Articles | Volume 7, issue 2
https://doi.org/10.5194/esurf-7-491-2019
https://doi.org/10.5194/esurf-7-491-2019
Research article
 | 
03 Jun 2019
Research article |  | 03 Jun 2019

Automatic detection of avalanches combining array classification and localization

Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh

Related authors

Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
Matthias Heck, Conny Hammer, Alec van Herwijnen, Jürg Schweizer, and Donat Fäh
Nat. Hazards Earth Syst. Sci., 18, 383–396, https://doi.org/10.5194/nhess-18-383-2018,https://doi.org/10.5194/nhess-18-383-2018, 2018
Short summary

Related subject area

Physical: Geophysics
Array-based ambient vibration modal analysis describes fracture-controlled mode shapes at a natural rock arch (Utah, USA)
Guglielmo Grechi, Jeffrey R. Moore, Molly E. McCreary, Erin K. Jensen, and Salvatore Martino
EGUsphere, https://doi.org/10.5194/egusphere-2024-1894,https://doi.org/10.5194/egusphere-2024-1894, 2024
Short summary
3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024,https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024,https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023,https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023,https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary

Cited articles

Barnes, A. E.: Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data, Geophysics, 58, 419–428, 1993. a, b
Bessason, B., Eiriksson, G., Thorarinsson, O., Thorarinsson, A., and Einarsson, S.: Automatic detection of avalanches and debris flows by seismic methods, J. Glaciol., 53, 461–472, https://doi.org/10.3189/002214307783258468, 2007. a, b
Beyreuther, M., Hammer, C., Wassermann, J., Ohrnberger, M., and Megies, T.: Constructing a Hidden Markov Model based earthquake detector: application to induced seismicity, Geophys. J. Int., 189, 602–610, https://doi.org/10.1111/j.1365-246X.2012.05361.x, 2012. a
Esposito, A. M., Giudicepietro, F., Scarpetta, S., D’Auria, L., Marinaro, M., and Martini, M.: Automatic discrimination among landslide, explosion-quake and microtremor seismic signals at Stromboli Volcano using neural networks, B. Seismol. Soc. Am., 96, 1230, https://doi.org/10.1785/0120050097, 2006. a
Hammer, C., Beyreuther, M., and Ohrnberger, M.: A seismic-event spotting system for Volcano fast-response systems, B. Seismol. Soc. Am., 102, 948–960, https://doi.org/10.1785/0120110167, 2012. a, b
Download
Short summary
We used continuous seismic data from two small aperture geophone arrays deployed in the region above Davos in the eastern Swiss Alps to develop a machine learning workflow to automatically identify signals generated by snow avalanches. Our results suggest that the method presented could be used to identify major avalanche periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic data.