Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-819-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-819-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of the forcing sources in morphodynamic modelling of an embayed beach
Department of Physics, Universitat Politècnica de Catalunya, C/Jordi Girona 1–3, 08034 Barcelona, Spain
Albert Falqués
Department of Physics, Universitat Politècnica de Catalunya, C/Jordi Girona 1–3, 08034 Barcelona, Spain
Department of Physics, Universitat Politècnica de Catalunya, C/Jordi Girona 1–3, 08034 Barcelona, Spain
Daniel Calvete
Department of Physics, Universitat Politècnica de Catalunya, C/Jordi Girona 1–3, 08034 Barcelona, Spain
Rinse de Swart
Department of Physics, Universitat Politècnica de Catalunya, C/Jordi Girona 1–3, 08034 Barcelona, Spain
now at: WaterProof Marine Consultancy & Services BV, 8221 RC Lelystad, the Netherlands
Ruth Durán
Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
Candela Marco-Peretó
Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
Marta Marcos
Institut Mediterrani d'Estudis Avançats (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
Angel Amores
Institut Mediterrani d'Estudis Avançats (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
Tim Toomey
Institut Mediterrani d'Estudis Avançats (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
Àngels Fernández-Mora
Balearic Islands Coastal Observing and Forecasting System (SOCIB), Parc Bit, Naorte, Bloc A, 07121 Palma de Mallorca, Illes Balears, Spain
Jorge Guillén
Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
Related authors
No articles found.
Michael G. Hart-Davis, Roman L. Sulzbach, Stefan A. Talke, Ivan D. Haigh, Marta Marcos, Philip Woodworth, Richard Ray, Ole B. Andersen, Florent Lyard, Ergane Fouchet, Denise Dettmering, Maik Thomas, and Florian Seitz
EGUsphere, https://doi.org/10.5194/egusphere-2026-346, https://doi.org/10.5194/egusphere-2026-346, 2026
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Ocean tides are a critical component of the global climate system, influencing a wide range of geophysical processes. Tide gauges have been a valuable source to develop the theory of ocean tides and understand their variability. We present updated tidal characteristics from the GESLA-4 global tide gauge dataset. We provide updated and new statistics on tidal properties, intended to be useful to a range of communities, from navigation and fishing communities to ocean scientists and tidal experts.
Xavier Sánchez-Artús, Vicente Gracia, Manuel Espino, Manel Grifoll, Gonzalo Simarro, Jorge Guillén, Marta González, and Agustín Sanchez-Arcilla
Ocean Sci., 21, 749–766, https://doi.org/10.5194/os-21-749-2025, https://doi.org/10.5194/os-21-749-2025, 2025
Short summary
Short summary
The study presents an operational service that forecasts flood impacts during extreme conditions at three beaches in Barcelona, Spain. The architecture is designed for efficient use on standard desktop computers, using data from the Copernicus Marine Environment Monitoring Service, task automation tools, Python scripts, and the XBeach model to deliver timely results. Extensive validation, including field campaigns and video analysis, ensures accuracy and reliability.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Mélanie Juza, Marta de Alfonso, and Ángels Fernández-Mora
State Planet, 4-osr8, 14, https://doi.org/10.5194/sp-4-osr8-14-2024, https://doi.org/10.5194/sp-4-osr8-14-2024, 2024
Short summary
Short summary
The western Mediterranean suffered unprecedented marine heatwaves in 2022. We focus on the coastal ocean, which is highly vulnerable to global warming and extreme events. Using satellite and in situ observations, strong spatiotemporal variations in the marine heatwave characteristics have been observed in 2022 and over the last decade. Differences between datasets also invite us to continue with efforts to sustain multi-platform observing systems from open-ocean to coastal ocean waters.
