Articles | Volume 5, issue 3
https://doi.org/10.5194/esurf-5-399-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-399-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The influence of turbulent bursting on sediment resuspension under unidirectional currents
Sarik Salim
CORRESPONDING AUTHOR
School of Civil Environmental and Mining Engineering and UWA
Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Charitha Pattiaratchi
School of Civil Environmental and Mining Engineering and UWA
Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Rafael Tinoco
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Giovanni Coco
Faculty of Science, University of Auckland, Auckland 1142, New Zealand
Yasha Hetzel
School of Civil Environmental and Mining Engineering and UWA
Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Sarath Wijeratne
School of Civil Environmental and Mining Engineering and UWA
Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Ravindra Jayaratne
School of Architecture, Computing and Engineering, University of East London,
Docklands Campus, 4–6 University Way, London, E16 2RD, UK
Related authors
No articles found.
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292, https://doi.org/10.5194/egusphere-2025-2292, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study evaluates the performance of an early warning system for coastal flooding operating at a beach scale. The system is found to effectively capture total water level exceedances based on predefined morphological thresholds and trigger timely warnings, particularly under energetic sea conditions. Its forecasts are found to align well with selected overwash/flood events of varying magnitude and duration, captured by an on-site coastal video monitoring station.
Sharani Kodithuwakku, Charitha Pattiaratchi, Simone Cosoli, and Yasha Hetzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2901, https://doi.org/10.5194/egusphere-2024-2901, 2024
Preprint archived
Short summary
Short summary
Mesoscale eddies are rotating structures in the ocean. This study investigates the surface and subsurface characteristics of mesoscale eddies in the vicinity of Perth submarine canyon off the southwest coast of Western Australia using Ocean Gliders. Eight Seaglider missions that intersected eddies revealed nine distinct vertical structures, comprising four cyclonic and five anti-cyclonic eddies. There was upwelling in cyclonic eddies and downwelling in anti-cyclonic eddies.
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024, https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Short summary
We collected observations of the ocean environment at depths over 6000 m in the Southern Ocean, Indian Ocean, and western Pacific using sensor-equipped landers. We found that trench locations impact the water characteristics over these depths. Moving northward, they generally warmed but differed due to their position along bottom water circulation paths. These insights stress the importance of further research in understanding the environment of these deep regions and their importance.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Charitha Pattiaratchi, Mirjam van der Mheen, Cathleen Schlundt, Bhavani E. Narayanaswamy, Appalanaidu Sura, Sara Hajbane, Rachel White, Nimit Kumar, Michelle Fernandes, and Sarath Wijeratne
Ocean Sci., 18, 1–28, https://doi.org/10.5194/os-18-1-2022, https://doi.org/10.5194/os-18-1-2022, 2022
Short summary
Short summary
The Indian Ocean receives a large proportion of plastics, but very few studies have addressed the sources, transport pathways, and sinks. There is a scarcity of observational data for the Indian Ocean. Most plastic sources are derived from rivers, although the amount derived from fishing activity (ghost nets, discarded ropes) is unknown. The unique topographic features of the Indian Ocean that create the monsoons and reversing currents have a large influence on the transport and sinks.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Giovanni Coco, Daniel Calvete, Francesca Ribas, Huib E. de Swart, and Albert Falqués
Earth Surf. Dynam., 8, 323–334, https://doi.org/10.5194/esurf-8-323-2020, https://doi.org/10.5194/esurf-8-323-2020, 2020
Short summary
Short summary
Sandbars are ubiquitous features of the surf zone. They are rarely straight and often develop crescentic shapes. Double sandbar systems are also common, but the possibility of feedback between inner and outer sandbars has not been fully explored. The presence of double sandbar systems affects wave transformation and can result in a variety of spatial patterns. Here we model the conditions, waves and initial bathymetry that lead to the emergence of different patterns.
Miaoju Chen, Charitha B. Pattiaratchi, Anas Ghadouani, and Christine Hanson
Ocean Sci., 15, 333–348, https://doi.org/10.5194/os-15-333-2019, https://doi.org/10.5194/os-15-333-2019, 2019
Julie A. Trotter, Charitha Pattiaratchi, Paolo Montagna, Marco Taviani, James Falter, Ron Thresher, Andrew Hosie, David Haig, Federica Foglini, Quan Hua, and Malcolm T. McCulloch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-319, https://doi.org/10.5194/bg-2018-319, 2018
Manuscript not accepted for further review
Short summary
Short summary
The first ROV exploration of the Perth Canyon offshore southwest Australia discovered diverse
hot spotsof deep-sea biota to depths of ~ 2000 m. Some corals were living below the carbonate saturation horizon. Extensive coral graveyards found at ~ 700 and ~ 1700 m are between ~ 18 000 and ~ 30 000 years old, indicating these corals flourished during the last ice age. Anthropogenic carbon detected within the upper ~ 800 m highlights the increasing threat of climate change to deep-sea ecosystems.
