Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-321-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-321-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
Lindsay Marie Capito
CORRESPONDING AUTHOR
Department of Geosciences, University of Padova, Padova, 35131, Italy
Enrico Pandrin
Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento, 38122, Italy
Walter Bertoldi
Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento, 38122, Italy
Nicola Surian
Department of Geosciences, University of Padova, Padova, 35131, Italy
Simone Bizzi
Department of Geosciences, University of Padova, Padova, 35131, Italy
Related authors
No articles found.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Cited articles
Antoniazza, G., Bakker, M., and Lane, S. N.: Revisiting the morphological method in two-dimensions to quantify bed-material transport in braided rivers, Earth Surf. Proc. Land., 44, 2251–2267, https://doi.org/10.1002/esp.4633, 2019.
Ashmore, P. E. and Church, M.: Sediment transport and river morphology: a paradigm for study, Gravel-Bed Rivers Environ., 345, 115–139, 1998.
Bakker, M., Antoniazza, G., Odermatt, E., and Lane, S. N.: Morphological Response of an Alpine Braided Reach to Sediment-Laden Flow Events, J. Geophys. Res.-Earth, 124, 1310–1328, https://doi.org/10.1029/2018JF004811, 2019.
Barnhart, B. L. and Eichinger, W. E.: Empirical Mode Decomposition applied to solar irradiance, global temperature, sunspot number, and CO2 concentration data, J. Atmos. Sol.-Terr. Phy., 73, 1771–1779, https://doi.org/10.1016/j.jastp.2011.04.012, 2011.
Beechie, T. J.: Empirical predictors of annual bed load travel distance, and implications for salmonid habitat restoration and protection, Earth Surf. Proc. Land., 26, 1025–1034, https://doi.org/10.1002/esp.251, 2001.
Bertoldi, W., Zanoni, L., and Tubino, M.: Planform dynamics of braided streams, Earth Surf. Proc. Land., 34, 547–557, https://doi.org/10.1002/esp.1755, 2009.
Booker, W. H. and Eaton, B. C.: Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index, Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022, 2022.
Boudraa, A.-O., Cexus, J.-C., and Saidi, Z.: EMD-Based Signal Noise Reduction, Signal Process., 1, 33–37, 2005.
Brasington, J., Rumsby, B. T., and McVey, R. A.: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey, Earth Surf. Proc. Land., 25, 973–990, https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y, 2000.
Brasington, J., Langham, J., and Rumsby, B.: Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport, Geomorphology, 53, 299–316, https://doi.org/10.1016/S0169-555X(02)00320-3, 2003.
Brenna, A. and Surian, N.: Coarse sediment mobility and fluxes in wide mountain streams: Insights using the virtual velocity approach, Geomorphology, 427, 108625, https://doi.org/10.1016/j.geomorph.2023.108625, 2023.
Brenna, A., Surian, N., and Mao, L.: Virtual Velocity Approach for Estimating Bed Material Transport in Gravel-Bed Rivers: Key Factors and Significance, Water Resour. Res., 55, 1651–1674, https://doi.org/10.1029/2018WR023556, 2019.
Brenna, A., Surian, N., Ghinassi, M., and Marchi, L.: Sediment–water flows in mountain streams: Recognition and classification based on field evidence, Geomorphology, 371, 107413, https://doi.org/10.1016/j.geomorph.2020.107413, 2020.
Brewer, P. A. and Passmore, D. G.: Sediment budgeting techniques in gravel-bed rivers, Geol. Soc. Lond. Spec. Publ., 191, 97–113, https://doi.org/10.1144/GSL.SP.2002.191.01.07, 2002.
Calle, M., Calle, J., Alho, P., and Benito, G.: Inferring sediment transfers and functional connectivity of rivers from repeat topographic surveys, Earth Surf. Proc. Land., 45, 681–693, https://doi.org/10.1002/esp.4765, 2020.
Church, M.: Bed Material Transport and the Morphology of Alluvial River Channels, Annu. Rev. Earth Pl. Sc., 34, 325–354, https://doi.org/10.1146/annurev.earth.33.092203.122721, 2006.
Church, M. and Haschenburger, J. K.: What is the “active layer”?, Water Resour. Res., 53, 5–10, https://doi.org/10.1002/2016WR019675, 2017.
Danziger, Z.: Hausdorff Distance, MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/26738-hausdorff-distance (last access: 10 February 2023), 2023.
Dragomiretskiy, K. and Zosso, D.: Variational Mode Decomposition, IEEE T. Signal Proces., 62, 531–544, https://doi.org/10.1109/TSP.2013.2288675, 2014.
Einstein, H. A.: Bedload transport as a probability problem, PhD Dissertation, (English translation), in: Sedimentation, Water Resources Publications, edited by: Shen, H. W., Fort Collins, CO, Appendix C, 105 pp., 1937.
Ferguson, R. I. and Ashworth, P. J.: Spatial patterns of bedload transport and channel change in braided and near-braided rivers, Dyn. Gravel-Bed Rivers, edited by: Billi, P., Hey, R. D., Thorne, C. R., and Tacconi, P., https://www.researchgate.net/publication/279961017_Spatial_patterns_of_bedload_transport_and_channel_change_in_braided_and_near-braided_rivers (last access: 10 March 2023), 1992.
