Articles | Volume 6, issue 2
https://doi.org/10.5194/esurf-6-401-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-401-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions
Pippa L. Whitehouse
CORRESPONDING AUTHOR
Department of Geography, Durham University, Durham, DH1 3LE, UK
Related authors
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Jason Roberts, Andrew Moy, Christopher Plummer, Tas van Ommen, Mark Curran, Tessa Vance, Samuel Poynter, Yaping Liu, Joel Pedro, Adam Treverrow, Carly Tozer, Lenneke Jong, Pippa Whitehouse, Laetitia Loulergue, Jerome Chappellaz, Vin Morgan, Renato Spahni, Adrian Schilt, Cecilia MacFarling Meure, David Etheridge, and Thomas Stocker
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-96, https://doi.org/10.5194/cp-2017-96, 2017
Preprint withdrawn
Short summary
Short summary
Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 thousand years. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. We use a non-linear interpolation between age ties and unlike previous studies, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Jason Roberts, Andrew Moy, Christopher Plummer, Tas van Ommen, Mark Curran, Tessa Vance, Samuel Poynter, Yaping Liu, Joel Pedro, Adam Treverrow, Carly Tozer, Lenneke Jong, Pippa Whitehouse, Laetitia Loulergue, Jerome Chappellaz, Vin Morgan, Renato Spahni, Adrian Schilt, Cecilia MacFarling Meure, David Etheridge, and Thomas Stocker
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-96, https://doi.org/10.5194/cp-2017-96, 2017
Preprint withdrawn
Short summary
Short summary
Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 thousand years. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. We use a non-linear interpolation between age ties and unlike previous studies, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.
Related subject area
Physical: Geophysics
3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion
Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network
Short communication: A tool for determining multiscale bedform characteristics from bed elevation data
Probabilistic estimation of depth-resolved profiles of soil thermal diffusivity from temperature time series
Vibration of natural rock arches and towers excited by helicopter-sourced infrasound
An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations
Precise water level measurements using low-cost GNSS antenna arrays
Locating rock slope failures along highways and understanding their physical processes using seismic signals
Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano (Alaska) ice–rock avalanches from seismoacoustic data
Seismo-acoustic energy partitioning of a powder snow avalanche
Comment on “Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath” by Schöpa et al. (2018)
Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan
Acoustic wave propagation in rivers: an experimental study
Automatic detection of avalanches combining array classification and localization
Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard
Short Communication: Monitoring rockfalls with the Raspberry Shake
Towards a standard typology of endogenous landslide seismic sources
Seismic detection of rockslides at regional scale: examples from the Eastern Alps and feasibility of kurtosis-based event location
Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: the Super-Sauze (southeastern France) and Pechgraben (Upper Austria) case studies
Single-block rockfall dynamics inferred from seismic signal analysis
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024, https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023, https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary
Short summary
Landslide processes are causes of major concern to population and infrastructures on Réunion. In this study, we used data from the Copernicus Sentinel-1 satellite to map ground motion in Cirque de Salazie. We concentrate on the cyclonic season 2017–2018. Our results show ground motion in the Hell-Bourg, Ilet à Vidot,
Grand-Ilet, Camp Pierrot, and Le Bélier landslides. Moreover, we show an unknown pattern of ground motion situated in a non-instrumented, uninhabited area on the ground.
Nadège Langet and Fred Marcus John Silverberg
Earth Surf. Dynam., 11, 89–115, https://doi.org/10.5194/esurf-11-89-2023, https://doi.org/10.5194/esurf-11-89-2023, 2023
Short summary
Short summary
Microseismic events recorded on the Åknes rock slope in Norway during the past 15 years are automatically divided into eight classes. The results are analysed and compared to meteorological data, showing a strong increase in the microseismic activity in spring mainly due to freezing and thawing processes.
Judith Y. Zomer, Suleyman Naqshband, and Antonius J. F. Hoitink
Earth Surf. Dynam., 10, 865–874, https://doi.org/10.5194/esurf-10-865-2022, https://doi.org/10.5194/esurf-10-865-2022, 2022
Short summary
Short summary
Riverbeds are often composed of different scales of dunes, whose sizes and shapes are highly variable over time and space. Characterization of these dunes is important in many research studies focused on fluvial processes. A tool is presented here that aims to identify different scales of dunes from riverbed elevation maps. A first step is to separate two scales of bedforms without smoothing steep slopes of the larger dunes. In a second step, dunes are identified and properties are computed.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer
Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, https://doi.org/10.5194/esurf-9-1459-2021, 2021
Short summary
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
David J. Purnell, Natalya Gomez, William Minarik, David Porter, and Gregory Langston
Earth Surf. Dynam., 9, 673–685, https://doi.org/10.5194/esurf-9-673-2021, https://doi.org/10.5194/esurf-9-673-2021, 2021
Short summary
Short summary
We present a new technique for precisely monitoring water levels (e.g. sea level, rivers or lakes) using low-cost equipment (approximately USD 100–200) that is simple to build and install. The technique builds on previous work using antennas that were designed for navigation purposes. Multiple antennas in the same location are used to obtain more precise measurements than those obtained when using a single antenna. Software for analysis is provided with the article.
Jui-Ming Chang, Wei-An Chao, Hongey Chen, Yu-Ting Kuo, and Che-Ming Yang
Earth Surf. Dynam., 9, 505–517, https://doi.org/10.5194/esurf-9-505-2021, https://doi.org/10.5194/esurf-9-505-2021, 2021
Short summary
Short summary
Seismic techniques applied in rock slope failure research do not provide rapid notifications, as for earthquakes, due to the lack of connections between seismic signals and events. We studied 10 known events in Taiwan and developed a GeoLoc scheme to locate rock slope failures, estimate the event volume, and understand their physical process using available videos. With real-time seismic data transmission, a rapid report can be created for the public within several minutes of the event.
Liam Toney, David Fee, Kate E. Allstadt, Matthew M. Haney, and Robin S. Matoza
Earth Surf. Dynam., 9, 271–293, https://doi.org/10.5194/esurf-9-271-2021, https://doi.org/10.5194/esurf-9-271-2021, 2021
Short summary
Short summary
Large avalanches composed of ice and rock are a serious hazard to mountain communities and backcountry travellers. These processes shake the Earth and disturb the atmosphere, generating seismic waves and sound waves which can travel for hundreds of kilometers. In this study, we use the seismic waves and sound waves produced by two massive avalanches on a volcano in Alaska to reconstruct how the avalanches failed. Our method may assist with rapid emergency response to these global hazards.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Tómas Jóhannesson, Jón Kristinn Helgason, and Sigríður Sif Gylfadóttir
Earth Surf. Dynam., 8, 173–175, https://doi.org/10.5194/esurf-8-173-2020, https://doi.org/10.5194/esurf-8-173-2020, 2020
Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler
Earth Surf. Dynam., 7, 989–1007, https://doi.org/10.5194/esurf-7-989-2019, https://doi.org/10.5194/esurf-7-989-2019, 2019
Short summary
Short summary
Avalanches and slush flows from Mt. Fuji are a major natural hazard as they may attain run-out distances of up to 4 km and destroy parts of the forest and infrastructure. We located and tracked them for the first time using seismic data. Numerical simulations were conducted to assess the precision of the seismic tracking. We also inferred dynamical properties characterizing these hazardous mass movements. This information is indispensable for assessing avalanche risk in the Mt. Fuji region.
Thomas Geay, Ludovic Michel, Sébastien Zanker, and James Robert Rigby
Earth Surf. Dynam., 7, 537–548, https://doi.org/10.5194/esurf-7-537-2019, https://doi.org/10.5194/esurf-7-537-2019, 2019
Short summary
Short summary
This research has been conducted to develop the use of passive acoustic monitoring (PAM) for bedload monitoring in rivers. Monitored bedload acoustic signals depend on bedload characteristics (e.g., grain size distribution, fluxes) but are also affected by the environment in which the acoustic waves are propagated. This study focuses on the determination of propagation effects in rivers. An experimental approach has been conducted in several streams to estimate acoustic propagation laws.
Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh
Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019, https://doi.org/10.5194/esurf-7-491-2019, 2019
Short summary
Short summary
We used continuous seismic data from two small aperture geophone arrays deployed in the region above Davos in the eastern Swiss Alps to develop a machine learning workflow to automatically identify signals generated by snow avalanches. Our results suggest that the method presented could be used to identify major avalanche periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic data.
Andreas Köhler and Christian Weidle
Earth Surf. Dynam., 7, 1–16, https://doi.org/10.5194/esurf-7-1-2019, https://doi.org/10.5194/esurf-7-1-2019, 2019
Short summary
Short summary
The uppermost part of permanently frozen ground can thaw during summer and refreeze during winter. We use a method based on naturally generated seismic waves to continuously monitor these changes close to the research settlement of Ny-Ålesund in Svalbard between April and August 2016. Our results reveal some potential pitfalls when interpreting temporal variations in the data. However, we show that a careful data analysis makes this method a very useful tool for long-term permafrost monitoring.
Andrea Manconi, Velio Coviello, Maud Galletti, and Reto Seifert
Earth Surf. Dynam., 6, 1219–1227, https://doi.org/10.5194/esurf-6-1219-2018, https://doi.org/10.5194/esurf-6-1219-2018, 2018
Short summary
Short summary
We evaluated the performance of the low-cost seismic Raspberry Shake (RS) sensors to identify and monitor rockfall activity in alpine environments. The sensors have been tested for a 1-year period in a high alpine environment, recording numerous rock failure events as well as local and distant earthquakes. This study demonstrates that the RS instruments provide a good option to build low seismic monitoring networks to monitor different kinds of geophysical phenomena.
Floriane Provost, Jean-Philippe Malet, Clément Hibert, Agnès Helmstetter, Mathilde Radiguet, David Amitrano, Nadège Langet, Eric Larose, Clàudia Abancó, Marcel Hürlimann, Thomas Lebourg, Clara Levy, Gaëlle Le Roy, Patrice Ulrich, Maurin Vidal, and Benjamin Vial
Earth Surf. Dynam., 6, 1059–1088, https://doi.org/10.5194/esurf-6-1059-2018, https://doi.org/10.5194/esurf-6-1059-2018, 2018
Short summary
Short summary
Seismic sources generated by the deformation of unstable slopes are diverse in terms of signal properties and mechanisms. Standardized catalogues of landslide endogenous seismicity can help understanding the physical processes controlling slope dynamics. We propose a generic typology of seismic sources based on the analysis of signals recorded at various instrumented slopes. We demonstrate that the seismic signals present similar features at different sites and discuss their mechanical sources.