Marinella Passarella, Evan B. Goldstein, Sandro De Muro, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 18, 599–611, https://doi.org/10.5194/nhess-18-599-2018, https://doi.org/10.5194/nhess-18-599-2018, 2018
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016, https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Short summary
The Marine Virtual Laboratory (MARVL) is designed to help ocean modellers hit the ground running. Usually, setting up an ocean model involves a handful of technical steps that time and effort. MARVL provides a user-friendly interface that allows users to choose what options they want for their model, including the region, time period, and input data sets. The user then hits "go", and MARVL does the rest – delivering a "take-away bundle" that contains all the files needed to run the model.
J. Reisser, B. Slat, K. Noble, K. du Plessis, M. Epp, M. Proietti, J. de Sonneville, T. Becker, and C. Pattiaratchi
Biogeosciences, 12, 1249–1256, https://doi.org/10.5194/bg-12-1249-2015, https://doi.org/10.5194/bg-12-1249-2015, 2015
Short summary
Short summary
Subsurface observations of ocean plastics are very scarce but essential for adequate estimates of marine plastic pollution levels. We sampled plastics from the sea surface to a depth of 5m, at 0.5m intervals. Vertical mixing was dependent on sea state and affected the abundance, mass, and sizes of plastic debris floating at the sea surface. This has important implications for studies assessing at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.
A. de Vos, C. B. Pattiaratchi, and E. M. S. Wijeratne
Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, https://doi.org/10.5194/bg-11-5909-2014, 2014
S. R. Kularatne, J. Doucette, and C. B. Pattiaratchi
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurfd-2-215-2014, https://doi.org/10.5194/esurfd-2-215-2014, 2014
Revised manuscript has not been submitted
M. Jiménez, S. Castanedo, Z. Zhou, G. Coco, R. Medina, and I. Rodriguez-Iturbe
Adv. Geosci., 39, 69–73, https://doi.org/10.5194/adgeo-39-69-2014, https://doi.org/10.5194/adgeo-39-69-2014, 2014
Z. Zhou, L. Stefanon, M. Olabarrieta, A. D'Alpaos, L. Carniello, and G. Coco
Earth Surf. Dynam., 2, 105–116, https://doi.org/10.5194/esurf-2-105-2014, https://doi.org/10.5194/esurf-2-105-2014, 2014
R. O. Tinoco and G. Coco
Earth Surf. Dynam., 2, 83–96, https://doi.org/10.5194/esurf-2-83-2014, https://doi.org/10.5194/esurf-2-83-2014, 2014
E. B. Goldstein, G. Coco, A. B. Murray, and M. O. Green
Earth Surf. Dynam., 2, 67–82, https://doi.org/10.5194/esurf-2-67-2014, https://doi.org/10.5194/esurf-2-67-2014, 2014
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Multiple equilibrium configurations in river-dominated deltas
Investigating the celerity of propagation for small perturbations and dispersive sediment aggradation under a supercritical flow
Short communication: Multiscale topographic complexity analysis with pyTopoComplexity
Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust
Influence of alluvial slope on avulsion in river deltas
Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Curvature-based pebble segmentation for reconstructed surface meshes
Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulfate wedges
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Geometric constraints on tributary fluvial network junction angles
Effect of grain-sorting waves on alternate bar dynamics: Implications of the breakdown of the hydrograph boundary layer
Automatic detection of floating instream large wood in videos using deep learning
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Short communication: Learning How Landscapes Evolve with Neural Operators
A numerical model for duricrust formation by water table fluctuations
Width evolution of channel belts as a random walk
Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium
Equilibrium distance from long-range dune interactions
Examination of analytical shear stress predictions for coastal dune evolution
Localised geomorphic response to channel-spanning leaky wooden dams
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Surface grain-size mapping of braided channels from SfM photogrammetry
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Biomechanical parameters of marram grass (Calamagrostis arenaria) for advanced modeling of dune vegetation
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
Sediment aggradation rates for Himalayan Rivers revealed through SAR remote sensing
Spatiotemporal denudation rates of the Swabian Alb escarpment (Southwest Germany) dominated by base-level lowering and lithology
Use of simple analytical solutions in the calibration of Shallow Water Equations debris flow models
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
AI-Based Tracking of Fast-Moving Alpine Landforms Using High Frequency Monoscopic Time-Lapse Imagery
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Lorenzo Durante, Nicoletta Tambroni, and Michele Bolla Pittaluga
Earth Surf. Dynam., 13, 455–471, https://doi.org/10.5194/esurf-13-455-2025, https://doi.org/10.5194/esurf-13-455-2025, 2025
Short summary
Short summary
River deltas evolve due to natural forces and human activities, posing challenges for communities relying on stable water flow. This study examines how different flow distributions shape delta channels. Using a new theoretical model, we identify branch length as the key factor influencing stability. Applying this to Italy's Po River Delta, we highlight areas at risk of change, providing insights for better management and planning.
