Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Growing topography due to contrasting rock types in a tectonically dead landscape
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow, G12 8QQ, UK
CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil
Cristina Persano
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow, G12 8QQ, UK
Martin D. Hurst
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow, G12 8QQ, UK
Paul Bishop
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow, G12 8QQ, UK
Derek Fabel
Scottish Universities Environmental Research Centre, East Kilbride,
G75 0QF, UK
Related authors
No articles found.
Jörg Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
Earth Surf. Dynam., 13, 745–770, https://doi.org/10.5194/esurf-13-745-2025, https://doi.org/10.5194/esurf-13-745-2025, 2025
Short summary
Short summary
The Bohemian Massif is one of several low mountain ranges in Europe that rises more than 1 km above the surrounding lowlands. Landscape characteristics indicate relief rejuvenation due to recent surface uplift. To constrain the pace of relief formation, we determined erosion rates of 20 catchments that range from 22 to 51 m Myr-1. Correlating these rates with topographic properties reveals that contrasts in bedrock erodibility represent a critical control of landscape evolution.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
Short summary
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Cited articles
Ahnert, F.: Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, Am. J. Sci., 268, 243–263,
https://doi.org/10.2475/ajs.268.3.243, 1970.
Alkmim, F. F. and Marshak, S.: Transamazonian orogeny in the Southern Sao
Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic
collision and collapse in the Quadrilátero Ferrífero, Precambrian
Res., 90, 29–58, https://doi.org/10.1016/S0301-9268(98)00032-1, 1998.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., and Sparovek, G.: Köppen's climate classification map for Brazil, Meteorol. Z., 22, 711–728, https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Baldwin, J. A., Whipple, K. X., and Tucker, G. E.: Implications of the shear
stress river incision model for the timescale of postorogenic decay of
topography, J. Geophys. Res.-Solid, 108, 1–17, https://doi.org/10.1029/2001JB000550, 2003.
Barreto, H. N., Varajão, C. A., Braucher, R., Bourlès, D. L., Salgado, A. A., and Varajão, A. F.: Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10, Geomorphology, 191, 1–13, https://doi.org/10.1016/j.geomorph.2013.01.021, 2013.
Beeson, H. W., McCoy, S. W., and Keen-Zebert, A.: Geometric disequilibrium of
river basins produces long-lived transient landscapes, Earth Planet. Sc. Lett., 475, 34–43, https://doi.org/10.1016/j.epsl.2017.07.010, 2017.
Bernard, T., Sinclair, H. D., Gailleton, B., Mudd, S. M., and Ford, M.:
Lithological control on the post-orogenic topography and erosion history of
the Pyrenees, Earth Planet. Sc. Lett., 518, 53–66, https://doi.org/10.1016/j.epsl.2019.04.034, 2019.
Bierman, P. R. and Caffee, M.: Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa, Am. J. Sci., 301, 326–358, https://doi.org/10.2475/ajs.301.4-5.326, 2001.
Bishop, P.: Long-term landscape evolution: linking tectonics and surface
processes, Earth Surf. Proc. Land., 32, 329–365, https://doi.org/10.1002/esp.1493, 2007.
Bishop, P. and Brown, R.: Denudational isostatic rebound of intraplate highlands: the Lachlan River valley, Australia, Earth Surf. Proc. Land., 17,
345–360, https://doi.org/10.1002/esp.3290170405, 1992.
Bishop, P. and Goldrick, G.: Lithology and the evolution of bedrock rivers in post-orogenic settings: constraints from the high-elevation passive continental margin of SE Australia, Geol. Soc. Spec. Publ., 346, 267–287,
https://doi.org/10.1144/SP346.14, 2010.
Blackburn, T., Ferrier, K. L., and Perron, J. T.: Coupled feedbacks between
mountain erosion rate, elevation, crustal temperature, and density, Earth
Planet. Sc. Lett., 498, 377–386, https://doi.org/10.1016/j.epsl.2018.07.003, 2018.
Braun, J., Simon-Labric, T., Murray, K. E., and Reiners, P. W.: Topographic
relief driven by variations in surface rock density, Nat. Geosci., 7, 534–540, https://doi.org/10.1038/NGEO2171, 2014.
Bursztyn, N., Pederson, J. L., Tressler, C., Mackley, R. D., and Mitchell,
K. J.: Rock strength along a fluvial transect of the Colorado Plateau–quantifying a fundamental control on geomorphology, Earth Planet.