Florian Fuchs, Wolfgang Lenhardt, Götz Bokelmann, and the AlpArray Working Group
Earth Surf. Dynam., 6, 955–970, https://doi.org/10.5194/esurf-6-955-2018, https://doi.org/10.5194/esurf-6-955-2018, 2018
Short summary
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
Naomi Vouillamoz, Sabrina Rothmund, and Manfred Joswig
Earth Surf. Dynam., 6, 525–550, https://doi.org/10.5194/esurf-6-525-2018, https://doi.org/10.5194/esurf-6-525-2018, 2018
Short summary
Short summary
Seismic monitoring of active landslides enables the detection of microseismic signals generated by slope activity. We propose a classification of
microseismic signals observed at two active clay-rich debris slides and a simple method to constrain their source origin and their size
based on their signal amplitudes. A better understanding of landslide-induced microseismicity is crucial for the development of early warning systems
based on landslide-induced microseismic signal precursors.
Clément Hibert, Jean-Philippe Malet, Franck Bourrier, Floriane Provost, Frédéric Berger, Pierrick Bornemann, Pascal Tardif, and Eric Mermin
Earth Surf. Dynam., 5, 283–292, https://doi.org/10.5194/esurf-5-283-2017, https://doi.org/10.5194/esurf-5-283-2017, 2017
Cited articles
A, G., Wahr, J., and Zhong, S. J.: Computations of the viscoelastic response
of a 3-D compressible Earth to surface loading: an application to Glacial
Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192,
557–572, https://doi.org/10.1093/Gji/Ggs030, 2013.
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi,
K., and Blatter, H.: Insolation-driven 100 000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–193,
https://doi.org/10.1038/nature12374, 2013.
Adhikari, S. and Ivins, E. R.: Climate-driven polar motion: 2003–2015,
Science Advances, 2, e1501693, https://doi.org/10.1126/sciadv.1501693, 2016.
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and
Nowicki, S.: Future Antarctic bed topography and its implications for ice
sheet dynamics, Solid Earth, 5, 569–584,
https://doi.org/10.5194/se-5-569-2014, 2014.
Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based
computation of gravitationally consistent sea-level and geodetic signatures
caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9,
1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016.
Al-Attar, D. and Tromp, J.: Sensitivity kernels for viscoelastic loading
based on adjoint methods, Geophys. J. Int., 196, 34–77,
https://doi.org/10.1093/gji/ggt395, 2014.
Altamimi, Z., Metivier, L., and Collilieux, X.: ITRF2008 plate motion model,
J. Geophys. Res.-Sol. Ea., 117, B07402, https://doi.org/10.1029/2011jb008930, 2012.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica
component of postglacial rebound model ICE-6G_C (VM5a) based on GPS
positioning, exposure age dating of ice thicknesses, and relative sea level
histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/Gji/Ggu140, 2014.
Arnadottir, T., Jonsson, S., Pollitz, F. F., Jiang, W. P., and Feigl, K. L.:
Postseismic deformation following the June 2000 earthquake sequence in the
south Iceland seismic zone, J. Geophys. Res.-Sol. Ea., 110, B12308,
https://doi.org/10.1029/2005jb003701, 2005.
Arvidsson, R.: Fennoscandian earthquakes: Whole crustal rupturing related to
postglacial rebound, Science, 274, 744–746,
https://doi.org/10.1126/science.274.5288.744, 1996.
Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., and
Lund, B.: Iceland rising: Solid Earth response to ice retreat inferred from
satellite radar interferometry and visocelastic modeling, J. Geophys.
Res.-Sol. Ea., 118, 1331–1344, https://doi.org/10.1002/jgrb.50082, 2013.
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.:
Barbados-based estimate of ice volume at Last Glacial Maximum affected by
subducted plate, Nat. Geosci., 6, 553–557, https://doi.org/10.1038/Ngeo1859, 2013.
Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a
dynamic topography signal in last interglacial sea-level records, Science
Advances, 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017.
Ballantyne, C. K.: Extent and deglacial chronology of the last British-Irish
Ice Sheet: implications of exposure dating using cosmogenic isotopes, J.
Quaternary Sci., 25, 515–534, https://doi.org/10.1002/jqs.1310, 2010.
Barlow, N. L. M., Shennan, I., Long, A. I., Gehrels, W. R., Saher, M. H.,
Woodroffe, S. A., and Hillier, C.: Salt marshes as late Holocene tide gauges,
Global Planet. Change, 106, 90–110, https://doi.org/10.1016/j.gloplacha.2013.03.003,
2013.
Barrell, J.: The status of the theory of isostasy, Am. J. Sci., 48, 291–338,
1919.
Bentley, M. J., Cofaigh, C. O., Anderson, J. B., Conway, H., Davies, B.,
Graham, A. G. C., Hillenbrand, C. D., Hodgson, D. A., Jamieson, S. S. R.,
Larter, R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P.,
Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X.,
Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W.,
Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K.,
Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L.,
Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M.,
Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y.,
Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J.,
Masse, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney, R.,
Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J.,
Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D.,
Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman,
W., Wagner, B., White, D. A., Witus, A. E., Zwartz, D., and Consortium, R.: A
community-based geological reconstruction of Antarctic Ice Sheet deglaciation
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 1–9,
https://doi.org/10.1016/j.quascirev.2014.06.025, 2014.
Bradley, S. L., Milne, G. A., Shennan, I., and Edwards, R.: An improved
Glacial Isostatic Adjustment model for the British Isles, J. Quaternary Sci.,
26, 541–552, https://doi.org/10.1002/Jqs.1481, 2011.
Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V., and Wolff,
E.: Where might we find evidence of a Last Interglacial West Antarctic Ice
Sheet collapse in Antarctic ice core records?, Global Planet. Change, 88–89,
64–75, https://doi.org/10.1016/j.gloplacha.2012.03.004, 2012.
Bradley, S. L., Hindmarsh, R. C. A., Whitehouse, P. L., Bentley, M. J., and
King, M. A.: Low post-glacial rebound rates in the Weddell Sea due to Late
Holocene ice-sheet readvance, Earth Planet. Sc. Lett., 413, 79–89,
https://doi.org/10.1016/j.epsl.2014.12.039, 2015.
Bradley, S. L., Milne, G. A., Horton, B. P., and Zong, Y. Q.: Modelling sea
level data from China and Malay-Thailand to estimate Holocene ice-volume
equivalent sea level change, Quaternary Sci. Rev., 137, 54–68,
https://doi.org/10.1016/j.quascirev.2016.02.002, 2016.
Brandes, C., Steffen, H., Steffen, R., and Wu, P.: Intraplate seismicity in
northern Central Europe is induced by the last glaciation, Geology, 43,
611–614, https://doi.org/10.1130/G36710.1, 2015.
Briggs, R., Pollard, D.,
and Tarasov, L.: A glacial systems model configured for large ensemble
analysis of Antarctic deglaciation, The Cryosphere, 7, 1949–1970,
https://doi.org/10.5194/tc-7-1949-2013, 2013.
Briggs, R. D. and Tarasov, L.: How to evaluate model-derived deglaciation
chronologies: a case study using Antarctica, Quaternary Sci. Rev., 63,
109–127, https://doi.org/10.1016/j.quascirev.2012.11.021, 2013.
Briggs, R. D., Pollard, D., and Tarasov, L.: A data-constrained large
ensemble analysis of Antarctic evolution since the Eemian, Quaternary Sci.
Rev., 103, 91–115, https://doi.org/10.1016/j.quascirev.2014.09.003, 2014.
Burgmann, R. and Dresen, G.: Rheology of the lower crust and upper mantle:
Evidence from rock mechanics, geodesy, and field observations, Annu. Rev.
Earth Pl. Sc., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326,
2008.
Burley, J. M. A. and Katz, R. F.: Variations in mid-ocean ridge CO2
emissions driven by glacial cycles, Earth Planet. Sc. Lett., 426, 246–258,
https://doi.org/10.1016/j.epsl.2015.06.031, 2015.
Caron, L., Metivier, L., Greff-Lefftz, M., Fleitout, L., and Rouby, H.:
Inverting Glacial Isostatic Adjustment signal using Bayesian framework and
two linearly relaxing rheologies, Geophys. J. Int., 209, 1126–1147,
https://doi.org/10.1093/gji/ggx083, 2017.
Cathles, L. M.: The Viscosity of Earth's Mantle, Princeton Univ. Press,
Princeton, NJ, USA, 1975.
Celsius, A.: Anmärkning om vatnets förminskande så i
Östersiön som Vesterhafvet, Kongl. Swenska Wetenskaps Academiens
Handlingar, 4, 33–50, 1743.
Chamberlin, T. C. and Salisbury, R. D.: The Driftless Area of the Upper
Mississippi Valley, 6th Annual Report of the U.S. Geological Survey,
Washington, USA, 1885.
Cheng, M. K. and Tapley, B. D.: Variations in the Earth's oblateness during
the past 28 years, J. Geophys. Res.-Sol. Ea., 109, B09402,
https://doi.org/10.1029/2004jb003028, 2004.
Church, J. A. and White, N. J.: Sea-Level Rise from the Late 19th to the
Early 21st Century, Surv. Geophys., 32, 585–602,
https://doi.org/10.1007/s10712-011-9119-1, 2011.
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C., and Sejrup, H.
P.: Pattern and timing of retreat of the last British-Irish Ice Sheet,
Quaternary Sci. Rev., 44, 112–146, https://doi.org/10.1016/j.quascirev.2010.07.019,
2012.
Clark, P. U. and Tarasov, L.: Closing the sea level budget at the Last
Glacial Maximum, P. Natl. Acad. Sci. USA, 111, 15861–15862,
https://doi.org/10.1073/pnas.1418970111, 2014.
Clark, P. U., Mitrovica, J. X., Milne, G. A., and Tamisiea, M. E.: Sea-level
fingerprinting as a direct test for the source of global meltwater pulse IA,
Science, 295, 2438–2441, 2002.
Clement, A. J. H., Whitehouse, P. L., and Sloss, C. R.: An examination of
spatial variability in the timing and magnitude of Holocene relative
sea-level changes in the New Zealand archipelago, Quaternary Sci. Rev., 131,
73–101, https://doi.org/10.1016/j.quascirev.2015.09.025, 2016.
Conrad, C. P.: The solid Earth's influence on sea level, Geol. Soc. Am.
Bull., 125, 1027–1052, https://doi.org/10.1130/B30764.1, 2013.