Hasan Eslami, Erfan Poursoleymanzadeh, Mojtaba Hiteh, Keivan Tavakoli, Melika Yavari Nia, Ehsan Zadehali, Reihaneh Zarrabi, and Alessio Radice
Earth Surf. Dynam., 13, 437–454, https://doi.org/10.5194/esurf-13-437-2025, https://doi.org/10.5194/esurf-13-437-2025, 2025
Short summary
Short summary
A channel may be aggraded by overloaded sediment. In this study we realize an aggradation experiment and determine the celerity at which an aggradation wave, due to sediment overloading, migrates. We also investigate the celerity of small perturbations, as quantified by mathematical formulations. The celerities of the two kinds are correlated with each other. However, the celerity of small perturbations is larger than the other one, which is less than a few percent of the water velocity.
Larry Syu-Heng Lai, Adam M. Booth, Alison R. Duvall, and Erich Herzig
Earth Surf. Dynam., 13, 417–435, https://doi.org/10.5194/esurf-13-417-2025, https://doi.org/10.5194/esurf-13-417-2025, 2025
Short summary
Short summary
pyTopoComplexity is an open-source Python tool for multiscale land surface complexity analysis. Applied to a landslide-affected area in Washington, USA, it accurately identified landform features at various scales, enhancing our understanding of landform recovery after disturbances. By integrating with Landlab’s landscape evolution simulations, the software allows researchers to explore how different processes drive the evolution of surface complexity in response to natural forces.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
Earth Surf. Dynam., 13, 365–401, https://doi.org/10.5194/esurf-13-365-2025, https://doi.org/10.5194/esurf-13-365-2025, 2025
Short summary
Short summary
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy budget of the seasonally thawing active layer (AL) of Murtèl rock glacier (Swiss Alps) based on a novel sub-surface sensor array. In the coarse blocky AL, heat is transferred by thermal radiation and air convection. The ground heat flux is largely spent on melting seasonal ice in the AL. Convective cooling and the seasonal ice turnover make rock glaciers climate-robust and shield the permafrost beneath.
Octria A. Prasojo, Trevor B. Hoey, Amanda Owen, and Richard D. Williams
Earth Surf. Dynam., 13, 349–363, https://doi.org/10.5194/esurf-13-349-2025, https://doi.org/10.5194/esurf-13-349-2025, 2025
Short summary
Short summary
Decades of delta avulsion (i.e. channel abrupt jump) studies have not resolved what the main controls of delta avulsion are. Using a computer model, integrated with field observation, analytical, and laboratory-made deltas, we found that the sediment load, which itself is controlled by the steepness of the river upstream of a delta, controls the timing of avulsion. We can now better understand the main cause of abrupt channel changes in deltas, a finding that aids flood risk management in river deltas.
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
Earth Surf. Dynam., 13, 341–348, https://doi.org/10.5194/esurf-13-341-2025, https://doi.org/10.5194/esurf-13-341-2025, 2025
Short summary
Short summary
We propose a new mechanism of co-seismic sediment entrainment induced by shear stress at the sediment–water interface during major subduction earthquakes rupturing to the trench. Physical experiments show that flow velocities consistent with long-period earthquake motions can entrain synthetic marine sediment, and high-frequency vertical shaking can enhance this mobilization. They validate the proposed entrainment mechanism, which opens new avenues for paleoseismology in deep-sea environments.