Garcia Lugo, G. A., Bertoldi, W., Henshaw, A. J., and Gurnell, A. M.: The effect of lateral confinement on gravel bed river morphology, Water Resour. Res., 51, 7145–7158, https://doi.org/10.1002/2015WR017081, 2015.
Goff, J. R. and Ashmore, P.: Gravel transport and morphological change in braided sunwapta river, Alberta, Canada, Earth Surf. Proc. Land., 19, 195–212, https://doi.org/10.1002/esp.3290190302, 1994.
Grams, P. E., Topping, D. J., Schmidt, J. C., Hazel Jr., J. E., and Kaplinski, M.: Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and sampling design, J. Geophys. Res.-Earth, 118, 361–381, https://doi.org/10.1002/jgrf.20050, 2013.
Grams, P. E., Buscombe, D., Topping, D. J., Kaplinski, M., and Hazel, J. E.: How many measurements are required to construct an accurate sand budget in a large river? Insights from analyses of signal and noise, Earth Surf. Proc. Land., 44, 160–178, https://doi.org/10.1002/esp.4489, 2019.
Hassan, M. A. and Bradley, D. N.: Geomorphic Controls on Tracer Particle Dispersion in Gravel-Bed Rivers, in: Gravel-Bed Rivers, John Wiley & Sons Ltd., 159–184, https://doi.org/10.1002/9781118971437.ch6, 2017.
Hassan, M. A., Church, M., and Schick, A. P.: Distance of movement of coarse particles in gravel bed streams, Water Resour. Res., 27, 503–511, https://doi.org/10.1029/90WR02762, 1991.
Hassan, M. A., Church, M., and Ashworth, P. J.: Virtual rate and mean distance of travel of individual clasts in gravel-bed channels, Earth Surf. Proc. Land., 17, 617–627, https://doi.org/10.1002/esp.3290170607, 1992.
Hoey, T.: Temporal variations in bedload transport rates and sediment storage in gravel-bed rivers, Prog. Phys. Geog., 16, 319–338, https://doi.org/10.1177/030913339201600303, 1992.
Huang, N., Chen, H., Cai, G., Fang, L., and Wang, Y.: Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier, Sensors, 16, 1887, https://doi.org/10.3390/s16111887, 2016.
Hundey, E. J. and Ashmore, P. E.: Length scale of braided river morphology, Water Resour. Res., 45, 1–9, https://doi.org/10.1029/2008WR007521, 2009.
Inc, T. M.: MATLAB version: 9.13.0 (R2022b), https://www.mathworks.com (last access: 1 January 2022), 2022.
Kasprak, A., Wheaton, J. M., Ashmore, P. E., Hensleigh, J. W., and Peirce, S.: The relationship between particle travel distance and channel morphology: results from physical models of braided rivers., J. Geophys. Res.-Earth, 120, 55–74, 2015.
Lane, S. N., Richards, K. S., and Chandler, J. H.: Morphological Estimation of the Time-Integrated Bed Load Transport Rate, Water Resour. Res., 31, 761–772, https://doi.org/10.1029/94WR01726, 1995.
Lane, S. N., Westaway, R. M., and Murray Hicks, D.: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing, Earth Surf. Proc. Land., 28, 249–271, https://doi.org/10.1002/esp.483, 2003.
Liébault, F., Bellot, H., Chapuis, M., Klotz, S., and Deschâtres, M.: Bedload tracing in a high-sediment-load mountain stream: bedload tracing in a high-sediment-load mountain stream, Earth Surf. Proc. Land., 37, 385–399, https://doi.org/10.1002/esp.2245, 2012.
Lindsay, J. B. and Ashmore, P. E.: The effects of survey frequency on estimates of scour and fill in a braided river model, Earth Surf. Proc. Land., 27, 27–43, https://doi.org/10.1002/esp.282, 2002.
Liu, S., He, Q., Gao, R. X., and Freedson, P.: Empirical mode decomposition applied to tissue artifact removal from respiratory signal, in: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 30 August 2008, 3624–3627, https://doi.org/10.1109/IEMBS.2008.4649991, 2008.
Ma, W., Yin, S., Jiang, C., and Zhang, Y.: Variational mode decomposition denoising combined with the Hausdorff distance, Rev. Sci. Instrum., 88, 035109, https://doi.org/10.1063/1.4978029, 2017.
Mao, L., Picco, L., Lenzi, M. A., and Surian, N.: Bed material transport estimate in large gravel-bed rivers using the virtual velocity approach: Virtual velocity for bed material transport estimate, Earth Surf. Proc. Land., 42, 595–611, https://doi.org/10.1002/esp.4000, 2017.
McDowell, C. and Hassan, M. A.: The influence of channel morphology on bedload path lengths: Insights from a survival process model, Earth Surf. Proc. Land., 45, 2982–2997, https://doi.org/10.1002/esp.4946, 2020.