Craig, T. J., Calais, E., Fleitout, L., Bollinger, L., and Scotti, O.:
Evidence for the release of long-term tectonic strain stored in continental
interiors through intraplate earthquakes, Geophys. Res. Lett., 43,
6826–6836, https://doi.org/10.1002/2016GL069359, 2016.
Croll, J.: Climate and time in their geological relations: A theory of
secular changes of the Earth's climate, Adam and Charles Black, Edinburgh,
UK, 1875.
Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. H., and Park, S. H.:
Glacial cycles drive variations in the production of oceanic crust, Science,
347, 1237–1240, https://doi.org/10.1126/science.1261508, 2015.
Dalca, A. V., Ferrier, K. L., Mitrovica, J. X., Perron, J. T., Milne, G. A.,
and Creveling, J. R.: On postglacial sea level-III. Incorporating sediment
redistribution, Geophys. J. Int., 194, 45–60, https://doi.org/10.1093/gji/ggt089, 2013.
Dal Forno, G., Gasperini, P., and Spada, G.: Implementation of the Complete
Sea Level Equation in a 3-D Finite Elements Scheme: A Validation Study, in:
Proceedings of the VII Hotine-Marussi Symposium, 6–10 July 2012, Rome,
Italy, 2012.
Daly, R. A.: A general sinking of sea-level in recent time, P. Natl. Acad.
Sci. USA, 6, 246–250, https://doi.org/10.1073/pnas.6.5.246, 1920.
Daly, R. A.: Pleistocene changes of level, Am. J. Sci., 10, 281–313, 1925.
de Boer, B., Stocchi, P., and van de Wal, R. S. W.: A fully coupled 3-D
ice-sheet–sea-level model: algorithm and applications, Geosci. Model Dev.,
7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, 2014.
de Boer, B., Stocchi, P., Whitehouse, P. L., and van de Wal, R. S. W.:
Current state and future perspectives on coupled ice-sheet – sea-level
modelling, Quaternary Sci. Rev., 169, 13–28,
https://doi.org/10.1016/j.quascirev.2017.05.013, 2017.
De Geer, G.: A Geochronology of the past 12,000 years, Congres de Geologie
International, Comptes Rendues, 11, 241–253, 1912.
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L.,
Henderson, G. M., Okuno, J., and Yokoyama, Y.: Ice-sheet collapse and
sea-level rise at the Bolling warming 14 600 years ago, Nature, 483,
559–564, https://doi.org/10.1038/Nature10902, 2012.
Dickinson, H., Freed, A. M., and Andronicos, C.: Inference of the viscosity
structure and mantle conditions beneath the Central Nevada Seismic Belt from
combined postseismic and lake unloading studies, Geochem. Geophy. Geosy., 17,
1740–1757, https://doi.org/10.1002/2015gc006207, 2016.
Düsterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V.,
Tarasov, L., Barlow, N. L. M., Bradwell, T., Clark, J., Dutton, A., Gehrels,
W. R., Hibbert, F. D., Hijma, M. P., Khan, N., Kopp, R. E., Sivan, D., and
Törnqvist, T. E.: Palaeo-sea-level and palaeo-ice-sheet databases:
problems, strategies, and perspectives, Clim. Past, 12, 911–921,
https://doi.org/10.5194/cp-12-911-2016, 2016a.
Düsterhus, A., Tamisiea, M. E., and Jevrejeva, S.: Estimating the sea
level highstand during the last interglacial: a probabilistic massive
ensemble approach, Geophys. J. Int., 206, 900–920, 2016b.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to
polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019,
https://doi.org/10.1126/science.aaa4019, 2015.
Dyke, A. S., Moore, A., and Robertson, L.: Deglaciation of North America,
Geological Survey of Canada, Ottawa, Canada, 2003.
Dziewonski, A. M. and Anderson, D. L.: Preliminary Reference Earth Model,
Phys. Earth Planet. In., 25, 297–356, 1981.
Ekman, M.: The Changing Level of the Baltic Sea during 300 Years: A Clue to
Understanding the Earth, Summer Institute for Historical Geophysics,
Åland Islands, 2009.
Fairbanks, R. G.: A 17 000-year glacio-eustatic sea level record: influence
of glacial melting rates on the Younger Dryas event and deep-ocean
circulation, Nature, 342, 637–642, 1989.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Roy.
Astr. S., 46, 647–667, 1976.
Ferrier, K. L., Mitrovica, J. X., Giosan, L., and Clift, P. D.: Sea-level
responses to erosion and deposition of sediment in the Indus River basin and
the Arabian Sea, Earth Planet. Sc. Lett., 416, 12–20,
https://doi.org/10.1016/j.epsl.2015.01.026, 2015.
Ferrier, K. L., Austermann, J., Mitrovica, J. X., and Pico, T.: Incorporating
sediment compaction into a gravitationally self-consistent model for ice age
sea-level change, Geophys. J. Int., 211, 663–672, https://doi.org/10.1093/gji/ggx293,
2017.
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and
Chappell, J.: Refining the eustatic sea-level curve since the Last Glacial
Maximum using far- and intermediate-field sites, Earth Planet. Sc. Lett.,
163, 327–342, 1998.
Freed, A. M. and Burgmann, R.: Evidence of power-law flow in the Mojave
desert mantle, Nature, 430, 548–551, https://doi.org/10.1038/nature02784, 2004.
Freed, A. M., Burgmann, R., Calais, E., and Freymueller, J.: Stress-dependent
power-law flow in the upper mantle following the 2002 Denali, Alaska,
earthquake, Earth Planet. Sc. Lett., 252, 481–489,
https://doi.org/10.1016/j.epsl.2006.10.011, 2006.
Gilbert, G. K.: Proceedings of the Section of Geology and Geography, Science,
6, 219–222, 1885a.
Gilbert, G. K.: The Inculcation of Scientific Method by Example, with an
illustration drawn from the Quaternary Geology of Utah, Am. J. Sci.,
Series 3, 31, 284–299, 1885b.
Gilbert, G. K.: Lake Bonneville, U.S. Geological Survey, Monograph 1,
387–392, 1890.
Gomez, N., Mitrovica, J. X., Huybers, P., and Clark, P. U.: Sea level as a
stabilizing factor for marine-ice-sheet grounding lines, Nat. Geosci., 3,
850–853, https://doi.org/10.1038/Ngeo1012, 2010.
Gomez, N., Pollard, D., and Mitrovica, J. X.: A 3-D coupled ice sheet-sea
level model applied to Antarctica through the last 40 ky, Earth Planet. Sc.
Lett., 384, 88–99, 2013.
Gomez, N., Gregoire, L. J., Mitrovica, J. X., and Payne, A. J.:
Laurentide-Cordilleran Ice Sheet saddle collapse as a contribution to
meltwater pulse 1A, Geophys. Res. Lett., 42, 3954–3962,
https://doi.org/10.1002/2015gl063960, 2015a.
Gomez, N., Pollard, D., and Holland, D.: Sea-level feedback lowers
projections of future Antarctic Ice-Sheet mass loss, Nat. Commun., 6, 8798,
https://doi.org/10.1038/ncomms9798, 2015b.
Gomez, N., Latychev, K., and Pollard, D.: A coupled ice sheet-sea level model
incorporating 3D Earth structure: Variations in Antarctica during the last
deglacial retreat, J. Climate, 31, 4041–4054,
https://doi.org/10.1175/JCLI-D-17-0352.1, 2018.
Gowan, E. J., Tregoning, P., Purcell, A., Montillet, J. P., and McClusky, S.:
A model of the western Laurentide Ice Sheet, using observations of glacial
isostatic adjustment, Quaternary Sci. Rev., 139, 1–16,
https://doi.org/10.1016/j.quascirev.2016.03.003, 2016.
Greischar, L. L. and Bentley, C. R.: Isostatic Equilibrium Grounding Line
between the West Antarctic Inland Ice-Sheet and the Ross Ice Shelf, Nature,
283, 651–654, 1980.
Groh, A., Ewert, H., Scheinert, M., Fritsche, M., Rulke, A., Richter, A.,
Rosenau, R., and Dietrich, R.: An investigation of Glacial Isostatic
Adjustment over the Aundsen Sea sector, West Antarctica, Global Planet.
Change, 98–99, 45–53, 2012.
Gross, R. S. and Vondrak, J.: Astrometric and space-geodetic observations of
polar wander, Geophys. Res. Lett., 26, 2085–2088, https://doi.org/10.1029/1999gl900422,
1999.
Gunter, B. C., Didova, O., Riva, R. E. M., Ligtenberg, S. R. M., Lenaerts, J.
T. M., King, M. A., van den Broeke, M. R., and Urban, T.: Empirical
estimation of present-day Antarctic glacial isostatic adjustment and ice mass
change, The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014,
2014.
Han, D. Z. and Wahr, J.: Postglacial Rebound Analysis for a Rotating Earth,
Geoph. Monog. Series, 49, 1–6, 1989.
Han, D. Z. and Wahr, J.: The Viscoelastic Relaxation of a Realistically
Stratified Earth, and a Further Analysis of Postglacial Rebound, Geophys. J.
Int., 120, 287–311, https://doi.org/10.1111/j.1365-246X.1995.tb01819.x, 1995.
Haskell, N. A.: The motion of a viscous fluid under a surface load,
Physics-J. Gen. Appl. P., 6, 265–269, https://doi.org/10.1063/1.1745329, 1935.
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484,
https://doi.org/10.1038/nature14093, 2015.
Hay, C. C., Lau, H. C. P., Gomez, N., Austermann, J., Powell, E., Mitrovica,
J. X., Latychev, K., and Wiens, D. A.: Sea-level fingerprints in a region of
complex Earth structure: The case of WAIS, J. Climate, 30, 1881–1892,
https://doi.org/10.1175/Jcli-D-16-0388.1, 2017.
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I.
W. D., Huerta, A. D., Nyblade, A. A., Wilson, T. J., and Winberry, J. P.:
Upper mantle structure of central and West Antarctica from array analysis of
Rayleigh wave phase velocities, J. Geophys. Res.-Sol. Ea., 121, 1758–1775,
https://doi.org/10.1002/2015JB012616, 2016.
Hetland, E. A. and Hager, B. H.: The effects of rheological layering on
post-seismic deformation, Geophys. J. Int., 166, 277–292,
https://doi.org/10.1111/j.1365-246X.2006.02974.x, 2006.
Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan, P.
M., Zhao, C., and Tamisiea, M. E.: Coral indicators of past sea-level change:
A global repository of U-series dated benchmarks, Quaternary Sci. Rev., 145,
1–56, 2016.