Aljoscha Rheinwalt, Benjamin Purinton, and Bodo Bookhagen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1110, https://doi.org/10.5194/egusphere-2025-1110, 2025
Short summary
Short summary
Our study presents a computer-based method to detect and measure pebbles in 3D models reconstructed from camera photos. We tested it in a controlled setup and achieved 98 % accuracy in detecting pebbles. Unlike traditional 2D methods, our approach provides full 3D size and orientation data. This improves sediment analysis and riverbed studies by offering more precise measurements. Our work highlights the potential of 3D modeling for studying natural surfaces.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
Earth Surf. Dynam., 13, 239–256, https://doi.org/10.5194/esurf-13-239-2025, https://doi.org/10.5194/esurf-13-239-2025, 2025
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
Earth Surf. Dynam., 13, 219–238, https://doi.org/10.5194/esurf-13-219-2025, https://doi.org/10.5194/esurf-13-219-2025, 2025
Short summary
Short summary
We demonstrate that landscapes with more planar initial conditions tend to have lower mean junction angles. Geomorphic processes on alluvial piedmonts result in especially planar initial conditions, consistent with a correlation between junction angles and the presence/absence of Late Cenozoic alluvial deposits and the constraint imposed by the intersection of planar approximations to the topography upslope from tributary junctions. We caution against using junction angles to infer paleoclimate.
Soichi Tanabe and Toshiki Iwasaki
EGUsphere, https://doi.org/10.5194/egusphere-2025-103, https://doi.org/10.5194/egusphere-2025-103, 2025
Short summary
Short summary
We try to understand how the sediment supply from the upstream river reach affect the downstream river morphology using a numerical model. If the supplied sediment is composed of variety of size class of particles, a small size bed wave that is composed of mainly fine particles (sorting wave) can propagate to downstream very long distance. However, presence of bars suppresses the effect of sorting wave greatly, and thus the sediment supply has limited role in the downstream river morphology.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025, https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Short summary
This study presents a novel convolutional-neural-network approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods across diverse data sources. Using a database of 15 228 fully labelled images, the model achieved a weighted mean average precision of 67 %. Fine-tuning parameters and sampling techniques can improve performance by over 10 % in some cases, offering valuable insights into ecosystem management.
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025, https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Short summary
Analyzing the geometry and the dynamics of riverine bedforms (so-called dune tracking) is important for various fields of application and contributes to sound and efficient river and sediment management. We developed a workflow that enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a field dataset, we show that the setting of input parameters in bedform analyses can have a significant impact on the results.
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025, https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
Short summary
Short-lived, high-magnitude flood events across high mountain regions leave substantial geomorphic imprints, which are frequently triggered by excess precipitation, glacial lake outbursts, and natural dam breaches. These catastrophic floods highlight the importance of understanding the complex interaction between climatic, hydrological, and geological forces in bedrock catchments. Extreme floods can have long-term geomorphic consequences on river morphology and fluvial processes.
Gareth G. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2025-307, https://doi.org/10.5194/egusphere-2025-307, 2025
Short summary
Short summary
The use of new Artificial Intelligence (AI) techniques to learn how landscapes evolve is demonstrated. A few ‘snapshots' of an eroding landscape at different stages of its history provide enough information for AI to ascertain rules governing its evolution. Once the rules are known, predicting landscape evolution is extremely rapid and efficient, providing new tools to understand landscape change.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025, https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
Earth Surf. Dynam., 13, 71–79, https://doi.org/10.5194/esurf-13-71-2025, https://doi.org/10.5194/esurf-13-71-2025, 2025
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be, in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
Earth Surf. Dynam., 13, 23–39, https://doi.org/10.5194/esurf-13-23-2025, https://doi.org/10.5194/esurf-13-23-2025, 2025
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency, and dune size. This process is controlled by the modification of wind flow over dunes of various shapes, influencing the sediment transport downstream.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025, https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes, which are an important line of defense against storm-related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-3001, https://doi.org/10.5194/egusphere-2024-3001, 2024
Short summary
Short summary
Leaky wooden dams are a popular form of natural flood management used to slow the flow of water by increasing floodplain connectivity whilst decreasing connectivity along the river profile. By monitoring two leaky wooden dams in North Yorkshire, UK, we present the geomorphological response to their installation, highlighting that the structures significantly increase channel complexity in response to different river flow conditions.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3697, https://doi.org/10.5194/egusphere-2024-3697, 2024
Short summary
Short summary
