, K., Gosse, J., and Etzelmüller,
B.: Permafrost as a first order control on long-term rock-slope deformation
in (Sub-)Arctic Norway, Quaternary Sci. Rev., 251, 106718, https://doi.org/10.1016/j.quascirev.2020.106718, 2021. a
Hinton, G., Osindero, S., and Teh, Y.: A fast learning algorithm for deep
belief nets, Neural Comput., 18, 1527–1554, 2006. a
Kang, K.-H., Chao, W.-A., Yang, C.-M., Chung, M.-C., Kuo, Y.-T., Yeh, C.-H.,
Liu, H.-C., Lin, C.-H., Lin, C.-P., Liao, J.-J., Chang, J.-M., Ngui, Y.-J.,
Chen, C.-H., and Tai, T.: Rigidity Strengthening of Landslide Materials
Measured by Seismic Interferometry, Remote Sensing, 13, 2834, https://doi.org/10.3390/rs13142834, 2021. a
Krautblatter, M., Funk, D., and Günzel, F.: Why permafrost rocks become
unstable: a rock–ice-mechanical model in time and space, Earth Surf.
Proc. Land., 38, 876–887, 2013. a
Kristensen, L., Rivolta, C., Dehls, J., and Blikra, L.: GB InSAR measurement at the Åknes rockslide, Norway, Ital. J. Eng. Geol. Environ., 2013, 339–348, https://doi.org/10.4408/IJEGE.2013-06.B-32, 2013. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with
Deep Convolutional Neural Networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1145/3065386, 2017. a
Lacroix, P. and Helmstetter, A.: Location of Seismic Signals Associated with
Microearthquakes and Rockfalls on the Sechilienne Landslide, French Alps,
B. Seismol. Soc. Am., 101, 341–353, 2011. a
Lacroix, P., Berthier, E., and Maquerhua, E.: Earthquake-driven acceleration
of slow-moving landslides in the Colca valley, Peru, detected from Pléiades
images, Remote Sens. Environ., 165, 148–158, 2015. a
Langet, N.: Détection et caractérisation massives de phénomènes
sismologiques pour la surveillance d’événements traditionnels et la
recherche systématique de phénomènes rares, PhD thesis, University of
Strasbourg, https://theses.hal.science/tel-01155650
(last access: 21 February 2023), 2014 (in French). a
Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., and Larose, E.:
Landslide monitoring using seismic ambient noise correlation: challenges and
applications, Earth-Sci. Rev., 216, 103518, https://doi.org/10.1016/j.earscirev.2021.103518, 2021. a
Lee, D., Aune, E., Langet, N., and Eidsvik, J.: Ensemble and self-supervised learning for improved classification of seismic signals from the Åknes rockslope, Mathemat. Geosci., https://doi.org/10.1007/s11004-022-10037-7, 2022. a, b
Lin, G.-W., Hung, C., Chang Chien, Y.-F., Chu, C.-R., Liu, C.-H., Chang, C.-H.,
and Chen, H.: Towards automatic landslide-quake identification using a
Random Forest classifier, Appl. Sci., 10, https://doi.org/10.3390/app10113670, 2020. a
Maggi, A., Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P., and
Amemoutou, A.: Implementation of a multistation approach for automated event
classification at Piton de la Fournaise volcano, Seismol. Res.
Lett., 88, 878–891, 2017. a
Magnin, F., Etzelmüller, B., Westermann, S., Isaksen, K., Hilger, P., and Hermanns, R. L.: Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes, Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019, 2019. a, b
Masotti, M., Falsaperla, S., Langer, H., Spampinato, S., and Campanini, R.:
Application of Support Vector Machine to the classification of volcanic
tremor at Etna, Italy, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027441, 2006. a
Nordvik, T. and Nyrnes, E.: Statistical analysis of surface displacements – an example from the Åknes rockslide, western Norway, Nat. Hazards Earth Syst. Sci., 9, 713–724, https://doi.org/10.5194/nhess-9-713-2009, 2009. a, b, c
Nordvik, T., Blikra, L., Nyrnes, E., and Derron, M.-H.: Statistical analysis of
seasonal displacements at the Nordnes rockslide, northern Norway, Eng.