Hill, E. M., Davis, J. L., Tamisiea, M. E., and Lidberg, M.: Combination of
geodetic observations and models for glacial isostatic adjustment fields in
Fennoscandia, J. Geophys. Res.-Sol. Ea., 115, B07403,
https://doi.org/10.1029/2009jb006967, 2010.
Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle
wedge: A view from the experimentalists, in: Inside the Subduction Factory,
edited by: Eiler, J., Geophysical Monograph Series, AGU, 138, 83–105, 2003.
Honsho, C. and Kido, M.: Comprehensive Analysis of Traveltime Data Collected
Through GPS-Acoustic Observation of Seafloor Crustal Movements, J. Geophys.
Res.-Sol. Ea., 122, 8583–8599, https://doi.org/10.1002/2017jb014733, 2017.
Hughes, A. L. C., Gyllencreutz, R., Lohne, O. S., Mangerud, J., and Svendsen,
J. I.: The last Eurasian ice sheets – a chronological database and
time-slice reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142,
2016.
Huybers, P. and Langmuir, C.: Feedback between deglaciation, volcanism, and
atmospheric CO2, Earth Planet. Sc. Lett., 286, 479–491,
https://doi.org/10.1016/j.epsl.2009.07.014, 2009.
Huybers, P. and Langmuir, C. H.: Delayed CO2 emissions from
mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial
cycles, Earth Planet. Sc. Lett., 457, 238–249,
https://doi.org/10.1016/j.epsl.2016.09.021, 2017.
Ingleby, T. and Wright, T. J.: Omori-like decay of postseismic velocities
following continental earthquakes, Geophys. Res. Lett., 44, 3119–3130,
https://doi.org/10.1002/2017gl072865, 2017.
IPCC: Climate change 2013: the physical science basis. Contribution of
working group I to the fifth assessment report of the intergovernmental panel
on climate change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY,
USA, 1535 pp., 2013.
Ivins, E. R. and James, T. S.: Bedrock response to Llanquihue Holocene and
present-day glaciation in southernmost South America, Geophys. Res. Lett.,
31, L24613, https://doi.org/10.1029/2004GL021500, 2004.
Ivins, E. R. and Sammis, C. G.: On Lateral Viscosity Contrast in the Mantle
and the Rheology of Low-Frequency Geodynamics, Geophys. J. Int., 123,
305–322, https://doi.org/10.1111/j.1365-246X.1995.tb06856.x, 1995.
Ivins, E. R., Watkins, M. M., Yuan, D.-N., Dietrich, R., Casassa, G., and
Rülke, A.: On-land ice loss and glacial isostatic adjustment at the Drake
Passage: 2003–2009, J. Geophys. Res., 116, B02403, https://doi.org/10.1029/2010JB007607,
2011.
Ivins, E. R., James, T. S., Wahr, J., Schrama, E. J. O., Landerer, F. W., and
Simon, K. M.: Antarctic Contribution to Sea-Level Rise Observed by GRACE with
Improved GIA Correction, J. Geophys. Res.-Sol. Ea., 118, 3126–3141,
https://doi.org/10.1002/jgrb.50208, 2013.
James, T. S., Gowan, E. J., Wada, I., and Wang, K. L.: Viscosity of the
asthenosphere from glacial isostatic adjustment and subduction dynamics at
the northern Cascadia subduction zone, British Columbia, Canada, J. Geophys.
Res.-Sol. Ea., 114, B04405, https://doi.org/10.1029/2008jb006077, 2009.
Jamieson, T. F.: On the History of the Last Geological Changes in Scotland,
Quarterly Journal of the Geological Society of London, 21, 161–203, 1865.
Johnson, K. M., Burgmann, R., and Freymueller, J. T.: Coupled afterslip and
viscoelastic flow following the 2002 Denali Fault, Alaska earthquake,
Geophys. J. Int., 176, 670–682, https://doi.org/10.1111/j.1365-246X.2008.04029.x, 2009.
Johnston, P.: The Effect of Spatially Nonuniform Water Loads on Prediction of
Sea-Level Change, Geophys. J. Int., 114, 615–634, 1993.
Kaufmann, G., Wu, P., and Li, G. Y.: Glacial isostatic adjustment in
Fennoscandia for a laterally heterogeneous earth, Geophys. J. Int., 143,
262–273, https://doi.org/10.1046/j.1365-246x.2000.00247.x, 2000.
Kaufmann, G., Wu, P., and Ivins, E. R.: Lateral viscosity variations beneath
Antarctica and their implications on regional rebound motions and
seismotectonics, J. Geodyn., 39, 165–181, 2005.
Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea level
– II. Numerical formulation and comparative results on spherically symmetric
models, Geophys. J. Int., 161, 679–706,
https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005.
Kendall, R. A., Latychev, K., Mitrovica, J. X., Davis, J. E., and Tamisiea,
M. E.: Decontaminating tide gauge records for the influence of glacial
isostatic adjustment: The potential impact of 3-D Earth structure, Geophys.
Res. Lett., 33, L24318, https://doi.org/10.1029/2006gl028448, 2006.
Khan, N. S., Ashe, E., Shaw, T. A., Vacchi, M., Walker, J., Peltier, W. R.,
Kopp, R. E., and Horton, B. P.: Holocene Relative Sea-Level Changes from
Near-, Intermediate-, and Far-Field Locations, Current Climate Change
Reports, 1, 247–262, 2015.
Kierulf, H. P., Steffen, H., Simpson, M. J. R., Lidberg, M., Wu, P., and
Wang, H. S.: A GPS velocity field for Fennoscandia and a consistent
comparison to glacial isostatic adjustment models, J. Geophys. Res.-Sol. Ea.,
119, 6613–6629, https://doi.org/10.1002/2013jb010889, 2014.
King, M. A., Altamimi, Z., Boehm, J., Bos, M., Dach, R., Elosegui, P., Fund,
F., Hernandez-Pajares, M., Lavallee, D., Cerveira, P. J. M., Penna, N., Riva,
R. E. M., Steigenberger, P., van Dam, T., Vittuari, L., Williams, S., and
Willis, P.: Improved Constraints on Models of Glacial Isostatic Adjustment: A
Review of the Contribution of Ground-Based Geodetic Observations, Surv.
Geophys., 31, 465–507, https://doi.org/10.1007/s10712-010-9100-4, 2010.
King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J.,
and Milne, G. A.: Lower satellite-gravimetry estimates of Antarctic sea-level
contribution, Nature, 491, 586–589, https://doi.org/10.1038/nature11621, 2012.
King, M. A., Whitehouse, P. L., and van der Wal, W.: Incomplete separability
of Antarctic plate rotation from glacial isostatic adjustment deformation
within geodetic observations, Geophys. J. Int., 204, 324–330, 2016.
King, S. D.: Reconciling laboratory and observational models of mantle
rheology in geodynamic modelling, J. Geodyn., 100, 33–50,
https://doi.org/10.1016/j.jog.2016.03.005, 2016.
Kingslake, J., Scherer, R., Albrecht, T., Coenen, J., Powell, R., Reese, R.,
Stansell, N., Tulaczyk, S., Wearing, M., and Whitehouse, P. L.: Extensive
retreat and re-advance of the West Antarctic ice sheet during the Holocene,
Nature, in press, 2018.
Klemann, V., Martinec, Z., and Ivins, E. R.: Glacial isostasy and plate
motion, J. Geodyn., 46, 95–103, https://doi.org/10.1016/j.jog.2008.04.005, 2008.
Konrad, H., Sasgen, I., Pollard, D., and Klemann, V.: Potential of the
solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat
in a warming climate, Earth Planet. Sc. Lett., 432, 254–264,
https://doi.org/10.1016/j.epsl.2015.10.008, 2015.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer,
M.: Probabilistic assessment of sea level during the last interglacial stage,
Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009.
Kuchar, J. and Milne, G. A.: The influence of viscosity structure in the
lithosphere on predictions from models of glacial isostatic adjustment, J.
Geodyn., 86, 1–9, https://doi.org/10.1016/j.jog.2015.01.002, 2015.
Kuchar, J., Milne, G., Wolstencroft, M., Love, R., Tarasov, L., and Hijma,
M.: The Influence of Sediment Isostatic Adjustment on Sea-Level Change and
Land Motion along the US Gulf Coast, J. Geophys. Res.-Sol. Ea., 123,
780–796, https://doi.org/10.1002/2017JB014695, 2017.
Kuo, C. Y., Shum, C. K., Braun, A., and Mitrovica, J. X.: Vertical crustal
motion determined by satellite altimetry and tide gauge data in Fennoscandia,
Geophys. Res. Lett., 31, L01608, https://doi.org/10.1029/2003gl019106, 2004.
Kutterolf, S., Jegen, M., Mitrovica, J. X., Kwasnitschka, T., Freundt, A.,
and Huybers, P. J.: A detection of Milankovitch frequencies in global
volcanic activity, Geology, 41, 227–230, https://doi.org/10.1130/G33419.1, 2013.
Lambeck, K.: Late Devensian and Holocene Shorelines of the British-Isles and
North-Sea from Models of Glacio-Hydro-Isostatic Rebound, J. Geol. Soc.
London, 152, 437–448, https://doi.org/10.1144/gsjgs.152.3.0437, 1995.
Lambeck, K. and Nakada, M.: Late Pleistocene and Holocene sea-level change
along the Australian coast, Global Planet. Change, 89, 143–176, 1990.
Lambeck, K., Smither, C., and Johnston, P.: Sea-level change, glacial rebound
and mantle viscosity for northern Europe, Geophys. J. Int., 134, 102–144,
1998.
Lambeck, K., Yokoyama, Y., Johnston, P., and Purcell, A.: Corrigendum to
“Global ice volumes at the Last Glacial Maximum and early Lateglacial
(vol. 181, pg. 513, 2000)”, Earth Planet. Sc. Lett., 190, 275–275,
https://doi.org/10.1016/S0012-821x(01)00386-7, 2001.
Lambeck, K., Purcell, A., Zhao, J., and Svensson, N. O.: The Scandinavian Ice
Sheet: from MIS 4 to the end of the Last Glacial Maximum, Boreas, 39,
410–435, https://doi.org/10.1111/j.1502-3885.2010.00140.x, 2010.
Lambeck, K., Purcell, A., and Dutton, A.: The anatomy of interglacial sea
levels: The relationship between sea levels and ice volumes during the Last
Interglacial, Earth Planet. Sc. Lett., 315, 4–11,
https://doi.org/10.1016/j.epsl.2011.08.026, 2012.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lambeck, K., Purcell, A., and Zhao, S.: The North American Late Wisconsin ice
sheet and mantle viscosity from glacial rebound analyses, Quaternary Sci.