This work presents a protocol and a model to get the size of the pebbles in mountain rivers from Unmanned Aerial Vehicle images. A set of 12 rivers located in south-eastern France were photographed to build the model. The results show that the model has little error and should be usable for similar rivers. Grain-size of mountain rivers is an important parameter for environmental diagnostics by mapping the aquatic habitats and for flood management by estimating the pebbles fluxes during floods.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Viktoria Kosmalla, Oliver Lojek, Jana Carus, Kara Keimer, Lukas Ahrenbeck, Björn Mehrtens, David Schürenkamp, Boris Schröder, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2688, https://doi.org/10.5194/egusphere-2024-2688, 2024
Short summary
Short summary
This study analysed seasonal biomechanical traits of marram grass at two coastal dune sites using monthly field and lab data acquired 2022. Differences in density, leaf length, and flower stems were observed, which are unaffected by wind and deemed transferable. These findings enable surrogate model development for numerical and physical experiments alike, where live vegetation is impractical. Results address the knowledge gap how dune stability and erosion resistance are affected by vegetation.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Jingqiu Huang and Hugh D. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-2600, https://doi.org/10.5194/egusphere-2024-2600, 2024
Short summary
Short summary
This study uses radar technology to track tiny changes in riverbeds elevation in Himalayan Rivers as they flow onto the Gangetic Plains. By analyzing data from 2016 to 2021, we found that sediment builds up in seasonally dry (ephemeral) rivers during monsoon seasons, while the surrounding floodplains is sinking. This research is important for understanding how these elevation changes affect flood risks in rapidly growing communities in Nepal and India. Our findings can improve flood management.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Riccardo Bonomelli, Marco Pilotti, and Gabriele Farina
EGUsphere, https://doi.org/10.5194/egusphere-2024-2267, https://doi.org/10.5194/egusphere-2024-2267, 2024
Short summary
Short summary
Debris flows are fundamental components of the hazard in mountain regions and numerical models must be used for the related risk computation. Most existing commercial software strongly conceptualizes the main characteristics of the flow, leading to an inevitable calibration process, that is time-consuming and difficult to accomplish. This contribution offers some physically based solutions to confine the calibration process and to better understand the implications of the selected choice.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Hanne Hendrickx, Xabier Blanch, Melanie Elias, Reynald Delaloye, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2570, https://doi.org/10.5194/egusphere-2024-2570, 2024
Short summary
Short summary
This study introduces a novel AI-based method to track and analyse the movement of rock glaciers and landslides, key indicators of permafrost dynamics in high mountain regions. Using time-lapse images, our approach provides detailed velocity data, revealing patterns that traditional methods miss. This cost-effective tool enhances our ability to monitor geohazards, offering insights into climate change impacts on permafrost and improving safety in alpine areas.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Cited articles
Aagaard, T. and Jensen, S. G.: Sediment concentration and vertical mixing under breaking waves, Mar. Geol., 336, 146–159, https://doi.org/10.1016/j.margeo.2012.11.015, 2013.
Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 041301, https://doi.org/10.1063/1.2717527, 2007.
Bagnold, R. A.: The flow of cohesionless grains in fluids, Philos. Tr. R. Soc. S.-A, 249, 235–297, 1956.
Best, J. I. M.: On the entrainment of sediment and initiation of bed defects: insights from recent developments within turbulent boundary layer research, Sedimentology, 39, 797–811, 1992.
Biron, P. M., Robson, C., Lapointe, M. F., and Gaskin, S. J.: Comparing different methods of bed shear stress estimates in simple and complex flow fields, Earth Surf. Proc. Land., 29, 1403–1415, https://doi.org/10.1002/esp.1111, 2004.
Brownlie, W. R.: Prediction of flow depth and sediment discharge in open channels, PhD Thesis, Engineering and Applied Science, California Institute of Technology, California, 1981.
Buffington, J. M.: The legend of A. F. Shields, J. Hydraul. Eng., 125, 376–387, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(376), 1999.
Buffington, J. M. and Montgomery, D. R.: A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers, Water Resour. Res., 33, 1993–2029, 1997.
Cao, Z.: Turbulent bursting-based sediment entrainment function, J. Hydraul. Eng., 123, 233–236, 1997.
Cao, Z., Xi, H., and Zhang, X.: Turbulent bursting-based diffusion model for suspended sediment in open channel flows, J. Hydraul. Res., 34, 457–472, https://doi.org/10.1080/00221689609498471, 1996.
Cellino, M. and Lemmin, U.: Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow, J. Hydraul. Eng., 130, 1077–1088, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1077), 2004.
Dey, S.: Entrainment threshold of loose boundary streams, in: Experimental Methods in Hydraulic Research, edited by: Rowinski, P., Springer, Berlin, Heidelberg, 29–48, 2011.
Dey, S. and Papanicolaou, A.: Sediment threshold under stream flow: a state-of-the-art review, KSCE J. Civ. Eng., 12, 45–60, 2008.
Dietrich, W. E.: Settling velocity of natural particles, Water Resour. Res., 18, 1615–1626, 1982.
Diplas, P. and Dancey, C. L.: Coherent Flow Structures, Initiation of Motion, Sediment Transport and Morphological Feedbacks in Rivers. Coherent Flow Structures at Earth's Surface, John Wiley and Sons, Ltd., 2013.
Diplas, P., Dancey, C. L., Celik, A. O., Valyrakis, M., Greer, K., and Akar, T.: The role of impulse on the under turbulent flow conditions, Science, 322, 717–720, 2008.
