Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1441-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1441-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Paul Richmond Geimer
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
Riley Finnegan
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
Donat Fäh
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Jeffrey Ralston Moore
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
Related authors
No articles found.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Guglielmo Grechi, Jeffrey R. Moore, Molly E. McCreary, Erin K. Jensen, and Salvatore Martino
Earth Surf. Dynam., 13, 81–95, https://doi.org/10.5194/esurf-13-81-2025, https://doi.org/10.5194/esurf-13-81-2025, 2025
Short summary
Short summary
We investigated the dynamic behavior of a rock arch to understand how fractures influence its stability. Using geophones, we measured its modes of vibration and used numerical modeling to replicate them. We found that higher-order resonance modes are the most sensitive to fractures, indicating their potential as early indicators of structural damage. Therefore, monitoring these higher-order modes could provide a more accurate tool to assess the structural integrity of natural rock landforms.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer
Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, https://doi.org/10.5194/esurf-9-1459-2021, 2021
Short summary
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Joseph P. Verdian, Leonard S. Sklar, Clifford S. Riebe, and Jeffrey R. Moore
Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, https://doi.org/10.5194/esurf-9-1073-2021, 2021
Short summary
Short summary
River behavior depends on the size of rocks they carry. Rocks are born on hillslopes where erosion removes fragments from solid bedrock. To understand what controls the size of rock fragments, we measured the spacing between cracks exposed in 15 bare-rock cliffs and the size of rocks on the ground below. We found that, for each site, the average rock size could be predicted from the average distance between cracks, which varied with rock type. This shows how rock type can influence rivers.
Cited articles
Allemang, R. J. and Brown, D. L.:
A Correlation Coefficient for Modal Vector Analysis,
in: Proceedings of the 1st International Modal Analysis Conference, Orlando, USA, 1982.
Au, S.-K., Brownjohn, J. M. W., Li, B., and Raby, A.:
Understanding and managing identification uncertainty of close modes in operational modal analysis,
Mech. Syst. Signal Pr.,
147, 107018, https://doi.org/10.1016/j.ymssp.2020.107018, 2021.
Bajric, A., Brincker, R., and Thöns, S.:
Evaluation of damping estimates in the presence of closely spaced modes using operational modal analysis techniques,
in: Proceedings of the 6th International Operational Modal Analysis Conference, Gijón, Spain, 2015.
Bayraktar, A., Türker, T., and Altunişik, A. C.:
Experimental frequencies and damping ratios for historical masonry arch bridges,
Const. Build. Mater.,
75, 234–241, https://doi.org/10.1016/j.conbuildmat.2014.10.044, 2015.
Bottelin, P., Lévy, C., Baillet, L., Jongmans, D., and Guéguen, P.:
Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps),
Geophys. J. Int.,
194, 849–858, https://doi.org/10.1093/gji/ggt046, 2013.
Brincker, R.: Some Elements of Operational Modal Analysis, Shock Vib., 2014, 325839, https://doi.org/10.1155/2014/325839, 2014.
Brincker, R. and Larsen, J. A.:
Obtaining and Estimating Low Noise Floors in Vibration Sensors,
in: Proceedings of the 24th International Modal Analysis Conference, Orlando, USA, 2007.
Brincker, R. and Ventura, C.:
Introduction to operational modal analysis,
John Wiley & Sons Inc, Chichester, UK, 360 pp., 2015.
Brincker, R., Frandsen, J. B., and Andersen, P.:
Ambient Response Analysis of the Great Belt Bridge,
in: Proceedings of the 18th International Modal Analysis Conference, San Antonio, USA, 2000.
Brincker, R., Ventura, C., and Andersen, P.:
Damping estimation by frequency domain decomposition,
in: Proceedings of the 19th International Modal Analysis Conference, Orlando, USA, 2001a.
Brincker, R., Zhang, L., and Andersen, P.:
Modal identification of output-only systems using frequency domain decomposition,
Smart Mater. Struct.,
10, 441–445, https://doi.org/10.1088/0964-1726/10/3/303, 2001b.