Rev., 158, 172–210, https://doi.org/10.1016/j.quascirev.2016.11.033, 2017.
Lange, H., Casassa, G., Ivins, E. R., Schroder, L., Fritsche, M., Richter,
A., Groh, A., and Dietrich, R.: Observed crustal uplift near the Southern
Patagonian Icefield constrains improved viscoelastic Earth models, Geophys.
Res. Lett., 41, 805–812, https://doi.org/10.1002/2013gl058419, 2014.
Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A., and
Ivins, E. R.: Rapid viscoelastic uplift in southeast Alaska caused by
post-Little Ice Age glacial retreat, Earth Planet. Sc. Lett., 237, 548–560,
https://doi.org/10.1016/j.epsl.2005.06.032, 2005.
Latychev, K., Mitrovica, J. X., Tamisiea, M. E., Tromp, J., and Moucha, R.:
Influence of lithospheric thickness variations on 3-D crustal velocities due
to glacial isostatic adjustment, Geophys. Res. Lett., 32, L01304, 2005a.
Latychev, K., Mitrovica, J. X., Tromp, J., Tamisiea, M. E., Komatitsch, D.,
and Christara, C. C.: Glacial isostatic adjustment on 3-D Earth models: a
finite-volume formulation, Geophys. J. Int., 161, 421–444, 2005b.
Lau, H. C. P., Mitrovica, J. X., Austermann, J., Crawford, O., Al-Attar, D.,
and Latychev, K.: Inferences of mantle viscosity based on ice age data sets:
Radial structure, J. Geophys. Res.-Sol. Ea., 121, 6991–7012,
https://doi.org/10.1002/2016jb013043, 2016.
Lecavalier, B. S., Milne, G. A., Vinther, B. M., Fisher, D. A., Dyke, A. S.,
and Simpson, M. J. R.: Revised estimates of Greenland ice sheet thinning
histories based on ice-core records, Quaternary Sci. Rev., 63, 73–82,
https://doi.org/10.1016/j.quascirev.2012.11.030, 2013.
Lecavalier, B. S., Milne, G. A., Simpson, M. J. R., Wake, L., Huybrechts, P.,
Tarasov, L., Kjeldsen, K. K., Funder, S., Long, A. J., Woodroffe, S., Dyke,
A. S., and Larsen, N. K.: A model of Greenland ice sheet deglaciation
constrained by observations of relative sea level and ice extent, Quaternary
Sci. Rev., 102, 54–84, https://doi.org/10.1016/j.quascirev.2014.07.018, 2014.
Lidberg, M., Johansson, J. M., Scherneck, H. G., and Davis, J. L.: An
improved and extended GPS-derived 3D velocity field of the glacial isostatic
adjustment (GIA) in Fennoscandia, J. Geodesy, 81, 213–230,
https://doi.org/10.1007/s00190-006-0102-4, 2007.
Lidberg, M., Johansson, J. M., Scherneck, H. G., and Milne, G. A.: Recent
results based on continuous GPS observations of the GIA process in
Fennoscandia from BIFROST, J. Geodyn., 50, 8–1
8,
https://doi.org/10.1016/j.jog.2009.11.010, 2010.
Liu, J., Milne, G. A., Kopp, R. E., Clark, P. U., and Shennan, I.: Sea-level
constraints on the amplitude and source distribution of Meltwater Pulse 1A,
Nat. Geosci., 9, 130–134, https://doi.org/10.1038/Ngeo2616, 2016.
Love, A. E. H.: The yielding of the earth to distributing forces, P. R. Soc.
Lond. A-Conta., 82, 73–88, https://doi.org/10.1098/rspa.1909.0008, 1909.
Lund, B.: Palaeoseismology of glaciated terrain, in: Encyclopedia of
Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I. A., Patelli,
E., and Au, S.-K., Springer-Verlag, Berlin, Heidelberg, Germany, 1765–1779,
2015.
Lund, D. C., Asimow, P. D., Farley, K. A., Rooney, T. O., Seeley, E.,
Jackson, E. W., and Durham, Z. M.: Enhanced East Pacific Rise hydrothermal
activity during the last two glacial terminations, Science, 351, 478–482,
https://doi.org/10.1126/science.aad4296, 2016.
Lyell, C.: The Bakerian Lecture: On the Proofs of a Gradual Rising of the
Land in Certain Parts of Sweden, Philos. T. R. Soc. Lond., 125, 1–38, 1835.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide
Ice Sheet: Identification, characteristics and comparison to modern ice
sheets, Earth-Sci. Rev., 143, 117–146, https://doi.org/10.1016/j.earscirev.2015.01.011,
2015.
Martinec, Z.: Spectral-finite element approach to three-dimensional
viscoelastic relaxation in a spherical earth, Geophys. J. Int., 142,
117–141, https://doi.org/10.1046/j.1365-246x.2000.00138.x, 2000.
Martinec, Z. and Hagedoorn, J.: The rotational feedback on linear-momentum
balance in glacial isostatic adjustment, Geophys. J. Int., 199, 1823–1846,
https://doi.org/10.1093/gji/ggu369, 2014.
Martinec, Z., Sasgen, I., and Velimsky, J.: The forward sensitivity and
adjoint-state methods of glacial isostatic adjustment, Geophys. J. Int., 200,
77–105, https://doi.org/10.1093/gji/ggu378, 2015.
Martin-Espanol, A., King, M. A., Mangion, A. Z., Andrews, S., Moore, P., and
Bamber, J.: An assessment of forward and inverse GIA solutions for
Antarctica, J. Geophys. Res., 121, 6947–6965, 2016a.
Martin-Espanol, A., Zammit-Mangion, A., Clarke, P. J., Flament, T., Helm, V.,
King, M. A., Luthcke, S. B., Petrie, E., Remy, F., Schon, N., Wouters, B.,
and Bamber, J. L.: Spatial and temporal Antarctic Ice Sheet mass trends,
glacio-isostatic adjustment, and surface processes from a joint inversion of
satellite altimeter, gravity, and GPS data, J. Geophys. Res.-Earth, 121,
182–200, https://doi.org/10.1002/2015jf003550, 2016b.
Matsuoka, K., Hindmarsh, R. C. A., Moholdt, G., Bentley, M. J., Pritchard, H.
D., Brown, J., Conway, H., Drews, R., Durand, G., Goldberg, D., Hattermann,
T., Kingslake, J., Lenaerts, J. T. M., Martín, C., Mulvaney, R.,
Nicholls, K. W., Pattyn, F., Ross, N., Scambos, T., and Whitehouse, P. L.:
Antarctic ice rises and rumples: Their properties and significance for
ice-sheet dynamics and evolution, Earth-Sci. Rev., 150, 724–745, 2015.
Mazzotti, S., Lambert, A., Henton, J., James, T. S., and Courtier, N.:
Absolute gravity calibration of GPS velocities and glacial isostatic
adjustment in mid-continent North America, Geophys. Res. Lett., 38, L24311,
https://doi.org/10.1029/2011gl049846, 2011.
McConnell, R. K.: Viscosity of Mantle from Relaxation Time Spectra of
Isostatic Adjustment, J. Geophys. Res., 73, 7089–7105,
https://doi.org/10.1029/JB073i022p07089, 1968.
Memin, A., Rogister, Y., Hinderer, J., Omang, O. C., and Luck, B.: Secular
gravity variation at Svalbard (Norway) from ground observations and GRACE
satellite data, Geophys. J. Int., 184, 1119–1130,
https://doi.org/10.1111/j.1365-246X.2010.04922.x, 2011.
Metivier, L., Caron, L., Greff-Lefftz, M., Pajot-Metivier, G., Fleitout, L.,
and Rouby, H.: Evidence for postglacial signatures in gravity gradients: A
clue in lower mantle viscosity, Earth Planet. Sc. Lett., 452, 146–156,
https://doi.org/10.1016/j.epsl.2016.07.034, 2016.
Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen,
T. F., and Strecker, M. R.: Glacial isostatic uplift of the European Alps,
Nat. Commun., 7, 13382, https://doi.org/10.1038/ncomms13382, 2016.
Miller, G. H., Geirsdottir, A., Zhong, Y. F., Larsen, D. J., Otto-Bliesner,
B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J.,
Southon, J. R., Anderson, C., Bjornsson, H., and Thordarson, T.: Abrupt onset
of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean
feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011gl050168, 2012.
Milne, G. A.: Refining models of the glacial isostatic adjustment process,
PhD Thesis, University of Toronto, Toronto, Canada, 1998.
Milne, G. A.: Glacial Isostatic Adjustment, in: Handbook of Sea-Level
Research, edited by: Shennan, I., Long, A. J., and Horton, B. P.,
Wiley-Blackwell, Oxford, UK, 421–437, 2015.
Milne, G. A. and Mitrovica, J. X.: Postglacial sea-level change on a rotating
Earth, Geophys. J. Int., 133, 1–19, 1998.
Milne, G. A. and Mitrovica, J. X.: Searching for eustasy in deglacial
sea-level histories, Quaternary Sci. Rev., 27, 2292–2302,
https://doi.org/10.1016/j.quascirev.2008.08.018, 2008.
Milne, G. A., Davis, J. L., Mitrovica, J. X., Scherneck, H. G., Johansson, J.
M., Vermeer, M., and Koivula, H.: Space-geodetic constraints on glacial
isostatic adjustment in Fennoscandia, Science, 291, 2381–2385, 2001.
Milne, G. A., Mitrovica, J. X., and Schrag, D. P.: Estimating past
continental ice volume from sea-level data, Quaternary Sci. Rev., 21,
361–376, 2002.
Milne, G. A., Mitrovica, J. X., Scherneck, H. G., Davis, J. L., Johansson, J.
M., Koivula, H., and Vermeer, M.: Continuous GPS measurements of postglacial
adjustment in Fennoscandia: 2. Modeling results, J. Geophys. Res.-Sol. Ea.,
109, B02412, https://doi.org/10.1029/2003jb002619, 2004.
Milne, G. A., Gehrels, W. R., Hughes, C. W., and Tamisiea, M. E.: Identifying
the causes of sea-level change, Nat. Geosci., 2, 471–478,
https://doi.org/10.1038/Ngeo544, 2009.
Mitrovica, J. X.: Haskell [1935] revisited, J. Geophys. Res.-Sol. Ea., 101,
555–569, https://doi.org/10.1029/95jb03208, 1996.