Drake, T. G., Shreve, R. L., Dietrich, W. E., Whiting, P. J., and Leopold, L. B.: Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193–217, https://doi.org/10.1017/S0022112088001831, 1988.
Driver, D. M., Seegmiller, H. L., and Marvin, J. G.: Timedependent behavior of a reattachment shear layer, Am. Inst. Aeronaut. Astronaut. J., 25, 914–919, 1987.
Dwivedi, A., Melville, B. W., Shamseldin, A. Y., and Guha, T. K.: Analysis of hydrodynamic lift on a bed sediment particle, J. Geophys. Res., 116, F02015, https://doi.org/10.1029/2009JF001584, 2011.
Dyer, K. R., Soulsby, R. L.: Sand transport on the continental shelf, Annu. Rev. Fluid Mech., 20, 295–324, 1988.
Einstein, H. A.: The bed-load function for sediment transportation in open channel flows. US Department of Agriculture, Washington DC, Technical Bulletin Number 1026, 1950.
Falco, R. E.: A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence, Philos. Tr. R. Soc. A, 336, 103–129, 1991.
Farge, M.: Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 395–458, https://doi.org/10.1146/annurev.fl.24.010192.002143, 1992.
Fox, R. W., McDonald, A. T., and Pritchard, P. J.: Introduction to Fluid Mechanics, 6th Edn., Wiley and Sons, USA, 2004.
Fugate, D. C. and Friedrichs, C. T.: Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Cont. Shelf Res., 22, 1867–1886, https://doi.org/10.1016/S0278-4343(02)00043-2, 2002.
Grass, A. J.: Transport of fine sand on a flat bed: turbulence and suspension mechanics, in: Transport, Erosion and Deposition of Sediment in Turbulent Streams, Institute of Hydrodynamic and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark, Proc. Euromech 48, 33–34, 1974.
Grass, A. J.: Initial instability of fine bed sand, J. Hydr. Eng. Div.-ASCE, 96, 619–632, 1970.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Heathershaw, A. D. and Thorne, P. D.: Seabed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents, Nature, 316, 339–342, 1985.
Heathershaw, A. D.: The turbulent structure of the bottom boundary layer in a tidal current, Geophys. J. Roy. Astr. S., 58, 395–430, 1979.
Hurther, D. and Lemmin, U.: Turbulent particle flux and momentum flux statistics in suspension flow, Water Resour. Res., 39, 1139, https://doi.org/10.1029/2001WR001113, 2003.
Kaftori, D., Hetsroni, G., and Banerjee, S.: Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment, Phys. Fluids, 7, 1095–1106, https://doi.org/10.1063/1.868551, 1995.
Kennedy, J. F.: The Albert Shields story, J. Hydraul. Eng., 121, 766–772, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:11(766), 1995.
Keylock, C. J.: The visualisation of turbulence data using a wavelet-based method, Earth Surf. Proc. Land., 32, 637–647, 2007.
Keylock, C. J., Lane, S. N., and Richards, K. S.: Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment, J. Geophys. Res.-Earth, 119, 264–286, 2014.
Kim, S., Friedrichs, C., Maa, J., and Wright, L.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data, J. Hydraul. Eng., 126, 399–406, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:6(399), 2000.
Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.: The structure of turbulent boundary layers, J. Fluid Mech., 30, 741–773, https://doi.org/10.1017/S0022112067001740, 1967.
Kularatne, S. and Pattiaratchi, C.: Turbulent kinetic energy and sediment resuspension due to wave groups, Cont. Shelf Res., 28, 726–736, https://doi.org/10.1016/j.csr.2007.12.007, 2008.
Laursen, E., Papanicolaou, A., Cheng, N., and Chiew, Y.: Discussions and closure: pickup probability for sediment entrainment, J. Hydraul. Eng., 125, 786–789, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(789.x), 1999.
Lavelle, J. and Mofjeld, H.: Do critical stresses for incipient motion and erosion really exist?, J. Hydraul. Eng., 113, 370–385, https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(370), 1987.
Ling, C. H.: Criteria for incipient motion of spherical sediment particles, J. Hydraul. Eng., 121, 472–478, 1995.
Lohrmann, A.: Monitoring Sediment Concentration with Acoustic Backscattering Instruments, Nortek Technical Note No. 003, 1–5, 2001.
Lu, S. S. and Willmarth, W. W.: Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech., 60, 481–511, https://doi.org/10.1017/S0022112073000315, 1973.