Bruthans, J., Soukup, J., Vaculikova, J., Filippi, M., Schweigstillova, J., Mayo, A. L., Masin, D., Kletetschka, G., and Rihosek, J.:
Sandstone landforms shaped by negative feedback between stress and erosion,
Nat. Geosci.,
7, 597–601, https://doi.org/10.1038/ngeo2209, 2014.
Budetta, P., De Luca, C., Simonelli, M. G., and Guarracino, F.:
Geological analysis and stability assessment of a sea arch in Palinuro, southern Italy,
Eng. Geol.,
250, 142–154, https://doi.org/10.1016/j.enggeo.2019.01.009, 2019.
Burjánek, J., Moore, J. R., Yugsi Molina, F. X., and Fäh, D.:
Instrumental evidence of normal mode rock slope vibration,
Geophys. J. Int.,
188, 559–569, https://doi.org/10.1111/j.1365-246X.2011.05272.x, 2012.
Burjánek, J., Gischig, V., Moore, J. R., and Fäh, D.:
Ambient vibration characterization and monitoring of a rock slope close to collapse,
Geophys. J. Int.,
212, 297–310, https://doi.org/10.1093/gji/ggx424, 2018.
Cheynet, E.: Operational modal analysis with automated SSI-COV algorithm,
Zenodo [code], https://doi.org/10.5281/ZENODO.3774061, 2020.
Cheynet, E., Jakobsen, J. B., and Snæbjörnsson, J.:
Damping estimation of large wind-sensitive structures,
Procedia Engineer.,
199, 2047–2053, https://doi.org/10.1016/j.proeng.2017.09.471, 2017.
Chopra, A. K.:
Dynamics of structures: theory and applications to earthquake engineering, fourth edn.,
Prentice-Hall international series in civil engineering and engineering mechanics,
Pearson Prentice Hall, Boston, 2015.
Colombero, C., Jongmans, D., Fiolleau, S., Valentin, J., Baillet, L., and Bièvre, G.: Seismic Noise Parameters as Indicators of Reversible Modifications in Slope Stability: A Review, Surv. Geophys., 42, 339–375, https://doi.org/10.1007/s10712-021-09632-w, 2021.
DeseretNews:
Slabs fall from landscape arch,
available at: https://www.deseret.com/1991/9/7/18939827/slabs-fall-from-landscape-arch (last access: 10 December 2020), 1991.
Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, Technical Report, LANL – Los Alamos National Laboratory, Los Alamos, USA, https://doi.org/10.2172/249299, 1996.
Döhler, M., Hille, F., Mevel, L., and Rücker, W.: Estimation of modal parameters and their uncertainty bounds from subspace-based system identification, in: IRIS Industrial Safety and Life Cycle Engineering – Technologies/Standards/Applications, edited by: Margit, K., VCE, Vienna, Austria, 91–106, 2013.
Ermert, L., Poggi, V., Burjánek, J., and Fäh, D.:
Fundamental and higher two-dimensional resonance modes of an Alpine valley,
Geophys. J. Int.,
198, 795–811, https://doi.org/10.1093/gji/ggu072, 2014.
Geimer, P. R., Finnegan, R., and Moore, J. R.:
Sparse Ambient Resonance Measurements Reveal Dynamic Properties of Freestanding Rock Arches,
Geophys. Res. Lett.,
47, e2020GL087239, https://doi.org/10.1029/2020GL087239, 2020a.
Geimer, P. R., Finnegan, R., and Moore, J. R.: Data for: Sparse Ambient Resonance Measurements Reveal Dynamic Properties of Freestanding Rock Arches, University of Utah Research Data Repository (Hive) [data set],
https://doi.org/10.7278/S50D-G31E-NFW2, 2020b.
Gersch, W.:
On the achievable accuracy of structural system parameter estimates,
J. Sound Vib.,
34, 63–79, https://doi.org/10.1016/S0022-460X(74)80355-X, 1974.
Griffith, D. T. and Carne, T. G.:
Experimental Uncertainty Quantification of Modal Test Data,
in: Proceedings of the 25th International Modal Analysis Conference, Orlando, USA, 2007.