Mitrovica, J. X. and Forte, A. M.: A new inference of mantle viscosity based
upon joint inversion of convection and glacial isostatic adjustment data,
Earth Planet. Sc. Lett., 225, 177–189, https://doi.org/10.1016/j.epsl.2004.06.005, 2004.
Mitrovica, J. X. and Milne, G. A.: On the origin of late Holocene sea-level
highstands within equatorial ocean basins, Quaternary Sci. Rev., 21,
2179–2190, 2002.
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General
theory, Geophys. J. Int., 154, 253–267, 2003.
Mitrovica, J. X. and Peltier, W. R.: A Complete Formalism for the Inversion
of Postglacial Rebound Data - Resolving Power Analysis, Geophys. J. Int.,
104, 267–288, https://doi.org/10.1111/j.1365-246X.1991.tb02511.x, 1991a.
Mitrovica, J. X., and Peltier, W. R.: On postglacial geoid subsidence over
the equatorial oceans, J. Geophys. Res.-Sol. Ea., 96, 20053–20071, 1991b.
Mitrovica, J. X. and Wahr, J.: Ice Age Earth Rotation, Annu. Rev. Earth Pl.
Sc., 39, 577–616, https://doi.org/10.1146/annurev-earth-040610-133404, 2011.
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., and Milne, G. A.: Recent
mass balance of polar ice sheets inferred from patterns of global sea-level
change, Nature, 409, 1026–1029, 2001.
Mitrovica, J. X., Wahr, J., Matsuyama, I., and Paulson, A.: The rotational
stability of an ice-age earth, Geophys. J. Int., 161, 491–506,
https://doi.org/10.1111/j.1365-246X.2005.02609.x, 2005.
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The Sea-Level Fingerprint of
West Antarctic Collapse, Science, 323, 753–753, 2009.
Mitrovica, J. X., Hay, C. C., Morrow, E., Kopp, R. E., Dumberry, M., and
Stanley, S.: Reconciling past changes in Earth's rotation with 20th century
global sea-level rise: Resolving Munk's enigma, Science Advances, 1,
e1500679, https://doi.org/10.1126/sciadv.1500679, 2015.
Moucha, R. and Ruetenik, G. A.: Interplay between dynamic topography and
flexure along the US Atlantic passive margin: Insights from landscape
evolution, Global Planet. Change, 149, 72–78,
https://doi.org/10.1016/j.gloplacha.2017.01.004, 2017.
Nakada, M., Okuno, J., and Yokoyama, Y.: Total meltwater volume since the
Last Glacial Maximum and viscosity structure of Earth's mantle inferred from
relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced
J2, Geophys. J. Int., 204, 1237–1253, https://doi.org/10.1093/gji/ggv520, 2016.
Nakiboglu, S. M. and Lambeck, K.: Deglaciation Effects on the Rotation of the
Earth, Geophys. J. Roy. Astr. S., 62, 49–58,
https://doi.org/10.1111/j.1365-246X.1980.tb04843.x, 1980.
Nansen, F.: The strandflat and isostasy, Videnskapsselskapets Skrifter.
1. Matematisk-Naturhistorisk Klasse, Jacob Dybwad, Kristiania, Norway,
313 pp., 1921.
Nerem, R. S. and Mitchum, G. T.: Estimates of vertical crustal motion derived
from differences of TOPEX/POSEIDON and tide gauge sea level measurements,
Geophys. Res. Lett., 29, 1934, https://doi.org/10.1029/2002gl015037, 2002.
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L.,
Clarke, P. J., Domack, E., Scambos, T. A., and Berthier, E.: Rapid bedrock
uplift in the Antarctic Peninsula explained by viscoelastic response to
recent ice unloading, Earth Planet. Sc. Lett., 397, 32–41,
https://doi.org/10.1016/j.epsl.2014.04.019, 2014.
Nield, G. A., Whitehouse, P. L., Van der Wal, W., Blank, B., O'Donnell, J.
P., and Stuart, G. W.: The impact of lateral variations in lithospheric
thickness on glacial isostatic adjustment in West Antarctica, Geophys. J.
Int., https://doi.org/10.1093/gji/ggy158, online first, 2018.
O'Connell, R. J.: Pleistocene Glaciation and Viscosity of Lower Mantle,
Geophys. J. Roy. Astr. S., 23, 299–327,
https://doi.org/10.1111/j.1365-246X.1971.tb01823.x, 1971.
Olsson, P. A., Milne, G., Scherneck, H. G., and Agren, J.: The relation
between gravity rate of change and vertical displacement in previously
glaciated areas, J. Geodyn., 83, 76–84, https://doi.org/10.1016/j.jog.2014.09.011, 2015.
Pagli, C., Sigmundsson, F., Lund, B., Sturkell, E., Geirsson, H., Einarsson,
P., Arnadottir, T., and Hreinsdottir, S.: Glacio-isostatic deformation around
the Vatnajokull ice cap, Iceland, induced by recent climate warming: GPS
observations and finite element modeling, J. Geophys. Res.-Sol. Ea., 112,
B08405, https://doi.org/10.1029/2006jb004421, 2007.
Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet,
F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C.,
Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice
flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3,
243–259, https://doi.org/10.5194/cp-3-243-2007, 2007.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L.,
Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.:
Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169,
148–172, 2017.
Paulson, A., Zhong, S. J., and Wahr, J.: Modelling post-glacial rebound with
lateral viscosity variations, Geophys. J. Int., 163, 357–371,
https://doi.org/10.1111/j.1365-246X.2005.02645.x, 2005.
Paulson, A., Zhong, S. J., and Wahr, J.: Inference of mantle viscosity from
GRACE and relative sea level data, Geophys. J. Int., 171, 497–508,
https://doi.org/10.1111/j.1365-246X.2007.03556.x, 2007a.
Paulson, A., Zhong, S. J., and Wahr, J.: Limitations on the inversion for
mantle viscosity from postglacial rebound, Geophys. J. Int., 168, 1195–1209,
https://doi.org/10.1111/j.1365-246X.2006.03222.x, 2007b.
Peltier, W. R.: Impulse Response of a Maxwell Earth, Rev. Geophys., 12,
649–669, https://doi.org/10.1029/RG012i004p00649, 1974.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age earth:
The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149,
2004.
Peltier, W. R., Shennan, I., Drummond, R., and Horton, B.: On the postglacial
isostatic adjustment of the British Isles and the shallow viscoelastic
structure of the Earth, Geophys. J. Int., 148, 443–475,
https://doi.org/10.1046/j.1365-246x.2002.01586.x, 2002.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys.
Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014jb011176, 2015.
Pico, T., Mitrovica, J. X., Ferrier, K. L., and Braun, J.: Global ice volume
during MIS 3 inferred from a sea-level analysis of sedimentary core records
in the Yellow River Delta, Quaternary Sci. Rev., 152, 72–79,
https://doi.org/10.1016/j.quascirev.2016.09.012, 2016.
Plag, H. P. and Jüttner, H. U.: Inversion of global tide gauge data for
present-day ice load changes, Mem. Natl. Inst. Polar Res., 54, 301–317,
2001.
Playfair, J.: Illustrations of the Huttonian theory of the Earth, Cadell and
Davies, London, UK, and William Creech, Edinburgh, UK, 1802.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet. Sc.
Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large
ensemble modeling of the last deglacial retreat of the West Antarctic Ice
Sheet: comparison of simple and advanced statistical techniques, Geosci.
Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, 2016.
Pollard, D., Gomez, N., and DeConto, R. M.: Variations of the Antarctic Ice
Sheet in a coupled ice sheet-Earth-sea level model: sensitivity to
viscoelastic Earth properties, J. Geophys. Res.-Earth, 122, 2124–2138,
https://doi.org/10.1002/2017JF004371, 2017.
Pollitz, F. F.: Transient rheology of the upper mantle beneath central Alaska
inferred from the crustal velocity field following the 2002 Denali
earthquake, J. Geophys. Res.-Sol. Ea., 110, B08407, https://doi.org/10.1029/2005jb003672,
2005.
Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M.,
Addison, J., and Prahl, F.: Interaction between climate, volcanism, and
isostatic rebound in Southeast Alaska during the last deglaciation, Earth
Planet. Sc. Lett., 452, 79–89, https://doi.org/10.1016/j.epsl.2016.07.033, 2016.
Purcell, A., Dehecq, A., Tregoning, P., Potter, E. K., McClusky, S. C., and
Lambeck, K.: Relationship between glacial isostatic adjustment and gravity
perturbations observed by GRACE, Geophys. Res. Lett., 38, L18305,
https://doi.org/10.1029/2011gl048624, 2011.
Raymo, M. E., Mitrovica, J. X., O'Leary, M. J., DeConto, R. M., and Hearty,
P. L.: Departures from eustasy in Pliocene sea-level records, Nat. Geosci.,
4, 328–332, https://doi.org/10.1038/Ngeo1118, 2011.
Rietbroek, R., Brunnabend, S. E., Kusche, J., Schroter, J., and Dahle, C.:
Revisiting the contemporary sea-level budget on global and regional scales,
P. Natl. Acad. Sci. USA, 113, 1504–1509, https://doi.org/10.1073/pnas.1519132113, 2016.
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave
dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. J. Int., 184, 1223–1236,
https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
Riva, R. E. M., Gunter, B. C., Urban, T. J., Vermeersen, B. L. A.,
Lindenbergh, R. C., Helsen, M. M., Bamber, J. L., de Wal, R., van den Broeke,
M. R., and Schutz, B. E.: Glacial Isostatic Adjustment over Antarctica from
combined ICESat and GRACE satellite data, Earth Planet. Sc. Lett., 288,
516–523, https://doi.org/10.1016/j.epsl.2009.10.013, 2009.
Riva, R. E. M., Bamber, J. L., Lavallee, D. A., and Wouters, B.: Sea-level
fingerprint of continental water and ice mass change from GRACE, Geophys.
Res. Lett., 37, L19605, https://doi.org/10.1029/2010gl044770, 2010.
Root, B. C., Tarasov, L., and van der Wal, W.: GRACE gravity observations
constrain Weichselian ice thickness in the Barents Sea, Geophys. Res. Lett.,
42, 3313–3320, https://doi.org/10.1002/2015gl063769, 2015.
Rovere, A., Raymo, M. E., Mitrovica, J. X., Hearty, P. J., O'Leary, M. J.,
and Inglis, J. D.: The Mid-Pliocene sea-level conundrum: Glacial isostasy,
eustasy and dynamic topography, Earth Planet. Sc. Lett., 387, 27–33,
https://doi.org/10.1016/j.epsl.2013.10.030, 2014.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P.,
Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty,
P. J.: The analysis of Last Interglacial (MIS 5e) relative sea-level
indicators: Reconstructing sea-level in a warmer world, Earth-Sci. Rev., 159,
404–427, 2016.
