Articles | Volume 7, issue 4
https://doi.org/10.5194/esurf-7-989-2019
https://doi.org/10.5194/esurf-7-989-2019
Research article
 | Highlight paper
 | 
25 Oct 2019
Research article | Highlight paper |  | 25 Oct 2019

Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan

Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler

Related authors

Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374,https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Autoencoder-based feature extraction for the automatic detection of snow avalanches in seismic data
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76,https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022,https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022,https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary

Related subject area

Physical: Geophysics
3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024,https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024,https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023,https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023,https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary
Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network
Nadège Langet and Fred Marcus John Silverberg
Earth Surf. Dynam., 11, 89–115, https://doi.org/10.5194/esurf-11-89-2023,https://doi.org/10.5194/esurf-11-89-2023, 2023
Short summary

Cited articles

Aki, K. and Chouet, B.: Origin of coda waves: source, attenuation, and scattering effects, J. Geophys. Res., 80, 3322–3342, https://doi.org/10.1029/JB080i023p03322, 1975. a
Almendros, J., Ibáñez, J. M., Alguacil, G., and Del Pezzo, E.: Array analysis using circular-wave-front geometry: an application to locate the nearby seismo-volcanic source, Geophys. J. Int., 136, 159–170, https://doi.org/10.1046/j.1365-246X.1999.00699.x, 1999. a
Anma, S: Lahars and slush lahars on the slopes of Fuji volcano, in: Fuji Volcano, edited by: Aramaki, S., Fujii, T., Nakada, S., and Miyaji, N., Yamanashi Institute of Environmental Science, Fujiyoshida, 285–301, 2007 (in Japanese with English summary). a
Anma, S., Fukue, M., and Yamashita, K.: Deforestation by slush avalanches and vegetation recovery on the eastern slope of Mt. Fuji, in: Proc. of Internat. Symp. INTERPRAEVENT 1988, 4–8 July 1988, Graz, Austria, 133–156, 1988. a, b
Arattano, M. and Moia, F.: Monitoring the propagation of a debris flow along a torrent, Hydrolog. Sci. J., 44, 811–823, https://doi.org/10.1080/02626669909492275, 1999. a
Download
Short summary
Avalanches and slush flows from Mt. Fuji are a major natural hazard as they may attain run-out distances of up to 4 km and destroy parts of the forest and infrastructure. We located and tracked them for the first time using seismic data. Numerical simulations were conducted to assess the precision of the seismic tracking. We also inferred dynamical properties characterizing these hazardous mass movements. This information is indispensable for assessing avalanche risk in the Mt. Fuji region.