Geol., 114, 228–237, 2010. a
NORSAR: Webpage about the Åknes Rock Slide,
https://www.norsar.no/r-d/safe-society/aknes/ (last access: 21 February 2023), 2022. a
NORSAR: Åknes surface geophone data for the time period 2007–2021, NORSAR [data set], https://doi.org/10.21348/d.no.0003, 2023. a
Occhiena, C., Coviello, V., Arattano, M., Chiarle, M., Morra di Cella, U., Pirulli, M., Pogliotti, P., and Scavia, C.: Analysis of microseismic signals and temperature recordings for rock slope stability investigations in high mountain areas, Nat. Hazards Earth Syst. Sci., 12, 2283–2298, https://doi.org/10.5194/nhess-12-2283-2012, 2012. a
Ohrnberger, M.: Continuous automatic classification of seismic signals of
volcanic origin at Mt. Merapi, Java, Indonesia, PhD thesis, Institut für
Geowissenschaften, University of Potsdam, urn:nbn:de:kobv:517-0000028, 2001. a
Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.-H., and Metzger, R.: Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning, Nat. Hazards Earth Syst. Sci., 9, 1003–1019, https://doi.org/10.5194/nhess-9-1003-2009, 2009. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance
Deep Learning Library, in: Advances in Neural Information Processing Systems
32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., Curran
Associates, Inc., 8024–8035,
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 21 February 2023),
2019. a
Pless, G., Blikra, L., and Kristensen, L.: Possibility for using drainage as
mitigation to increase the stability of the Åknes rock-slope instability,
Stranda in western Norway, NVE (Norwegian Water resources and Energy directorate),
https://publikasjoner.nve.no/rapport/2021/rapport2021_22.pdf (last access: 21 February 2023),
2021. a, b, c
Poli, P.: Creep and slip: Seismic precursors to the Nuugaatsiaq landslide
(Greenland), Geophys. Res. Lett., 44, 8832–8836, 2017. a
Provost, F., Malet, J.-P., Hibert, C., Helmstetter, A., Radiguet, M., Amitrano, D., Langet, N., Larose, E., Abancó, C., Hürlimann, M., Lebourg, T., Levy, C., Le Roy, G., Ulrich, P., Vidal, M., and Vial, B.: Towards a standard typology of endogenous landslide seismic sources, Earth Surf. Dynam., 6, 1059–1088, https://doi.org/10.5194/esurf-6-1059-2018, 2018. a, b, c, d, e, f, g, h
Roth, M. and Blikra, L. H. : Seismic monitoring of the unstable rock slope at Åknes, Norway, Geophys. Res. Abstract., 11,
https://doi.org/10.4133/1.2923645, 2009. a
Roth, M., Dietrich, M., Blikra, L., and Lecomte, I.: Seismic monitoring of the
unstable rock slope site at Åknes, 19th EEGS Symposium Proceedings, https://doi.org/10.3997/2214-4609-pdb.181.17,
2006. a
Schöpa, A., Chao, W.-A., Lipovsky, B. P., Hovius, N., White, R. S., Green, R. G., and Turowski, J. M.: Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath, Earth Surf. Dynam., 6, 467–485, https://doi.org/10.5194/esurf-6-467-2018, 2018. a
Senfaute, G., Duperret, A., and Lawrence, J. A.: Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: a case study at Mesnil-Val, Normandie, NW France, Nat. Hazards Earth Syst. Sci., 9, 1625–1641, https://doi.org/10.5194/nhess-9-1625-2009, 2009. a
Silverberg, F.: Feature and event analysis of seismic data using machine
learning at Åknes, MS thesis, University of Oslo,
http://urn.nb.no/URN:NBN:no-82306 (last access: 21 February 2023), 2020. a
Spillmann, T., Maurer, H., Green, A., Heincke, B., Willenberg, H., and Husem,
S.: Microseismic investigation of an unstable mountain slope in the Swiss
Alps, J. Geophys. Res., 112, https://doi.org/10.1029/2006JB004723, 2007. a
Takahashi, H., Tateiwa, K., Yano, K., and Kano, M.: A convolutional neural
network-based classification of local earthquakes and tectonic tremors in
Sanriku-oki, Japan, using S-net data, Earth Planets Space, 73, https://doi.org/10.1186/s40623-021-01524-y, 2021. a
Tassis, G. and Rønning, J.: Reprocessing of Refraction Seismic data from
Åknes, Stranda Municipality, Møre & Romsdal County, NGU (Norwegian
Geological Survey), 2019. a
Vouillamoz, N., Rothmund, S., and Joswig, M.: Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: the Super-Sauze (southeastern France) and Pechgraben (Upper Austria) case studies, Earth Surf. Dynam., 6, 525–550, https://doi.org/10.5194/esurf-6-525-2018, 2018. a, b
Walter, M., Schwaderer, U., and Joswig, M.: Seismic monitoring of precursory fracture signals from a destructive rockfall in the Vorarlberg Alps, Austria, Nat. Hazards Earth Syst. Sci., 12, 3545–3555, https://doi.org/10.5194/nhess-12-3545-2012, 2012. a
Wenner, M., Hibert, C., van Herwijnen, A., Meier, L., and Walter, F.: Near-real-time automated classification of seismic signals of slope failures with continuous random forests, Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, 2021. a, b
Yamada, M., Mori, J., and Matsushi, Y.: Possible stick-slip behavior before
the Rausu landslide inferred from repeating seismic events, Geophys.
Res. Lett., 43, 9038–9044, 2016. a
Zhang, Z., He, S., Liu, W., Liang, H., Yan, S., Deg, Y., Bai, X., and Chen, Z.:
Source characteristics and dynamics of the October 2018 Baige landslide
revealed by broadband seismograms, Landslides, 16, 777–785, https://doi.org/10.1007/s10346-019-01145-3, 2019.
a
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A.: Learning Deep
Features for Discriminative Localization, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2921–2929, IEEE Computer
Society, Los Alamitos, CA, USA, https://doi.org/10.1109/CVPR.2016.319, 2016. a
Short summary
Microseismic events recorded on the Åknes rock slope in Norway during the past 15 years are automatically divided into eight classes. The results are analysed and compared to meteorological data, showing a strong increase in the microseismic activity in spring mainly due to freezing and thawing processes.
Microseismic events recorded on the Åknes rock slope in Norway during the past 15 years are...