Mathis, R., Marusic, I., Chernyshenko, S. I., and Hutchins, N.: Estimating wall-shear-stress fluctuations given an outer region input, J. Fluid Mech, 715, 163–180, https://doi.org/10.1017/jfm.2012.508, 2013.
Mathis, R., Marusic, I., Cabrit, O., Jones, N. L., and Ivey, G. N.: Modeling bed shear-stress fluctuations in a shallow tidal channel, J. Geophys. Res.-Oceans, 119, 3185–3199, https://doi.org/10.1002/2013JC009718, 2014.
Miller, M. C., McCave, I. N., and Komar, P. D.: Threshold of sediment motion under unidirectional currents, Sedimentology, 24, 507–527, https://doi.org/10.1111/j.1365-3091.1977.tb00136.x, 1977.
Nelson, J. M., Shreve, R. L., McLean, S. R., and Drake, T. G.: Role of near-bed turbulence structure in bed load transport and bed form mechanics, Water Resour. Res., 31, 2071–2086, https://doi.org/10.1029/95WR00976, 1995.
Niño, Y. and Garcia, M. H.: Experiments on particle–turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport, J. Fluid Mech., 326, 285–319, https://doi.org/10.1017/S0022112096008324, 1996.
Niño, Y., Lopez, F., and Garcia, M.: Threshold for particle entrainment into suspension, Sedimentology, 50, 247–263, https://doi.org/10.1046/j.1365-3091.2003.00551.x, 2003.
Pattiaratchi, C. B. and Collins, M. B.: Sand transport under the combined influence of waves and tidal currents: an assessment of available formulae, Mar. Geol., 67, 83–100,1985.
Paintal, A. S.: Concept of critical shear stress in loose boundary open channels, J. Hydraul. Res., 9, 91–113, https://doi.org/10.1080/00221687109500339, 1971.
Paphitis, D.: Sediment movement under unidirectional flows: an assessment of empirical threshold curves, Coast. Eng., 43, 227–245, https://doi.org/10.1016/s0378-3839(01)00015-1, 2001.
Robinson, S. K.: Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601–639, 1991.
Schmeeckle, M. W.: The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step, Earth Surf. Dynam., 3, 105–112, https://doi.org/10.5194/esurf-3-105-2015, 2015.
Schmeeckle, M. W. and Nelson, J. M.: Direct numerical simulation of bedload transport using a local, dynamic boundary condition, Sedimentology, 50, 279–301, 2003.
Shields, A. F.: Application of similarity principles and turbulence research to bed-load movement, Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin, Germany, 5–24, 1936.
Shugar, D. H., Kostaschuk, R. A. Y., Best, J. L., Parsons, D. R., Lane, S. N., Orfeo, O., and Hardy, R. J.: On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina, Sedimentology, 57, 252–272, 2010.
Simpson, R. L.: Turbulent boundary layer separation, Annu. Rev. Fluid Mech., 21, 205–234, 1989.
Soulsby, R.: Dynamics of Marine Sands, Thomas Telford Publications, 99-110, 1997.
Soulsby, R. L.: The bottom boundary layer of shelf seas, in: Physical Oceanography of Coastal and Shelf Seas, edited by: Johns, B., Elsevier Oceanography Series, Elsevier, 189–266, 1983.
Soulsby, R. L., Atkins, R., and Salkield, A. P.: Observations of the turbulent structure of a suspension of sand in a tidal current, Cont. Shelf Res., 14, 429–435, https://doi.org/10.1016/0278-4343(94)90027-2, 1994.
Soulsby, R. L., Whitehouse, R. J. S.: Threshold of sediment motion in coastal Environments, Proceedings of the Combined Australasian Coastal Engineering and Port Conference, Christchurch, 7–11 September 1997, 149–154, 1997.
Sumer, B. M. and Deigaard, R.: Particle motions near the bottom in turbulent flow in an open channel. Part 2, J. Fluid Mech., 109, 311–337, https://doi.org/10.1017/S0022112081001092, 1981.
Sumer, B. M. and Oguz, B.: Particle motions near the bottom in turbulent flow in an open channel, J. Fluid Mech., 86, 109–127, https://doi.org/10.1017/S0022112078001020, 1978.
Thompson, C. E. L., Couceiro, F., Fones, G. R., Helsby, R., Amos, C. L., Black, K., Parker, E. R., Greenwood, N., Statham, P. J., and Kelly-Gerreyn, B. A.: In situ flume measurements of resuspension in the North Sea, Estuar. Coast. Shelf S., 94, 77–88, https://doi.org/10.1016/j.ecss.2011.05.026, 2011.
Thomson, R. E. and Emery, W. J.: Chapter 6 – Digital filters, in: Data Analysis Methods in Physical Oceanography, 3rd edn., Elsevier, Boston, 593–637, 2014.