Riccardo Angelini, Eduard Angelats, Guido Luzi, Francesca Ribas, and Andrea Masiero
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 1–6, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-1-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-1-2024, 2024
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
R. Angelini, E. Angelats, G. Luzi, F. Ribas, A. Masiero, and F. Mugnai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-17-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-17-2023, 2023
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Cited articles
Adger, W. N., Arnell, N. W., and Tompkins, E. L.: Successful adaptation to climate change across scales, Global Environ. Chang., 15, 77–86, 2005. a
Amores, A., Marcos, M., Carrió, D. S., and Gómez-Pujol, L.: Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean, Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, 2020. a
Angnuureng, D. B., Almar, R., Senechal, N., Castelle, B., Addo, K. A., Marieu, V., and Ranasinghe, R.: Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach, Geomorphology, 290, 265–276, 2017. a
Antolínez, J. A. A., Murray, A. B., Méndez, J., Moore, L. J., Farley, G., and Wood, J.: Downscaling Changing Coastlines in a Changing Climate: The Hybrid Approach, J. Geophys. Res.-Earth, 123, 229–251, 2018. a
Bae, H., Do, K., Kim, I., and Chang, S.: Proposal of Parameter Range that Offered Optimal Performance in the Coastal Morphodynamic Model (XBeach) Through GLUE, Journal of Ocean Engineering and Technology, 36, 251–269, https://doi.org/10.26748/KSOE.2022.013, 2022. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a
Bruun, P.: Sea-level rise as a cause of shore erosion, Journal of the Waterways and Harbors Division, 88, 117–130, 1962. a
Cooper, J. and Pilkey, O.: Sea-level rise and shoreline retreat: time to abandon the Bruun Rule, Global Planet. Change, 43, 157–171, 2004. a
Dean, R. G. and Dalrymple, R. A.: Coastal Processes with Engineering Applications, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511754500, 2001. a
De Swart, R. L., Ribas, F., Calvete, D., Kroon, A., and Orfila, A.: Optimal estimations of directional wave conditions for nearshore field studies, Cont. Shelf Res., 196, 104071, https://doi.org/10.1016/j.csr.2020.104071, 2020. a
De Swart, R. L., Ribas, F., Simarro, G., Guillén, J., and Calvete, D.: The role of bathymetry and directional wave conditions on observed crescentic bar dynamics, Cont. Shelf Res., 46, 3252–3270, https://doi.org/10.1002/esp.5233, 2021. a, b, c
Elsayed, S. M. and Oumeraci, H.: Effect of beach slope and grain-stabilization on coastal sediment transport: An attempt to overcome the erosion overestimation by XBeach, Coast. Eng., 121, 179–196, 2017. a
Falqués, A., Ribas, F., Mujal-Colilles, A., and Puig-Polo, C.: A new morphodynamic instability associated with cross-shore transport in the nearshore, Geophys. Res. Lett., 48, e2020GL091722, https://doi.org/10.1029/2020GL091722, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Keeley, M. J. S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
Hinkel, J., Aerts, J. C. H., Brown, S., Jiménez, J. A., Lincke, D., Nicholls, R. J., Scussolini, P., Sanchez-Arcilla, A., Vafeidis, A., and Addo, K. A.: The ability of societies to adapt to twenty-first-century sea-level rise, Nat. Clim. Change, 8, 570–578, 2018. a
Horikawa, K.: Nearshore Dynamics and Coastal Processes, University of Tokio Press, Tokio, Japan, ISBN 4-13-068138-9, 1988. a
Karunarathna, H. and Reeve, D. E.: A hybrid approach to model shoreline change at multiple timescales, Cont. Shelf Res., 66, 29–35, 2013. a
Lindemer, C. A., Plant, N. G., Puleo, J. A., Thompson, D. M., and Wamsley, T. V.: Numerical simulation of low-lying barrier island's morphological response to Hurricane Katrina, Coast. Eng., 57, 985–995, 2010. a
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and Xoplaki, E.: The Mediterranean climate: An overview of the main characteristics and issues, Developments in Earth and Environmental Sciences, 4, 1–26, 2006. a