Sc. Lett., 429, 90–100, https://doi.org/10.1016/j.epsl.2015.07.042, 2015.
Campforts, B., Vanacker, V., Herman, F., Vanmaercke, M., Schwanghart, W., Tenorio, G. E., Willems, P., and Govers, G.: Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes, Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, 2020.
Chemale Jr., F., Rosière, C. A., and Endo, I.: The tectonic evolution of
the Quadrilátero Ferrífero, Minas Gerais, Brazil, Precambrian
Res., 65, 25–54, https://doi.org/10.1016/0301-9268(94)90098-1, 1994.
Clubb, F. J., Bookhagen, B., and Rheinwalt, A.: Clustering river profiles to
classify geomorphic domains, J. Geophys. Res.-Earth, 124, 1417–1439,
https://doi.org/10.1029/2019JF005025, 2019.
Cyr, A. J., Granger, D. E., Olivetti, V., and Molin, P.: Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness
index, Geomorphology, 209, 27–38, https://doi.org/10.1016/j.geomorph.2013.12.010, 2014.
Davis, W. M.: The geographical cycle, Geogr. J., 14, 481–504,
https://doi.org/10.2307/1774538, 1899.
DiBiase, R. A.: Increasing vertical attenuation length of cosmogenic nuclide
production on steep slopes negates topographic shielding corrections for
catchment erosion rates, Earth Surf. Dynam., 6, 923–931,
https://doi.org/10.5194/esurf-6-923-2018, 2018.
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and
runoff variability on the relationships among topography, climate, and erosion rate, J. Geophys. Res.-Earth, 116, 1–17, https://doi.org/10.1029/2011JF002095, 2011.
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape
form and millennial erosion rates in the San Gabriel Mountains, CA, Earth
Planet. Sc. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010.
Dorr, J. V. N.: Physiographic, stratigraphic, and structural development of
the Quadrilátero Ferrífero, Minas Gerais, Brazil, United States
Geological Survey Professional Paper 641-A, US Geological Survey, Washington, D.C., 1969.
Duvall, A., Kirby, E., and Burbank, D.: Tectonic and lithologic controls on
bedrock channel profiles and processes in coastal California, J. Geophys.
Res.-Earth, 109, 1–18, https://doi.org/10.1029/2003JF000086, 2004.
Egholm, D. L., Knudsen, M. F., and Sandiford, M.: Lifespan of mountain ranges
scaled by feedbacks between landsliding and erosion by rivers, Nature, 498,
475–478, https://doi.org/10.1038/nature12218, 2013.
Ferrier, K. L., Huppert, K. L., and Perron, J. T.: Climatic control of bedrock river incision, Nature, 496, 206–209, https://doi.org/10.1038/nature11982, 2013.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974.
Forte, A. M., Yanites, B. J., and Whipple, K. X.: Complexities of landscape
evolution during incision through layered stratigraphy with contrasts in rock strength, Earth Surf. Proc. Land., 41, 1736–1757, https://doi.org/10.1002/esp.3947, 2016.
Gallen, S. F.: Lithologic controls on landscape dynamics and aquatic species
evolution in post-orogenic mountains, Earth Planet. Sc. Lett., 493, 150–160,
https://doi.org/10.1016/j.epsl.2018.04.029, 2018.
Gallen, S. F., Wegmann, K. W., and Bohnenstiehl, D. R.: Miocene rejuvenation of topographic relief in the southern Appalachians, GSA Today, 23, 4–10,
https://doi.org/10.1130/GSATG163A.1, 2013.
Gilbert, G.: Geology of the Henry Mountains, USGS Unnumbered Series, Government Printing Office, Washington, D.C., USA, https://doi.org/10.3133/70038096, 1877.
Gilchrist, A. R. and Summerfield, M. A.: Differential denudation and flexural
isostasy in formation of rifted-margin upwarps, Nature, 346, 739–742,
https://doi.org/10.1038/346739a0, 1990.
Hack, J. T.: Interpretation of erosional topography in humid temperate regions, Am. J. Sci., 258, 80–97, 1960.
Hack, J. T.: Dynamic equilibrium and landscape evolution, in: Theories of
landform development, edited by: Melhorn, W. N. and Flemal, R. C., State
University of New York Press, Binghamton, NY, USA, 87–102, 1975.
