Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1459-2021
https://doi.org/10.5194/esurf-9-1459-2021
Research article
 | 
19 Nov 2021
Research article |  | 19 Nov 2021

Vibration of natural rock arches and towers excited by helicopter-sourced infrasound

Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer

Related authors

An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021,https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary

Cited articles

Aarons, S. M., Aciego, S. M., Gabrielli, P., Delmonte, B., Koornneef, J. M., Wegner, A., and Blakowski, M. A.: The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica, Earth Planet. Sc. Lett., 444, 34–44, https://doi.org/10.1016/j.epsl.2016.03.035, 2016. 
Andrews, J., Buehler, D., Gill, H., and Bender, W. L.: Transportation and construction vibration guidance manual, California Department of Transportation (Caltrans), Division of Environmental Analysis, Sacramento, CA, Report No. CT-HWANP-RT-13-069.25.3, 190 pp., 2013. 
Bass, H. E., Bolen, L. N., Cress, D., Lundien, J., and Flohr, M.: Coupling of airborne sound into the earth: Frequency dependence, J. Acoust. Soc. Am., 76, 1502, https://doi.org/10.1121/1.384312, 1980 
Broner, N.: The effects of low frequency noise on people – A review, J. Sound. Vib., 58, 483–500, https://doi.org/10.1016/0022-460X(78)90354-1, 1978. 
Cheremisinoff, P.: Human exposure to infrasound, In Encyclopedia of environmental control technology, Volume 7: High-Hazard Pollutants, 431–454, Gulf Professional Publishing, Houston, TX, 1994. 
Download
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Share