Luijendijk, A. P., Ranasinghe, R., de Schipper, M. A., Huisman, B. A., Swinkels, C. M., Walstra, D. J., and Stive, M. J.: The initial morphological response of the Sand Engine: A process-based modelling study, Coast. Eng., 119, 1–14, https://doi.org/10.1016/j.coastaleng.2016.09.005, 2017. a
Luque, P., Gómez-Pujol, L., Ribas, F., Falqués, A., Marcos, M., and Orfila, A.: Shoreline response to sea-level rise according to equilibrium beach profiles, Sci. Rep., 13, 15789, https://doi.org/10.1038/s41598-023-42672-3, 2023. a
Martínez, M. L., Intralawan, A., Vázquez, G., Pérez-Maqueo, O., Sutton, P., and Landgrave, R.: The coasts of our world: Ecological, economic and social importance, Ecol. Econ., 63, 254–272, 2007. a
McCall, R. T., de Vries, J. S. M. V. T., Plant, N. G., Dongeren, A. R. V., Roelvink, J. A., Thompson, D. M., and Reniers, A. J. H. M.: Two-dimensional time dependent hurricane overwash and erosion modelling at Santa Rosa Island, Coast. Eng., 57, 668–683, 2010. a
Melito, L., Parlagreco, L., and Brocchini, M.: Wave- and Tide-Induced Infragravity Dynamics at an Intermediate-To-Dissipative Microtidal Beach, J. Geophys. Res.-Oceans, 127, e2021JC017980, https://doi.org/10.1029/2021JC017980, 2022. a
Monioudi, I. N., Velegrakis, A. F., Chatzipavlis, A. E., Rigos, A., Karambas, T., Vousdoukas, M. I., Hasiotis, T., Koukourouvli, N., Peduzzi, P., Manoutsoglou, E., Poulos, S. E., and Collins, M. B.: Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean), Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, 2017. a
Montaño, J., Coco, G., Antolínez, J. A. A., Beuzen, T., Bryan, K. R., Cagigal, L., Castelle, B., Davidson, M. A., Goldstein, E. B., Ibaceta, R., Idier, D., Ludka, B. C., Masoud-Ansari, S., Méndez, F. J., Murray, A. B., Plant, N. G., Ratliff, K. M., Robinet, A., amd N. Sénéchal, A. R., Simmons, J. A., Splinter, K. D., Stephens, S., Townend, I., Vitousek, S., and Vos, K.: Blind testing of shoreline evolution models, Sci. Rep., 10, 137–145, https://doi.org/10.1038/s41598-020-59018-y, 2020. a, b
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding – A Global Assessment, PLoS ONE, 10, e0131375, https://doi.org/10.1371/journal.pone.0118571, 2015. a
Nicholls, R. J., French, J. R., and van Maanen, B.: Simulating decadal coastal morphodynamics, Geomorphology, 256, 1–2, 2016. a
Ojeda, E. and Guillén, J.: Shoreline dynamics and beach rotation of artificial embayed beaches, Mar. Geol., 253, 51–62, https://doi.org/10.1016/j.margeo.2008.03.010, 2008. a
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abdelgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Mayssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, Tech. rep., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands (last access: 22 March 2023), 2019. a
Passeri, D. L., Long, J. W., Plant, N. G., Bilskie, M. V., and Hagen, S. C.: Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: Application to the southern Rhode Island coast, Coast. Eng., 132, 82–94, 2018. a
Pedersen, T., Siegel, E., and Wood, J.: Directional wave measurements from a subsurface buoy with an acoustic wave and current profiler (AWAC), in: OCEANS-IEEE, 1–5, p. 287, https://doi.org/10.1109/OCEANS.2007.4449153, 2007. a
Pérez-Gómez, B., García-León, M., García-Valdecasas, J., Clementi, E., Aranda, C. M., Pérez-Rubio, S., Coppini, G., Molina-Sánchez, R., Muñoz-Cubillo, A., Fletcher, A. G., González, J. F. S., Sánchez-Arcilla, A., and Fanjul, E. A.: Understanding Sea Level Processes During Western Mediterranean Storm Gloria, Front. Mar. Sci., 8, 647437, https://doi.org/10.3389/fmars.2021.647437, 2021. a
Ranasinghe, R.: Assessing climate change impacts on open sandy coasts: A review, Earth-Sci. Rev., 160, 320–332, 2016. a
Ranasinghe, R.: On the need for a new generation of coastal change models for the 21st century, Sci. Rep., 10, 2010, https://doi.org/10.1038/s41598-020-58376-x, 2020. a, b
Ranasinghe, R., Callaghan, D., Stive, M. J. F., Black, K., and Holman, R.: Estimating coastal recession due to sea level rise: beyond the Bruun rule, Climatic Change, 110, 561–574, 2012. a