Thorne, P. D.: An overview of underwater sound generated by interparticle collisions and its application to the measurements of coarse sediment bedload transport, Earth Surf. Dynam., 2, 531–543, https://doi.org/10.5194/esurf-2-531-2014, 2014.
Thorne, P. D., Williams, J. J., and Heathershaw, A. D.: In situ acoustic measurements of marine gravel threshold and transport, Sedimentology, 36, 61–74, https://doi.org/10.1111/j.1365-3091.1989.tb00820.x, 1989.
Tinoco, R. O. and Coco, G.: Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves, Earth Surf. Dynam., 2, 83–96, https://doi.org/10.5194/esurf-2-83-2014, 2014.
Tinoco, R. O. and Coco, G.: A laboratory study on sediment resuspension within arrays of rigid cylinders, Adv. Water Resour., 92, 1–9, https://doi.org/10.1016/j.advwatres.2016.04.003, 2016.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Valyrakis, M., Diplas, P., and Dancey, C. L.: Entrainment of coarse particles in turbulent flows: an energy approach, J. Geophys. Res.-Earth, 118, 42–53, 2013.
van Rijn, L. C., Walstra, D.-J. R., and van Ormondt, M.: Unified view of sediment transport by currents and waves. IV: Application of morphodynamic model, J. Hydraul. Eng., 133, 776–793, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(776), 2007.
van Rijn, L. C.: Sediment transport, Part I: Bed load transport, J. Hydraul. Eng., 110, 1431–1456, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431), 1984.
van Rijn, L. C.: Simple general formulae for sand transport in rivers, estuaries and coastal waters, available at: www.leovanrijnsediment.com (last access: 26 March 2017), 2013.
Velikanov, M. A.: Dynamics of Alluvial Stream, 2, State Publishing House of Theoretical and Technical Literature, Russia, 1955 [in Russian].
Venditti, J. G., Hardy, R. J., Church, M., and Best, J. L.: What is a coherent flow structure in geophysical flow?, in: Coherent Flow Structures at Earth's Surface, edited by: Venditti, J. G., Best, J. L., Church, M., and Hardy, R. J., John Wiley and Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9781118527221.ch1, 2013.
Voulgaris, G. and Meyers, S. T.: Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek, Cont. Shelf Res., 24, 1659–1683, https://doi.org/10.1016/j.csr.2004.05.006, 2004.
Voulgaris, G. and Trowbridge, J. H.: Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements, J. Atmos. Ocean. Tech., 15, 272–289, https://doi.org/10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2, 1998.
Wallace, J. M., Eckelmann, H., and Brodkey, R. S.: The wall region in turbulent shear flow, J. Fluid Mech., 54, 39–48, https://doi.org/10.1017/S0022112072000515, 1972.
Weaver, C. M. and Wiggs, G. F. S.: Sweeping up sand: Coherent flow structures and sediment entrainment, paper presented at European Geophysical Union 2008 General Assembly, Vienna, 2008.
Willmarth, W. W. and Lu, S. S.: Structure of the Reynolds stress near the wall, J. Fluid Mech., 55, 65–92, https://doi.org/10.1017/S002211207200165X, 1972.
Wu, F. C. and Shih, W. R.: Entrainment of sediment particles by retrograde vortices: Test of hypothesis using near-particle observations, J. Geophys. Res., 117, F03018, https://doi.org/10.1029/2011JF002242, 2012.
Wu, W. and Wang, S. S. Y.: Movable bed roughness in alluvial rivers, J. Hydraul. Eng., 125, 1309–1312, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1309), 1999.
Yalin, M. S.: An expression of bed-load transportation, J. Hydraul. Div., 89, 221–250, 1963.
Yalin, M. S. and Karahan, E.: Inception of sediment transport, J. Hydraul. Div., 105, 1433–1443, 1979.
Yuan, Y., Wei, H., Zhao, L. A., and Cao, Y. N.: Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer: a field study in the western Yellow Sea, China, Mar. Geol., 263, 87–96, https://doi.org/10.1016/j.margeo.2009.03.023, 2009.
Short summary
The aim of this paper was to verify the existence of a mean critical velocity concept in terms of turbulent bursting phenomena. Laboratory experiments were undertaken in a unidirectional current flume where an acoustic Doppler velocimeter was used. Results in the laboratory conditions both above and below the measured mean critical velocity highlighted the need to re-evaluate the accuracy of a single time-averaged critical velocity for the initiation of sediment entrainment.
The aim of this paper was to verify the existence of a mean critical velocity concept in terms...