Häusler, M., Michel, C., Burjánek, J., and Fäh, D.:
Fracture Network Imaging on Rock Slope Instabilities Using Resonance Mode Analysis,
Geophys. Res. Lett.,
46, 6497–6506, https://doi.org/10.1029/2019GL083201, 2019.
Häusler, M., Michel, C., Burjánek, J., and Fäh, D.: Monitoring the Preonzo rock slope instability using resonance mode analysis, J. Geophys. Res.-Earth, 126, e2020JF005709, https://doi.org/10.1029/2020JF005709, 2021.
Iannucci, R., Martino, S., Paciello, A., D'Amico, S., and Galea, P.:
Investigation of cliff instability at Ghajn Hadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques,
J. Seismol.,
24, 897–916, https://doi.org/10.1007/s10950-019-09898-z, 2020.
Jacobsen, N.-J. and Andersen, P.:
Operational Modal Analysis on Structures with Rotating Parts,
in: Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2008.
Kleinbrod, U., Burjánek, J., and Fäh, D.:
Ambient vibration classification of unstable rock slopes: A systematic approach,
Eng. Geol.,
249, 198–217, https://doi.org/10.1016/j.enggeo.2018.12.012, 2019.
Koper, K. D. and Hawley, V. L.:
Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States,
Earthquake Science,
23, 439–447, https://doi.org/10.1007/s11589-010-0743-5, 2010.
Lévy, C., Baillet, L., Jongmans, D., Mourot, P., and Hantz, D.: Dynamic response of the Chamousset rock column (Western Alps, France), J. Geophys. Res.-Earth, 115, F04043, https://doi.org/10.1029/2009JF001606, 2010.
Liu, F., Wu, J., Gu, F., and Ball, A. D.:
An Introduction of a Robust OMA Method: CoS-SSI and Its Performance Evaluation through the Simulation and a Case Study,
Shock Vib.,
2019, 6581516, https://doi.org/10.1155/2019/6581516, 2019.
Magalhães, F., Cunha, Á., and Caetano, E.:
Online automatic identification of the modal parameters of a long span arch bridge,
Mech. Syst. Signal Pr.,
23, 316–329, https://doi.org/10.1016/j.ymssp.2008.05.003, 2009.
Magalhães, F., Cunha, Á., Caetano, E., and Brincker, R.:
Damping estimation using free decays and ambient vibration tests,
Mech. Syst. Signal Pr.,
24, 1274–1290, https://doi.org/10.1016/j.ymssp.2009.02.011, 2010.
Mercerat, E. D., Payeur, J. B., Bertrand, E., Malascrabes, M., Pernoud, M., and Chamberland, Y.:
Deciphering the dynamics of a heterogeneous sea cliff using ambient vibrations: case study of the Sutta–Rocca overhang (southern Corsica, France),
Geophys. J. Int.,
224, 813–824, https://doi.org/10.1093/gji/ggaa465, 2021.
Michel, C., Guéguen, P., Lestuzzi, P., and Bard, P. Y.:
Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France,
B. Earthq. Eng.,
8, 1295–1307, https://doi.org/10.1007/s10518-010-9185-7, 2010.
Moore, J. R.: Structural health monitoring of rock arches and towers, International Federation of Digital Seismograph Networks (FDSN) [data set], https://doi.org/10.7914/SN/5P_2013, 2013.
Moore, J. R., Thorne, M. S., Koper, K. D., Wood, J. R., Goddard, K., Burlacu, R., Doyle, S., Stanfield, E., and White, B.:
Anthropogenic sources stimulate resonance of a natural rock bridge,
Geophys. Res. Lett.,
43, 9669–9676, https://doi.org/10.1002/2016GL070088, 2016.
Moore, J. R., Geimer, P. R., Finnegan, R., and Thorne, M. S.:
Use of Seismic Resonance Measurements to Determine the Elastic Modulus of Freestanding Rock Masses,
Rock Mech. Rock Eng.,
51, 3937–3944, https://doi.org/10.1007/s00603-018-1554-6, 2018.