McDowell, C., Gaeuman, D., and Hassan, M. A.: Linkages between bedload displacements and topographic change, Earth Surf. Proc. Land., 46, 3127–3142, https://doi.org/10.1002/esp.5221, 2021.
McLean, D. G. and Church, M.: Sediment transport along lower Fraser River: 2. Estimates based on the long-term gravel budget, Water Resour. Res., 35, 2549–2559, https://doi.org/10.1029/1999WR900102, 1999.
McQueen, R., Ashmore, P., Millard, T., and Goeller, N.: Bed Particle Displacements and Morphological Development in a Wandering Gravel-Bed River, Water Resour. Res., 57, e2020WR027850, https://doi.org/10.1029/2020WR027850, 2021.
Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, GSA Bull., 109, 596–611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997.
Neill, C. R.: River Bed Transport Related to Meander Migration Rates, J. Waterway. Div.-ASCE, 97, 783–786, https://doi.org/10.1061/AWHCAR.0000135, 1971.
Pandrin, E. and Bertoldi, W.: Pandrin&Bertoldi – DEMs and Sediment Flux from Pi Flume experiments, Zenodo [data set], https://doi.org/10.5281/zenodo.8014454, 2023.
Pyrce, R. and Ashmore, P.: The relation between particle path length distributions and channel morphology in gravel-bed streams: A synthesis, Geomorphology, 56, 167–187, https://doi.org/10.1016/S0169-555X(03)00077-1, 2003a.
Pyrce, R. S. and Ashmore, P. E.: Particle path length distributions in meandering gravel-bed streams: results from physical models, Earth Surf. Proc. Land., 28, 951–966, https://doi.org/10.1002/esp.498, 2003b.
Pyrce, R. S. and Ashmore, P. E.: Bedload path length and point bar development in gravel-bed river models, Sedimentology, 52, 839–857, https://doi.org/10.1111/j.1365-3091.2005.00714.x, 2005.
Redolfi, M.: Sediment transport and morphology of braided rivers: steady and unsteady regime, PhD thesis, Queen Mary University of London, http://qmro.qmul.ac.uk/xmlui/handle/123456789/8857 (last access: 25 July 2023), 2015.
Roux, C., Alber, A., Bertrand, M., Vaudor, L., and Piégay, H.: “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration, Geomorphology, 242, 29–37, https://doi.org/10.1016/j.geomorph.2014.04.018, 2015.
Schneider, J. M., Turowski, J. M., Rickenmann, D., Hegglin, R., Arrigo, S., Mao, L., and Kirchner, J. W.: Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels, J. Geophys. Res.-Earth, 119, 533–549, https://doi.org/10.1002/2013JF002874, 2014.
Sigmund, M.: Voice Recognition by Computer, Tectum Verlag DE, 114 pp., ISBN 978-3-8288-8492-2, 2003.
Upadhyay, A. and Pachori, R. B.: Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition, J. Frankl. Inst., 352, 2679–2707, https://doi.org/10.1016/j.jfranklin.2015.04.001, 2015.
Vázquez-Tarrío, D. and Batalla, R. J.: Assessing Controls on the Displacement of Tracers in Gravel-Bed Rivers, Water, 11, 1598, https://doi.org/10.3390/w11081598, 2019.
Vázquez-Tarrío, D., Recking, A., Liébault, F., Tal, M., and Menéndez-Duarte, R.: Particle transport in gravel-bed rivers: Revisiting passive tracer data: Particle transport in gravel-bed rivers, Earth Surf. Proc. Land., 44, 112–128, https://doi.org/10.1002/esp.4484, 2019.
Vericat, D., Church, M., and Batalla, R. J.: Bed load bias: Comparison of measurements obtained using two (76 and 152 mm) Helley-Smith samplers in a gravel bed river, Water Resour. Res., 42, W01402, https://doi.org/10.1029/2005WR004025, 2006
Vericat, D., Wheaton, J. M., and Brasington, J.: Revisiting the Morphological Approach, in: Gravel-Bed Rivers, John Wiley & Sons, Ltd, 121–158, https://doi.org/10.1002/9781118971437.ch5, 2017.
Wheaton, J. M.: Uncertainity in morphological sediment budgeting of rivers, PhD thesis, University of Southampton, http://eprints.soton.ac.uk/id/eprint/466488 (last access: 25 July 2023), 2008.
Wheaton, J. M., Brasington, J., Darby, S. E., and Sear, D. A.: Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets, Earth Surf. Proc. Land., 35, 136–156, https://doi.org/10.1002/esp.1886, 2010.
Wilcock, P. R.: Entrainment, displacement and transport of tracer gravels, Earth Surf. Proc. Land., 22, 1125–1138, https://doi.org/10.1002/(SICI)1096-9837(199712)22:12<1125::AID-ESP811>3.0.CO;2-V, 1997.
Wu, S., Feng, F., Zhu, J., Wu, C., and Zhang, G.: A Method for Determining Intrinsic Mode Function Number in Variational Mode Decomposition and Its Application to Bearing Vibration Signal Processing, Shock Vib., 2020, 1–16, https://doi.org/10.1155/2020/8304903, 2020.
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a...