Rowley, D. B., Forte, A. M., Moucha, R., Mitrovica, J. X., Simmons, N. A.,
and Grand, S. P.: Dynamic Topography Change of the Eastern United States
Since 3 Million Years Ago, Science, 340, 1560–1563,
https://doi.org/10.1126/science.1229180, 2013.
Rudzki, M. P.: Deformationen der Erde unter der Last des Inlandeises,
Bulletin international de l'Academie des sciences de Cracovie, Imprimerie de
l'Université, Cracovie, Poland, 169–215, 1899.
Rugenstein, M., Stocchi, P., von der Heydt, A., Dijkstra, H., and Brinkhuis,
H.: Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow,
Global Planet. Change, 118, 16–24, https://doi.org/10.1016/j.gloplacha.2014.03.011,
2014.
Sabadini, R., Yuen, D. A., and Boschi, E.: Polar Wandering and the Forced
Responses of a Rotating, Multilayered, Viscoelastic Planet, J. Geophys. Res.,
87, 2885–2903, https://doi.org/10.1029/JB087iB04p02885, 1982.
Sasgen, I., Martinec, Z., and Fleming, K.: Regional ice-mass changes and
glacial-isostatic adjustment in Antarctica from GRACE, Earth Planet. Sc.
Lett., 264, 391–401, https://doi.org/10.1016/j.epsl.2007.09.029, 2007.
Sasgen, I., Konrad, H., Ivins, E. R., Van den Broeke, M. R., Bamber, J. L.,
Martinec, Z., and Klemann, V.: Antarctic ice-mass balance 2003 to 2012:
regional reanalysis of GRACE satellite gravimetry measurements with improved
estimate of glacial-isostatic adjustment based on GPS uplift rates, The
Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, 2013.
Sasgen, I., Martin-Espanol, A., Horvath, A., Klemann, V., Petrie, E. J.,
Wouters, B., Horwath, M., Pail, R., Bamber, J. L., Clarke, P. J., Konrad, H.,
and Drinkwater, M. R.: Joint inversion estimate of regional glacial isostatic
adjustment in Antarctica considering a lateral varying Earth structure (ESA
STSE Project REGINA), Geophys. J. Int., 211, 1534–1553,
https://doi.org/10.1093/gji/ggx368, 2017.
Sato, T., Larsen, C. F., Miura, S., Ohta, Y., Fujimoto, H., Sun, W. K.,
Motyka, R. J., and Freymueller, J. T.: Reevaluation of the viscoelastic and
elastic responses to the past and present-day ice changes in Southeast
Alaska, Tectonophysics, 511, 79–88, https://doi.org/10.1016/j.tecto.2010.05.009, 2011.
Sato, T., Miura, S., Sun, W. K., Sugano, T., Freymueller, J. T., Larsen, C.
F., Ohta, Y., Fujimoto, H., Inazu, D., and Motyka, R. J.: Gravity and uplift
rates observed in southeast Alaska and their comparison with GIA model
predictions, J. Geophys. Res.-Sol. Ea., 117, B01401,
https://doi.org/10.1029/2011jb008485, 2012.
Schmidt, P., Lund, B., Hieronymus, C., Maclennan, J., Arnadottir, T., and
Pagli, C.: Effects of present-day deglaciation in Iceland on mantle melt
production rates, J. Geophys. Res.-Sol. Ea., 118, 3366–3379,
https://doi.org/10.1002/jgrb.50273, 2013.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28, https://doi.org/10.1029/2006jf000664,
2007.
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti,
S., and Dokka, R. K.: Observation of glacial isostatic adjustment in
“stable” North America with GPS, Geophys. Res. Lett., 34, L02306,
https://doi.org/10.1029/2006GL027081, 2007.
Shennan, I., Peltier, W. R., Drummond, R., and Horton, B.: Global to local
scale parameters determining relative sea-level changes and the post-glacial
isostatic adjustment of Great Britain, Quaternary Sci. Rev., 21, 397–408,
https://doi.org/10.1016/S0277-3791(01)00091-9, 2002.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J.,
Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N.,
Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J.
L., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister,
R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A.
J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A.,
Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J.
H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I.,
Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D. H., Young, D., and
Zwally, H. J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338,
1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H.,
and Sturkell, E.: Climate effects on volcanism: influence on magmatic systems
of loading and unloading from ice mass variations, with examples from
Iceland, Philos. T. R. Soc. A, 368, 2519–2534, https://doi.org/10.1098/rsta.2010.0042,
2010.
Simms, A. R., Ivins, E. R., DeWitt, R., Kouremenos, P., and Simkins, L. M.:
Timing of the most recent Neoglacial advance and retreat in the South
Shetland Islands, Antarctica Peninsula: insights from raised beaches and
Holocene uplift rates, Quaternary Sci. Rev., 37, 41–55, 2012.
Simon, K. M., James, T. S., Henton, J. A., and Dyke, A. S.: A glacial
isostatic adjustment model for the central and northern Laurentide Ice Sheet
based on relative sea level and GPS measurements, Geophys. J. Int., 205,
1618–1636, https://doi.org/10.1093/gji/ggw103, 2016.
Simpson, M. J. R., Milne, G. A., Huybrechts, P., and Long, A. J.: Calibrating
a glaciological model of the Greenland ice sheet from the Last Glacial
Maximum to present-day using field observations of relative sea level and ice
extent, Quaternary Sci. Rev., 28, 1631–1657,
https://doi.org/10.1016/j.quascirev.2009.03.004, 2009.
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl,
A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first century
regional sea-level changes, Climatic Change, 124, 317–332,
https://doi.org/10.1007/s10584-014-1080-9, 2014.
Spada, G.: Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An
Overview, Surv. Geophys., 38, 153–185, https://doi.org/10.1007/s10712-016-9379-x, 2017.
Spada, G. and Stocchi, P.: The sea level equation, Aracne, Rome, Italy, 2006.
Spada, G., Yuen, D. A., Sabadini, R., and Boschi, E.: Lower-Mantle Viscosity
Constrained by Seismicity around Deglaciated Regions, Nature, 351, 53–55,
https://doi.org/10.1038/351053a0, 1991.
Spada, G., Barletta, V. R., Klemann, V., Riva, R. E. M., Martinec, Z.,
Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., and King, M. A.: A
benchmark study for glacial isostatic adjustment codes, Geophys. J. Int.,
185, 106–132, https://doi.org/10.1111/j.1365-246X.2011.04952.x, 2011.
Steffen, H. and Wu, P.: Glacial isostatic adjustment in Fennoscandia – A
review of data and modeling, J. Geodyn., 52, 169–204,
https://doi.org/10.1016/j.jog.2011.03.002, 2011.
Steffen, H. and Wu, P.: The sensitivity of GNSS measurements in Fennoscandia
to distinct three-dimensional upper-mantle structures, Solid Earth, 5,
557–567, https://doi.org/10.5194/se-5-557-2014, 2014.
Steffen, H., Kaufmann, G., and Wu, P.: Three-dimensional finite-element
modeling of the glacial isostatic adjustment in Fennoscandia, Earth Planet.
Sc. Lett., 250, 358–375, https://doi.org/10.1016/j.epsl.2006.08.003, 2006.
Steffen, H., Gitlein, O., Denker, H., Muller, J., and Timmen, L.: Present
rate of uplift in Fennoscandia from GRACE and absolute gravimetry,
Tectonophysics, 474, 69–77, https://doi.org/10.1016/j.tecto.2009.01.012, 2009.
Steffen, H., Wu, P., and Wang, H.: Optimal locations for absolute gravity
measurements and sensitivity of GRACE observations for constraining glacial
isostatic adjustment on the northern hemisphere, Geophys. J. Int., 190,
1483–1494, https://doi.org/10.1111/j.1365-246X.2012.05563.x, 2012.
Steffen, H., Wu, P., and Wang, H.: Optimal locations of sea-level indicators
in glacial isostatic adjustment investigations, Solid Earth, 5, 511–521,
https://doi.org/10.5194/se-5-511-2014, 2014.
Steffen, R., Eaton, D. W., and Wu, P.: Moment tensors, state of stress and
their relation to post-glacial rebound in northeastern Canada, Geophys. J.
Int., 189, 1741–1752, https://doi.org/10.1111/j.1365-246X.2012.05452.x, 2012.
Steffen, R., Steffen, H., Wu, P., and Eaton, D. W.: Stress and fault
parameters affecting fault slip magnitude and activation time during a
glacial cycle, Tectonics, 33, 1461–1476, https://doi.org/10.1002/2013tc003450, 2014a.
Steffen, R., Wu, P., Steffen, H., and Eaton, D. W.: On the implementation of
faults in finite-element glacial isostatic adjustment models, Comput.
Geosci.-UK, 62, 150–159, https://doi.org/10.1016/j.cageo.2013.06.012, 2014b.
Steffen, R., Wu, P., Steffen, H., and Eaton, D. W.: The effect of earth
rheology and ice-sheet size on fault slip and magnitude of postglacial
earthquakes, Earth Planet. Sc. Lett., 388, 71–80,
https://doi.org/10.1016/j.epsl.2013.11.058, 2014c.
Sternai, P., Caricchi, L., Castelltort, S., and Champagnac, J. D.:
Deglaciation and glacial erosion: A joint control on magma productivity by
continental unloading, Geophys. Res. Lett., 43, 1632–1641,
https://doi.org/10.1002/2015gl067285, 2016.
Stokes, G. G.: On the variation of gravity at the surface of the Earth,
Transactions of the Cambridge Philosophical Society, 8, 672–695, 1849.
Suess, E.: La Face de la Terre, translated by Sollas, H. B. C. and Sollas, W.
J., Clarendon Press, Oxford, UK, 759 pp., 1906.
Tamisiea, M. E.: Ongoing glacial isostatic contributions to observations of
sea level change, Geophys. J. Int., 186, 1036–1044,
https://doi.org/10.1111/j.1365-246X.2011.05116.x, 2011.
Tamisiea, M. E., Mitrovica, J. X., and Davis, J. L.: GRACE gravity data
constrain ancient ice geometries and continental dynamics over Laurentia,
Science, 316, 881–883, https://doi.org/10.1126/science.1137157, 2007.