Hack, J. T.: Physiographic divisions and differential uplift in the Piedmont
and Blue Ridge, United States Geological Survey Professional Paper 1265, US Geological Survey, Washington, D.C., 1982.
Harel, M. A., Mudd, S. M., and Attal, M.: Global analysis of the stream power
law parameters based on worldwide 10Be denudation rates, Geomorphology, 268, 184–196, https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.
Hergarten, S., Robl, J., and Stüwe, K.: Tectonic geomorphology at small
catchment sizes-extensions of the stream-power approach and the χ method, Earth Surf. Dynam., 4, 1–9, https://doi.org/10.5194/esurf-4-1-2016, 2016.
Howard, A. D. and Kerby, G.: Channel changes in badlands, GSA Bull., 94,
739–752, https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2, 1983.
Hurst, M. D., Ellis, M. A., Royse, K. R., Lee, K. A., and Freeborough, K.:
Controls on the magnitude-frequency scaling of an inventory of secular
landslides, Earth Surf. Dynam., 1, 67–78, https://doi.org/10.5194/esurf-1-67-2013, 2013.
Jansen, J. D., Codilean, A. T., Bishop, P., and Hoey, T. B.: Scale dependence of lithological control on topography: Bedrock channel geometry and catchment
morphometry in western Scotland, J. Geol., 118, 223–246, https://doi.org/10.1086/651273, 2010.
Kirby, E. and Whipple, K. X.: Quantifying differential rock-uplift rates via
stream profile analysis, Geology, 29, 415–418,
https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2, 2001.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement
of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Korup, O.: Rock type leaves topographic signature in landslide-dominated
mountain ranges, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL034157, 2008.
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014.
Lague, D., Davy, P., and Crave, A.: Estimating uplift rate and erodibility
from the area-slope relationship: Examples from Brittany (France) and
numerical modelling, Phys. Chem. Earth Pt. A, 25, 543–548,
https://doi.org/10.1016/S1464-1895(00)00083-1, 2000.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Liu, L.: Rejuvenation of Appalachian topography caused by subsidence-induced
differential erosion, Nat. Geosci., 7, 518–523, https://doi.org/10.1038/NGEO2187, 2014.
Lobato, L., Ribeiro-Rodrigues, L., Zucchetti, M., Noce, C., Baltazar, O., Da
Silva, L., and Pinto, C.: Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas
greenstone belt, Quadrilátero Ferrífero, Miner. Deposita., 36, 228–248, https://doi.org/10.1007/s001260100179, 2001.
Lobato, L. M., Baltazar, O. F., Reis, L. B., Achtschin, A. B., Baars, F. J.,
Timbó, M. A., Berni, G. V., de Mendonça, B. R. V., and Ferreira, D. V: Projeto Geologia do Quadrilátero Ferrífero – Integração e
Correção Cartográfica em SIG com Nota Explicativa, CODEMIG, Belo
Horizonte, 2005.
Mandal, S. K., Lupker, M., Burg, J. P., Valla, P. G., Haghipour, N., and
Christl, M.: Spatial variability of 10Be-derived erosion rates across the southern Peninsular Indian escarpment: A key to landscape evolution across passive margins, Earth Planet. Sc. Lett., 425, 154–167,
https://doi.org/10.1016/j.epsl.2015.05.050, 2015.
Matmon, A., Bierman, P. R., Larsen, J., Southworth, S., Pavich, M., and Caffee, M.: Temporally and spatially uniform rates of erosion in the
southern Appalachian Great Smoky Mountains, Geology, 31, 155–158,
https://doi.org/10.1130/0091-7613(2003)031<0155:TASURO>2.0.CO;2, 2003.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved loads, Am. J. Sci., 287, 401–428, https://doi.org/10.2475/ajs.287.5.401, 1987.
Miller, S. R., Sak, P. B., Kirby, E., and Bierman, P. R.: Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates, Earth Planet. Sc. Lett., 369, 1–12, https://doi.org/10.1016/j.epsl.2013.04.007, 2013.
Mills, H. H.: Inferring erosional resistance of bedrock units in the east
Tennessee mountains from digital elevation data, Geomorphology, 55, 263–281, https://doi.org/10.1016/S0169-555X(03)00144-2, 2003.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?, Nature, 346, 29–34,
https://doi.org/10.1038/346029a0, 1990.
Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., Spier, C. A., and Mello,
C. L.: (U–Th)/He geochronology of goethite and the origin and evolution of
cangas, Geochim. Cosmochim. Ac., 131, 267–289, https://doi.org/10.1016/j.gca.2014.01.036, 2014.
Monteiro, H. S., Vasconcelos, P. M., and Farley, K. A.: A combined (U-Th)/He and cosmogenic 3He record of landscape armoring by biogeochemical iron cycling, J. Geophys. Res.-Earth, 123, 298–323, https://doi.org/10.1002/2017JF004282, 2018.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and steady-state topography, Am. J. Sci., 301, 432–454, https://doi.org/10.2475/ajs.301.4-5.432, 2001.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sc. Lett., 201, 481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002.
Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, N., Rood, D. H., and
Hilley, G. E.: Climatic control of denudation in the deglaciated landscape of
the Washington Cascades, Nat. Geosci., 4, 469–473, https://doi.org/10.1038/NGEO1159, 2011.
Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A.: A statistical framework to quantify spatial variation in channel gradients
using the integral method of channel profile analysis, J. Geophys. Res.-Earth, 119, 138–152, https://doi.org/10.1002/2013JF002981, 2014.
Mudd, S. M., Harel, M. A., Hurst, M. D., Grieve, S. W., and Marrero, S. M.: The CAIRN method: automated, reproducible calculation of catchment-averaged
denudation rates from cosmogenic nuclide concentrations, Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016, 2016.
Mudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D.: How concave are
river channels?, Earth Surf. Dynam., 6, 505–523, https://doi.org/10.5194/esurf-6-505-2018, 2018.
Mudd, S. M., Clubb, F. J., and Hurst, M. D.: LSDTopoTools2 v0.3, Zenodo,
https://doi.org/10.5281/zenodo.3769703, 2020.
Myers, R. H.: Classical and modern regression with applications, 2nd Edn., Duxbury Press, Boston, MA, USA, 1990.
Pazzaglia, F. J. and Brandon, M. T.: Macrogeomorphic evolution of the
post-Triassic Appalachian mountains determined by deconvolution of the
offshore basin sedimentary record, Basin Res., 8, 255–278,
https://doi.org/10.1046/j.1365-2117.1996.00274.x, 1996.
Perne, M., Covington, M. D., Thaler, E. A., and Myre, J. M.: Steady state,
erosional continuity, and the topography of landscapes developed in layered
rocks, Earth Surf. Dynam., 5, 85–100, https://doi.org/10.5194/esurf-5-85-2017, 2017.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile
analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Quigley, M., Sandiford, M., Fifield, K., and Alimanovic, A.: Bedrock erosion
and relief production in the northern Flinders Ranges, Australia, Earth Surf. Proc. Land., 32, 929–944, https://doi.org/10.1002/esp.1459, 2007.
Roberts, G. G. and White, N.: Estimating uplift rate histories from river
profiles using African examples, J. Geophys. Res.-Earth, 115, 1–24,
https://doi.org/10.1029/2009JB006692, 2010.
Salgado, A. A. R., Braucher, R., Varajão, A. C., Colin, F., Varajão,
A. F. D. C., and Nalini Jr., H. A.: Relief evolution of the Quadrilátero
Ferrífero (Minas Gerais, Brazil) by means of (10Be) cosmogenic
nuclei, Z. Geomorphol., 52, 317–323, https://doi.org/10.1127/0372-8854/2008/0052-0317, 2008.
Sant'Anna, L. G., Schorscher, H. D., and Riccomini, C.: Cenozoic tectonics of
the Fonseca basin region, eastern Quadrilátero Ferrífero, MG, Brazil, J. S. Am. Earth Sci., 10, 275–284, https://doi.org/10.1016/S0895-9811(97)00016-3, 1997.
Scharf, T. E., Codilean, A. T., De Wit, M., Jansen, J. D., and Kubik, P. W.:
Strong rocks sustain ancient postorogenic topography in southern Africa, Geology, 41, 331–334, https://doi.org/10.1130/G33806.1, 2013.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Landscape
response to tectonic forcing: Digital elevation model analysis of stream
profiles in the Mendocino triple junction region, northern California, GSA
Bull., 112, 1250–1263, https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2, 2000.
Spier, C. A., Vasconcelos, P. M., and Oliviera, S. M.:
geochronological constraints on the evolution of lateritic iron deposits in
the Quadrilátero Ferrífero, Minas Gerais, Brazil, Chem. Geol., 234,
79–104, https://doi.org/10.1016/j.chemgeo.2006.04.006, 2006.
Spotila, J. A., Moskey, K. A., and Prince, P. S.: Geologic controls on bedrock channel width in large, slowly-eroding catchments: Case study of the New River in eastern North America, Geomorphology, 230, 51–63,
https://doi.org/10.1016/j.geomorph.2014.11.004, 2015.
Stock, J. D. and Montgomery, D. R.: Geologic constraints on bedrock river
incision using the stream power law, J. Geophys. Res.-Solid, 104, 4983–4993, https://doi.org/10.1029/98JB02139, 1999.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Solid, 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Eos, 38,
913–920, https://doi.org/10.1029/TR038i006p00913, 1957.
Summerfield, M. A. and Hulton, N. J.: Natural controls of fluvial denudation
rates in major world drainage basins, J. Geophys. Res.-Solid, 99, 13871–13883, https://doi.org/10.1029/94JB00715, 1994.
Tucker, G. E. and van Der Beek, P.: A model for post-orogenic development of
a mountain range and its foreland, Basin Res., 25, 241–259,
https://doi.org/10.1111/j.1365-2117.2012.00559.x, 2013.
Twidale, C. R.: On the survival of paleoforms, Am. J. Sci., 276, 77–95,
https://doi.org/10.2475/ajs.276.1.77, 1976.
Vasconcelos, P. M. and Carmo, I. D. O.: Calibrating denudation chronology
through weathering geochronology, Earth-Sci. Rev., 179, 411–435, https://doi.org/10.1016/j.earscirev.2018.01.003, 2018.
Vasconcelos, P. M., Farley, K. A., Stone, J., Piacentini, T., and Fifield, L. K.: Stranded landscapes in the humid tropics: Earth's oldest land surfaces, Earth Planet. Sc. Lett., 519, 152–164, https://doi.org/10.1016/j.epsl.2019.04.014, 2019.
von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.: Cosmogenic nuclide
evidence for low weathering and denudation in the wet, tropical highlands of
Sri Lanka, J. Geophys. Res.-Earth, 109, 1–22, https://doi.org/10.1029/2003JF000049, 2004.
Watts, A. B., McKerrow, W. S., and Fielding, E.: Lithospheric flexure, uplift, and landscape evolution in south-central England, J. Geol. Soc., 157,
1169–1177, https://doi.org/10.1144/jgs.157.6.1169, 2000.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Solid, 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Whipple, K. X., Hancock, G. S., and Anderson, R. S.: River incision into
bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, GSA Bull., 112, 490–503, https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2, 2000a.
Whipple, K. X., Snyder, N. P., and Dollenmayer, K.: Rates and processes of
bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow
in the Valley of Ten Thousand Smokes, Alaska, Geology, 28, 835–838,
https://doi.org/10.1130/0091-7613(2000)28<835:RAPOBI>2.0.CO;2, 2000b.
White, A. F. and Blum, A. E.: Effects of climate on chemical weathering in
watersheds, Geochim. Cosmochim. Ac., 59, 1729–1747, https://doi.org/10.1016/0016-7037(95)00078-E, 1995.
Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., and Mather, A. E.: Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt, Earth Planet. Sc. Lett., 538, 1–13, https://doi.org/10.1016/j.epsl.2020.116221, 2020a.
Zondervan, J. R., Whittaker, A. C., Bell, R. E., Watkins, S. E., Brooke, S. A., and Hann, M. G.: New constraints on bedrock erodibility and landscape response times upstream of an active fault, Geomorphology, 351, 1–14,
https://doi.org/10.1016/j.geomorph.2019.106937, 2020b.
Short summary
Plate tectonics drive the formation of mountain ranges. Yet when tectonic forces cease, mountain ranges persist for hundreds of millions of years, forming major Earth surface features. This work presents denudation rate estimates from one such ancient mountain range that show that denudation is strongly tied to rock type. Resistant rocks denude more slowly despite having much steeper topography, and contrasts in rock type cause increasing relief in the absence of active tectonics.
Plate tectonics drive the formation of mountain ranges. Yet when tectonic forces cease, mountain...