Moore, J. R., Geimer, P. R., Finnegan, R., and Michel, C.: Dynamic Analysis of a Large Freestanding Rock Tower (Castleton Tower, Utah), Short Note, B. Seismol. Soc. Am., 109, 2125–2131, https://doi.org/10.1785/0120190118, 2019.
Moore, J. R., Geimer, P. R., Finnegan, R., and Bodtker, J.:
Between a beam and catenary: Influence of geometry on gravitational stresses and stability of natural rock arches,
Geomorphology,
364, 107244, https://doi.org/10.1016/j.geomorph.2020.107244, 2020.
Ostanin, I., Safonov, A., and Oseledets, I.:
Natural Erosion of Sandstone as Shape Optimisation,
Sci. Rep.-UK,
7, 17301, https://doi.org/10.1038/s41598-017-17777-1, 2017.
Papagiannopoulos, G. A. and Hatzigeorgiou, G. D.:
On the use of the half-power bandwidth method to estimate damping in building structures,
Soil Dyn. Earthq. Eng.,
31, 1075–1079, https://doi.org/10.1016/j.soildyn.2011.02.007, 2011.
Peeters, B. and De Roeck, G.:
Reference-based stochastic subspace identification for output-only modal analysis,
Mech. Syst. Signal Pr.,
13, 855–878, https://doi.org/10.1006/mssp.1999.1249, 1999.
Peeters, B. and De Roeck, G.:
Stochastic System Identification for Operational Modal Analysis: A Review,
J. Dyn. Syst.-T ASME,
123, 659–667, https://doi.org/10.1115/1.1410370, 2001.
Poggi, V., Ermert, L., Burjanek, J., Michel, C., and Fäh, D.:
Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings,
Geophys. J. Int.,
200, 615–626, https://doi.org/10.1093/gji/ggu420, 2015.
Preiswerk, L. E., Michel, C., Walter, F., and Fäh, D.:
Effects of geometry on the seismic wavefield of Alpine glaciers,
Ann. Glaciol.,
60, 112–124, https://doi.org/10.1017/aog.2018.27, 2019.
Satariano, B. and Gauci, R.:
Landform Loss and Its Effect on Health and Well-being: The Collapse of the Azure Window (Gozo) and the Resultant Reactions of the Media and the Maltese Community,
in: Landscapes and Landforms of the Maltese Islands,
edited by: Gauci, R. and Schembri, J. A.,
Springer International Publishing, Cham, 289–303, 2019.
Seybert, A. F.:
Estimation of damping from response spectra,
J. Sound Vib.,
75, 199–206, https://doi.org/10.1016/0022-460X(81)90339-4, 1981.
Starr, A. M., Moore, J. R., and Thorne, M. S.:
Ambient resonance of Mesa Arch, Canyonlands National Park, Utah,
Geophys. Res. Lett.,
42, 6696–6702, https://doi.org/10.1002/2015GL064917, 2015.
van Overschee, P.:
Subspace Identification for Linear Systems: Theory – Implementation – Applications, 1st edn.,
edited by: de Moor, B. L.,
Springer US, New York, NY, 1996.
Van Overschee, P. and De Moor, B.:
Subspace algorithms for the stochastic identification problem,
Automatica,
29, 649–660, https://doi.org/10.1016/0005-1098(93)90061-W, 1993.
Wang, J.-T., Jin, F., and Zhang, C.-H.:
Estimation error of the half-power bandwidth method in identifying damping for multi-DOF systems,
Soil Dyn. Earthq. Eng.,
39, 138–142, https://doi.org/10.1016/j.soildyn.2012.02.008, 2012.
Weber, S., Fäh, D., Beutel, J., Faillettaz, J., Gruber, S., and Vieli, A.:
Ambient seismic vibrations in steep bedrock permafrost used to infer variations of ice-fill in fractures,
Earth Planet. Sc. Lett.,
501, 119–127, https://doi.org/10.1016/j.epsl.2018.08.042, 2018.
Woodroffe, C. D.:
Coasts: form, process and evolution,
Cambridge University Press, Cambridge, 2002.
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and...