Tanaka, Y., Klemann, V., Martinec, Z., and Riva, R. E. M.: Spectral-finite
element approach to viscoelastic relaxation in a spherical compressible
Earth: application to GIA modelling, Geophys. J. Int., 184, 220–234,
https://doi.org/10.1111/j.1365-246X.2010.04854.x, 2011.
Tarasov, L. and Peltier, W. R.: Greenland glacial history and local
geodynamic consequences, Geophys. J. Int., 150, 198–229,
https://doi.org/10.1046/j.1365-246X.2002.01702.x, 2002.
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated
distribution of deglacial chronologies for the North American ice complex
from glaciological modeling, Earth Planet. Sc. Lett., 315, 30–40,
https://doi.org/10.1016/j.epsl.2011.09.010, 2012.
Thomas, I. D., King, M. A., Bentley, M. J., Whitehouse, P. L., Penna, N. T.,
Williams, S. D. P., Riva, R. E. M., Lavallee, D. A., Clarke, P. J., King, E.
C., Hindmarsh, R. C. A., and Koivula, H.: Widespread low rates of Antarctic
glacial isostatic adjustment revealed by GPS observations, Geophys. Res.
Lett., 38, L22302, https://doi.org/10.1029/2011GL049277, 2011.
van Dam, T., Francis, O., Wahr, J., Khan, S. A., Bevis, M., and van den
Broeke, M. R.: Using GPS and absolute gravity observations to separate the
effects of present-day and Pleistocene ice-mass changes in South East
Greenland, Earth Planet. Sc. Lett., 459, 127–135,
https://doi.org/10.1016/j.epsl.2016.11.014, 2017.
van der Wal, W. and IJpelaar, T.: The effect of sediment loading in
Fennoscandia and the Barents Sea during the last glacial cycle on glacial
isostatic adjustment observations, Solid Earth, 8, 955–968,
https://doi.org/10.5194/se-8-955-2017, 2017.
van der Wal, W., Barnhoorn, A., Stocchi, P., Gradmann, S., Wu, P., Drury, M.,
and Vermeersen, B.: Glacial isostatic adjustment model with composite 3-D
Earth rheology for Fennoscandia, Geophys. J. Int., 194, 61–77,
https://doi.org/10.1093/gji/ggt099, 2013.
van der Wal, W., Whitehouse, P. L., and Schrama, E. J. O.: Effect of GIA
models with 3D composite mantle viscosity on GRACE mass balance estimates for
Antarctica, Earth Planet. Sc. Lett., 414, 134–143, 2015.
Wahr, J., Dazhong, H., and Trupin, A.: Predictions of Vertical Uplift Caused
by Changing Polar Ice Volumes on a Viscoelastic Earth, Geophys. Res. Lett.,
22, 977–980, https://doi.org/10.1029/94gl02840, 1995.
Wahr, J., Wingham, D., and Bentley, C.: A method of combining ICESat and
GRACE satellite data to constrain Antarctic mass balance, J. Geophys. Res.,
105, 16279–16294, 2000.
Walcott, R. I.: Past sea levels, eustasy and deformation of the earth,
Quaternary Res., 2, 1–14, 1972.
Wang, H. and Wu, P.: Effects of lateral variations in lithospheric thickness
and mantle viscosity on glacially induced surface motion on a spherical,
self-gravitating Maxwell Earth, Earth Planet. Sc. Lett., 244, 576–589,
2006a.
Wang, H. S. and Wu, P.: Effects of lateral variations in lithospheric
thickness and mantle viscosity on glacially induced relative sea levels and
long wavelength gravity field in a spherical, self-gravitating Maxwell Earth,
Earth Planet. Sc. Lett., 249, 368–383, https://doi.org/10.1016/j.epsl.2006.07.011,
2006b.
Watcham, E. P., Bentley, M. J., Hodgson, D. A., Roberts, S. J., Fretwell, P.
T., Lloyd, J. M., Larter, R. D., Whitehouse, P. L., Leng, M. J., Monien, P.,
and Moreton, S. G.: A new Holocene relative sea level curve for the South
Shetland Islands, Antarctica, Quaternary Sci. Rev., 30, 3152–3170, 2011.
Watts, A. B., Zhong, S. J., and Hunter, J.: The Behavior of the Lithosphere
on Seismic to Geologic Timescales, Annu. Rev. Earth Pl. Sc., 41, 443–468,
https://doi.org/10.1146/annurev-earth-042711-105457, 2013.
Whitehouse, P.: Glacial isostatic adjustment and sea-level change: state of
the art report, Stockholm, Sweden, 2009.
Whitehouse, P., Latychev, K., Milne, G. A., Mitrovica, J. X., and Kendall,
R.: Impact of 3-D Earth structure on Fennoscandian glacial isostatic
adjustment: Implications for space-geodetic estimates of present-day crustal
deformations, Geophys. Res. Lett., 33, L13502, https://doi.org/10.1029/2006GL026568,
2006.
Whitehouse, P. L., Allen, M. B., and Milne, G. A.: Glacial isostatic
adjustment as a control on coastal processes: An example from the Siberian
Arctic, Geology, 35, 747–750, 2007.
Whitehouse, P. L., Bentley, M. J., and Le Brocq, A. M.: A deglacial model for
Antarctica: geological constraints and glaciological modelling as a basis for
a new model of Antarctic glacial isostatic adjustment, Quaternary Sci. Rev.,
32, 1–24, 2012a.
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., and Thomas, I.
D.: A new glacial isostatic adjustment model for Antarctica: calibrating the
deglacial model using observations of relative sea-level and present-day
uplift rates, Geophys. J. Int., 190, 1464–1482,
https://doi.org/10.1111/j.1365-246X.2012.05557.x, 2012b.
Wickert, A. D., Mitrovica, J. X., Williams, C., and Anderson, R. S.: Gradual
demise of a thin southern Laurentide ice sheet recorded by Mississippi
drainage, Nature, 502, 668–671, https://doi.org/10.1038/nature12609, 2013.
Wilmes, S. B., Green, J. A. M., Gomez, N., Rippeth, T. P., and Lau, H.:
Global Tidal Impacts of Large-Scale Ice Sheet Collapses, J. Geophys.
Res.-Oceans, 122, 8354–8370, https://doi.org/10.1002/2017jc013109, 2017.
Wolstencroft, M., Shen, Z. X., Toernqvist, T. E., Milne, G. A., and Kulp, M.:
Understanding subsidence in the Mississippi Delta region due to sediment,
ice, and ocean loading: Insights from geophysical modeling, J. Geophys.
Res.-Sol. Ea., 119, 3838–3856, https://doi.org/10.1002/2013jb010928, 2014.
Woodward, R. S.: On the form and position of mean sea level, United States
Geological Survey Bulletin, 48, 87–170, 1888.
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E. M., Sasgen, I., and
Wahr, J.: GRACE, time-varying gravity, Earth system dynamics and climate
change, Rep. Prog. Phys., 77, 116801, https://doi.org/10.1088/0034-4885/77/11/116801,
2014.
Wu, P.: The Response of a Maxwell Earth to Applied Surface Mass Loads:
Glacial Isostatic Adjustment, University of Toronto, Toronto, Canada, 1978.
Wu, P.: Deformation of an Incompressible Viscoelastic Flat Earth with
Power-Law Creep – a Finite-Element Approach, Geophys. J. Int., 108, 35–51,
https://doi.org/10.1111/j.1365-246X.1992.tb00837.x, 1992.
Wu, P.: Postglacial rebound modeling with power law rheology, in: Dynamics of
the Ice Age Earth: a Modern Perspective, Trans Tech Publishers,
Uetikon-Zürich, Switzerland, 365–382, 1998.
Wu, P. and Hasegawa, H. S.: Induced stresses and fault potential in eastern
Canada due to a realistic load: A preliminary analysis, Geophys. J. Int.,
127, 215–229, https://doi.org/10.1111/j.1365-246X.1996.tb01546.x, 1996.
Wu, P. and Johnston, P.: Validity of Using Flat-Earth Finite Element Models
in the Study of Postglacial Rebound, in: Dynamics of the Ice Age Earth,
edited by: Wu, P., Trans Tech Publications Ltd, Switzerland, 191–202, 1998.
Wu, P. and Peltier, W. R.: Pleistocene Deglaciation and the Earths Rotation
– a New Analysis, Geophys. J. Roy. Astr. S., 76, 753–791,
https://doi.org/10.1111/j.1365-246X.1984.tb01920.x, 1984.
Wu, P. and van der Wal, W.: Postglacial sealevels on a spherical,
self-gravitating viscoelastic earth: effects of lateral viscosity variations
in the upper mantle on the inference of viscosity contrasts in the lower
mantle, Earth Planet. Sc. Lett., 211, 57–68,
https://doi.org/10.1016/S0012-821x(03)00199-7, 2003.
Wu, P., Wang, H., and Schotman, H.: Postglacial induced surface motions,
sea-levels and geoid rates on a spherical, self-gravitating laterally
heterogeneous earth, J. Geodyn., 39, 127–142, 2005.
Wu, P., Steffen, H., and Wang, H. S.: Optimal locations for GPS measurements
in North America and northern Europe for constraining Glacial Isostatic
Adjustment, Geophys. J. Int., 181, 653–664,
https://doi.org/10.1111/j.1365-246X.2010.04545.x, 2010.
Wu, P., Wang, H. S., and Steffen, H.: The role of thermal effect on mantle
seismic anomalies under Laurentia and Fennoscandia from observations of
Glacial Isostatic Adjustment, Geophys. J. Int., 192, 7–17,
https://doi.org/10.1093/gji/ggs009, 2013.
Yuen, D. A., Sabadini, R. C. A., Gasperini, P., and Boschi, E.: On Transient
Rheology and Glacial Isostasy, J. Geophys. Res., 91, 1420–1438,
https://doi.org/10.1029/JB091iB11p11420, 1986.
Zhong, S. J., Paulson, A., and Wahr, J.: Three-dimensional finite-element
modelling of Earth's viscoelastic deformation: effects of lateral variations
in lithospheric thickness, Geophys. J. Int., 155, 679–695,
https://doi.org/10.1046/j.1365-246X.2003.02084.x, 2003.
Short summary
This article is a contribution to a special issue on
Two centuries of modelling across scales. It describes the historical observations, evolving hypotheses, and early calculations that led to the development of the field of glacial isostatic sdjustment (GIA) modelling, which seeks to understand feedbacks between ice-sheet change, sea-level change, and solid Earth deformation. Recent and future advances are discussed. Future progress will likely involve an interdisciplinary approach.
This article is a contribution to a special issue on
Two centuries of modelling across scales....