Ribas, F., Portos-Amill, L., Falqués, A., Arriaga, J., Marcos, M., and Ruessink, G.: Impact of mean sea-level rise on the long-term evolution of a mega-nourishment, Climatic Change, 176, 66, https://doi.org/10.1007/s10584-023-03503-6, 2023. a, b, c
Robinet, A., Idier, D., Castelle, B., and Marieu, V.: A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-Shore model, Environ. Modell. Softw., 109, 1–16, 2018. a
Rutten, J., Torres-Freyermuth, A., and Puleo, J. A.: Uncertainty in runup predictions on natural beaches using XBeach nonhydrostatic, Coast. Eng., 116, 103869, https://doi.org/10.1016/j.coastaleng.2021.103869, 2021. a, b
Sánchez-Arcilla, A., González-Marco, D., and Bolaños, R.: A review of wave climate and prediction along the Spanish Mediterranean coast, Nat. Hazards Earth Syst. Sci., 8, 1217–1228, https://doi.org/10.5194/nhess-8-1217-2008, 2008. a
Sánchez-Artús, X., Gracia, V., Espino, M., Sierra, J. P., Pinyol, J., and Sánchez-Arcilla, A.: Present and future flooding and erosion along the NW Spanish Mediterranean Coast, Front. Mar. Sci., 10, 1125138, https://doi.org/10.3389/fmars.2023.1125138, 2023. a
Sancho-García, A., Guillén, J., Gracia, V., Rodríguez-Gómez, A. C., and Rubio-Nicolás, B.: The Use of News Information Published in Newspapers to Estimate the Impact of Coastal Storms at Regional Scale, J. Mar. Sci. Eng., 9, 497, https://doi.org/10.3390/jmse9050497, 2021. a
Sanuy, M. and Jiménez, J. A.: Sensitivity of Storm-Induced Hazards in a Highly Curvilinear Coastline to Changing Storm Directions. The Tordera Delta Case (NW Mediterranean), Water, 11, 747, https://doi.org/10.3390/w11040747, 2019. a
Simarro, G., Bryan, K. R., Guedes, R. M., Sancho, A., Guillen, J., and Coco, G.: On the use of variance images for runup and shoreline detection, Coast. Eng., 99, 136–147, 2015. a
Sutherland, J.: Evaluating the performance of morphological models, Coast. Eng., 51, 917–939, 2004. a
SWAN Team: SWAN Scientific and Technical Documentation, SWAN Cycle III Version 41.31, Tech. rep., Delft University of Technology, Delft, the Netherlands, https://www.studocu.com/cl/document/universidad-de-valparaiso/hidraulica-maritima/manual-swan/71795498 (last access: 22 January 2023), 2019a. a
SWAN Team: SWAN User Manual, SWAN Cycle III Version 41.31, Tech. rep., Delft University of Technology, Delft, the Netherlands, https://swanmodel.sourceforge.io/download/zip/swanuse.pdf (last access: 22 January 2023), 2019b. a
Toimil, A., Camus, P., Losada, I., Cozannet, G. L., Nicholls, R., Idier, D., and Maspataud, A.: Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment, Earth-Sci. Rev., 202, 103110, https://doi.org/10.1016/j.earscirev.2020.103110, 2020. a
Toomey, T., Amores, A., Marcos, M., and Orfila, A.: Coastal sea levels and wind-waves in the Mediterranean Sea since 1950 from a high-resolution ocean reanalysis, Front. Mar. Sci., 9, 991504, https://doi.org/10.3389/fmars.2022.991504, 2022. a, b
van den Berg, N., Falqués, A., and Ribas, F.: Long-term evolution of nourished beaches under high angle wave conditions, J. Marine Syst., 88, 102–112, 2011. a
van den Berg, N., Falqués, A., and Ribas, F.: Modelling large scale shoreline sand waves under oblique wave incidence, J. Geophys. Res., 117, F03019, https://doi.org/10.1029/2011JF002177, 2012. a
van Thiel de Vries, J.: Dune erosion during storm surges, PhD thesis, Delft University of Technology, Amsterdam, the Netherlands, http://resolver.tudelft.nl/uuid:885bf4b3-711e-41d4-98a4-67fc700461ff (last access: 12 October 2022), 2009. a
Vousdoukas, M. I., Almeida, L. P., and Ferreira, Ó.: Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach, J. Coastal Res., 64, 1916–1920, 2011. a
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Freyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, 2016. a
Zhang, Y. J., Ye, F., Emil, V. S., and Sebastian, G.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–81, 2016. a
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach...